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Abstract

Admixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the
case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The
predominant population group in the Western Cape, South Africa, is the admixed group known as the South African
Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population
(African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce false-
positive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide
data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by
Rosenberg et. al’s In-statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of
different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset
with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess
ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South
African Coloured population.
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Introduction

The predominant population group in the Western Cape, South

Africa, is the admixed group known as the South African

Coloured (SAC). The SAC had their origins in the diverse groups

in the early days of Cape history, including European settlers from

1652, the slaves they brought in from Indonesia, India and other

parts of Africa, local Bantu-speakers, and the indigenous Khoe-

San. They therefore constitute a complex combination of

continental populations [1]. Genetic variation between humans

can be ascribed to differences between individuals within

populations (85–90%) and to differences between populations

(10–15%) [2–5]. As humans migrated out of Africa, genetic drift or

adaptation resulted in different frequencies of genetic variants in

the resultant populations. It is often possible to cluster individuals

into population groups that correspond to their self-reported

ancestry because of these differences [6]. Admixture occurs when

two or more previously separated population groups produce

offspring, and it is a well-known confounder in genetic association

studies [7–9]. In case-control genetic studies, if cases have a

different proportion of ancestry from a source population

compared to controls, associations found may be related to

ancestry rather than disease [10]. It is therefore important to

incorporate ancestry in regression models used in genetic

association studies of admixed populations. Given genome-wide

markers for individuals from an admixed population, principal

components or ancestry proportions estimated by solving a

multinomial model can be used as covariates to adjust for

admixture. However, obtaining genome-wide markers in small

follow-up or candidate gene association studies may be prohibi-

tively expensive. Ancestry informative markers (AIMs) are those

polymorphisms with the greatest difference in frequency between

populations. AIMs can be used as a cost-effective alternative to

genome-wide data, if the markers have different allele frequencies

in the source populations of the admixed population.

Panels of AIMs have been drawn up for specific populations and

purposes. Kosoy et al. set out to find AIMs to determine

continental origin and admixture proportions for populations

common in America [11]. A list of 128 SNPs were produced by

considering the effect of a SNP for distinguishing ancestry

independently of the contribution of other SNPs in the data set.

This list was later reduced to 93 SNPs [12]. To distinguish

between three populations, Galanter et al. [13] used the locus

specific branch length (LSBL) of a SNP statistic measured between

each pair of three populations [14]. The LSBL was calculated per
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SNP to develop a panel of AIMs for a diverse set of admixed

populations in the Americas that has African, European and

Native American ancestry. These AIMs are equally informative

for each of the source ancestries, and the panel was shown to

provide accurate ancestry proportion estimates by comparing with

robust estimates inferred from genome-wide data. SNPs may also

be selected by evaluating their combined effect using a perfor-

mance function. Lao et al. [15] used an asymptotic approximation

of the In-statistic calculated for multiple markers as a performance

function [16,17]. Lao showed that only ten SNPs are required to

distinguish the continental ancestry of non-admixed individuals

from Eurasia, Africa, America and East Asia. Paschou et al.

selected SNPs with the highest loadings summed across the top

principal components [18]. This study found that 14 SNPs can

differentiate continental ancestry, 100 SNPs differentiate the intra-

continental ancestry of the Chinese and Japanese populations, and

200 AIMs were necessary for the admixed Puerto Rican

population.

A number of studies showed that the SAC received genetic

contributions from click-speaking Africans (African San), Bantu-

speaking Africans (African non-San), European, South and East

Asians [1,19–22]. The large cohort of SAC individuals used in this

paper represents the same population used in the genome-wide

analysis performed by De Wit et al. [1] and Chimusa et al. [19].

De Wit et al. found that the cohort received large proportions of

ancestry from African San, African non-San and European

populations, and a smaller proportion of Asian ancestry. The

Asian ancestry was most closely related to a Gujarati Indian

population, followed by low levels of ancestry from East Asia.

Similar proportions of ancestry were found by Quantana-Murci et

al. [22] and Chimusa et al. [19]. These findings are consistent with

historical records. Men outnumbered women in the early Cape

Society and mixed liaisons were common [1,23–26]. The

establishment of mission stations from the mid 1700s onwards

further facilitated the integration of European, African (particu-

larly Xhosa) and Khoe-San ancestries [1,25,27]. A large propor-

tion of imported slaves originated from Bengal [1,23]. Bengalis are

genetically similar to the Gujarati Indians [20] used to represent

the South Asian component in the De Wit and Chimusa studies.

The small East Asian ancestry component may be ascribed to the

‘‘free black’’ Chinese who formed 9% of the Cape Town

population in the early 1800s [1,23,25,27]. This is more plausible

than Indonesian ancestry, since the majority of the cohort are not

Muslim and therefore unlikely to form part of the group known as

the Cape Malay [1].

Sets of AIMs published by a number of studies [5,11–13,15,28–

30] are not suited to the SAC, since the Khoe-San was not

considered as a separate population, or an insufficient number of

Khoe-San individuals were used. Complex admixture models such

as the five-way admixture that occurred in the SAC, with different

levels of genetic distance between source populations, were also

not considered. We therefore developed a panel of AIMs tailored

to the SAC and assessed its accuracy compared to genome-wide

data. Although all the methods discussed above select markers that

are informative of ancestry, we also set out to ensure that the

selected marker set is reasonably small and as efficient as possible

in predicting ancestry. Preliminary investigations indicated that

the method introduced by Galanter et al. [13] had the greatest

chance of success, and we therefore adapted this method to allow

more than three source populations.

Materials and Methods

Our first step in selecting AIMs was to obtain genome-wide data

from populations that are representative of the founding groups of

the SAC. Using this data and various different methods to select

AIMs, we then set out to find SNPs where the allele frequencies

are the most differentiated between the various source populations.

Since the purpose of the AIMs is to adjust for the effects of

admixture in genetic studies of the SAC, we assessed the accuracy

of various candidate AIM panels by measuring the correlation

between ancestry proportions estimated for a large study group of

admixed individuals using AIMs and proportions estimated using

genome-wide data. We used this information to select a final panel

of AIMs of reasonable size.

Finally, we assessed whether the selected panel can be applied to

four small South African Coloured study groups from different

geographical locations, by measuring the correlation between AIM

and genome-wide estimated ancestry proportions.

Ethics Statement
Approval from the Ethics Committee of the Faculty of Health

Sciences, Stellenbosch University (project registration numbers

95/072 and NO6/07/132), was obtained for the Cape Town

study group presented in this study. Blood samples for DNA were

collected with written informed consent. Sampling and DNA

consent from the { Khomani San and individuals who self-

identified as ‘‘Coloured’’ in Upington, South Africa and neigh-

boring villages occurred in 2011 and 2012. Institutional Review

Board (IRB) approval was obtained from Stanford University and

Stellenbosch University (project registration number N11/07/

210). { Khomani N|u-speaking individuals, local community

leaders, traditional leaders, non-profit organizations and a legal

counselor were all consulted regarding the aims of this research,

prior to collection of DNA, and regular feedback was given to the

community. This research was conducted according to the

principles expressed in the Declaration of Helsinki.

Data
Genome-wide data were obtained from a large study group of

individuals who self-identified as South African Coloured and who

resided in the Cape Town suburbs of Ravensmead and Uitsig.

DNA samples collected from the study group were genotyped on

the Affymetrix GeneChip Human Mapping 500K Array Set.

More details regarding the sampling and study site are described

by [1]. After SNP calling, SNPs that failed a missing threshold of

5%, a minor allele frequency threshold of 1% or a HWE test with

an alpha level of 0.0001 were removed. Outliers, related

individuals and individuals with a genotyping rate of less than

95% were then removed, resulting in a data set of 733 individuals.

Genome-wide data of four small admixed study groups from

different geographical locations were obtained as follows. The first

group came from a { Khomani San community in the region of

Upington in the Northern Cape, where DNA samples were

collected from 21 unrelated individuals who either self-identified as

Coloured or had at least one parent who self-identified as

Coloured. The samples were genotyped on the Illumina 550K

and Illumina OmniExpress (700K) platforms. SNPs that failed a

missing threshold of 5% and a minor allele frequency threshold of

0.5% were removed from the data set. Data published by

Schlebusch et al. [31] was used for the remaining groups. This

data includes three admixed study groups of 20 individuals each.

Two of the study groups comprise Coloured individuals from

Colesberg in the Northern Cape and Wellington in the Western

Cape, respectively. The third study group comprises 20 individuals

AIMs for the South African Coloured Population
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from the community known as the Karretjie people in the

Colesberg region. High proportions of Khoe-San ancestry are

present in the Karretjie people [31], and it is thought that they also

have European and Bantu ancestry. The DNA samples were

genotyped on the Illumina Omni 2.5M SNP chip. The non-

imputed data set was used, and no additional SNP quality control

steps were performed.

The populations described in Table S1 of Chimusa et al. [19]

were considered as potential source populations for the SAC.

Principal component and ancestry proportion analysis were used

to identify populations with relatively high levels of admixture (see

Figures S3, S4, S5, S6 of Chimusa et al.), thereby ensuring that

only non-admixed source populations were used for AIM

selection. Consequently some of the southern and eastern African

populations were excluded from subsequent analysis. Individuals

in the Khoe-San data sets that showed relatively high levels of

admixture were also removed. The HGDP Melanesian and

Papua-New Guinean populations were additionally considered as

potential source populations in order to have a comprehensive list,

but were excluded since the populations did not appear to be

closely related to the Cape Town study group (see Figure S1),

which fits with the historical evidence. The Khoe-San data set

used to represent the Ju|’hoansi population was obtained from a

private data access committee (contact corresponding author). The

data set represents the same group analyzed by Schlebusch et al.

[31], but was genotyped on the Affymetrix genotyping platform

instead of the OmniExpress platform, which overlaps better with

SNPs in the other source population data sets that were

considered.

Chimusa developed a novel algorithm that identifies the best

populations to use as proxy source populations for a multi-way

admixed population. This algorithm, as described by Bensmail

[32], was used to guide selection of the best populations from the

candidate proxy source populations identified by the preliminary

investigation. The algorithm leverages the idea that LD is created

between genetic loci when admixture occurs between previously

isolated populations. A score statistic is calculated per candidate

reference population, by measuring the correlation between the

LD in the admixed population and the allele frequency difference

between the candidate reference population paired with another

reference population, for all such possible pairs. The results of the

algorithm are summarized in Table S1. The top scoring groups

per source population were then used to represent the source

populations of the SAC. Ideally only the top one or two scoring

populations should be selected as reference populations, but this

would have resulted in small sample sizes for the African San and

African non-San data sets. Consequently all the African San and

the top 8 African non-San populations were selected. The Pakistan

South Asian population was not used as we did not have historical

evidence to support the use of this population. The HapMap CHB

Chinese was also excluded since the group appeared to be very

similar to the HapMap CHD Chinese. The final source

population data set is summarized in Table 1. Figure S2 is a

map representing the geographic locations of the source popula-

tions of the SAC used in this study, as well as the admixed SAC

study groups.

AIMs were selected from the set of SNPs found in all of the

source population data sets and the Cape Town study group data

set. When estimating ancestry proportions of an admixed study

group using genome-wide data, SNPs that were not found in all of

the source population data sets were first removed, after which

SNPs were filtered according to a linkage disequilibrium (LD)

threshold. This was done as increased LD found in admixed

populations may bias ancestry proportion estimation. Table S2

presents information on the thresholds applied and number of

SNPs used for genome-wide ancestry proportion estimation.

Selecting Ancestry Informative Markers
Rosenberg’s In-statistic [16] is a measure of the informativeness

of a genetic marker in determining an individual’s ancestry, for

any number of potential source populations. It is often used to

select AIMs, as markers with large allele frequency differences

between populations will also have a large In-statistic. Galanter et

al. selected SNPs based on the LSBL of this statistic, such that the

total LSBL calculated for each of the source populations of

admixed Latin Americans are equivalent [13].

The LSBL can however only be calculated for three populations

and could therefore not be applied to the five source populations of

the SAC. We therefore modified their approach to first select a

proportion of SNPs according to the In-statistic calculated across

all of the source populations, and to then select additional SNPs by

balancing the total In-statistic between all pairs of source

populations, as described below.

Rosenberg’s In-statistic is defined as follows. For a SNP with

alleles fA,ag let pA be the frequency of allele A calculated across

all the individuals and let pa be the frequency of allele a across all

the individuals, for that marker. Let K be the number of

populations represented by the individuals. Let piA be the

frequency of allele A in population i and let pia be the frequency

of allele a in population i. The informativeness of assignment of a

SNP is given by

In~{pA ln(pA)z
1

K

XK

i~1

piA ln(piA){pa ln(pa)z
1

K

XK

i~1

pia ln(pia)

where 0 ln(0) is defined as 0.

It is similar to a log-likelihood ratio, where the ratio is the

likelihood that an allele is assigned to one of the populations

(
1

K

XK

i~1
piA ln(piA)z

1

K

XK

i~1
pia ln(pia)), versus the likelihood

that the allele is assigned to the average population

({pA ln(pA){pa ln(pa)).

The allele frequency of each SNP in the data set was calculated,

for each source population, and for the population groups

included in a source population (for example the East Asian

source population comprises the HapMap Japanese and Chinese

study groups). SNPs were discarded if they were heterogeneous in

these subgroups, based on a Chi-squared test that has a null

hypothesis of equal allele frequencies in the subgroups. SNPs were

then selected according to the In-statistic calculated across all the

source populations, and the In-statistic calculated between pairs of

populations. Checks were performed before a SNP was accepted

as an AIM, to determine whether the SNP was already in the list of

AIMs, or was in linkage disequilibrium with any of the SNPs in the

list (r2
w0:1), or was located close to any of the SNPs (measured in

number of base pairs).

SNPs were selected as follows. The In-statistic was calculated for

all SNPs, across all the source populations, and used to select SNPs

with the highest values. This multiple population In-statistic may

however be skewed towards populations that are more differen-

tiated (i.e. SNPs from less differentiated populations will contribute

less to the statistic and will therefore have a smaller probability of

being selected as an informative marker). Additional SNPs were

therefore selected by calculating the In-statistic of each SNP for

each pair of populations, and then selecting SNPs by balancing the

total pairwise In- statistic. For example, for five source populations

AIMs for the South African Coloured Population
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there are
5

2

� �
~10 pairs of populations. The pair with the

smallest total In-statistic was identified (initially, the total of all

pairs are set to zero and are therefore tied) and the SNP with the

highest In-statistic for the identified pair was selected as an AIM.

In the case of a tie(s), the SNP with the highest In-statistic for the

tied pair(s) was selected. If the SNP was accepted, its In-statistic

value for the relevant pair was added to the pair’s total In-statistic.

This process was repeated until the required number of AIMs

were accepted.

We generated panels of AIMs of sizes 25, 50, 75,…, 500 using

this approach, and experimented with including versus excluding

SNPs that are heterogeneous in the populations that constitute a

source population, different minimum distances between SNPs

and selecting different proportions of markers (0, 0.1, 0.25, 0.5 and

1) using the multiple population In-statistic. We also experimented

with selecting markers using the implementations provided by Lao

et al. [15] and Paschou et al. [18].

Assessing Ancestry Informative Marker Panels
Let G be a matrix of genotypes for each of the n individuals in

the data set, F be a matrix of variant allele frequencies for each of

the k source populations, and Q be a matrix of k ancestry

proportions for each of the n individuals. Ancestry proportions can

be estimated by maximizing the likelihood function L(Q,F DG).

A strong correlation between ancestry proportions estimated

using AIMs for a particular ancestry and ancestry proportions

estimated using genome-wide data for the same ancestry would

show that the AIMs are informative for that ancestry, even though

the number of markers used in the estimation has been much

reduced from genome-wide data. We therefore estimated the

ancestry proportions of individuals from a combined genome-wide

data set composed of both the source population data sets and the

Cape Town admixed study group, and identified ancestries as

follows. The mean ancestry proportion was calculated for each of

the k possible ancestries, per source population (using only

individuals from that particular source population). The ancestry

of a particular source population was then identified by

determining which of the k possible ancestries had the largest

mean ancestry proportion for that population. The same

procedure was used for combined AIM data sets. The correlation

between ancestry proportions estimated using the genome-wide

data set and proportions estimated using each AIM data set was

then calculated per ancestry, using individuals from the admixed

study group.

Software
We modified the Python script provided by Galanter et al. [13]

to support more than three source populations. Lao provided us

with a Java implementation of his method and we ported the

Paschou MATLAB implementation to R [18]. We used PROX-

YANC to select the best proxy ancestral populations. PLINK [33]

was used for quality control filtering, LD filtering and to calculate

allele frequencies per population. ADMIXTURE’s unsupervised

algorithm was used to estimate ancestry proportions [34] and the

EIGENSTRAT smartpca program was used for principal

component analysis [35]. Statistical analyses were performed

using R.

The python script we used to select AIMs can be found in File

S1. PROXYANC is found at http://www.cbio.uct.ac.za/

proxyanc/software.html.

Results

The correlation between ancestry proportions estimated using

AIMs and proportions estimated using genome-wide data was

calculated for AIM sets of increasing size (25, 50,…, 500 SNPs) for

different combinations of parameter settings.

Table 1. Source population data.

Source population Group Description Source Platform Size

African San (san) kho ` Khomani San from Northern Cape, South Africa Henn 2011 Illumina 550K 14

bus Juu San from South Namibia Henn 2011 Illumina 650K & 1M 9

khs Ju|’hoansi San from North Namibia Private Affymetrix 6.0 22

African non-San (afr) brong Ghana Henn 2011 Affymetrix 500K 8

kongo Atlantic coast of Congo Henn 2011 Affymetrix 500K 9

igbo Southeastern Nigeria Henn 2011 Affymetrix 500K 15

fang Equatorial Guinea Henn 2011 Affymetrix 500K 15

bulala Central Chad Henn 2011 Affymetrix 500K 15

mada West Cameroon Henn 2011 Affymetrix 500K 12

hausa West Nigeria Henn 2011 Affymetrix 500K 12

bamoun West Cameroon Henn 2011 Affymetrix 500K 18

European (eur) CEU Utah residents with Northern and Western
European ancestry, USA

HapMap3 Release 3 111

TSI Italians from Italy HapMap3 Release 3 102

South Asian (sas) GIH Gujarati Indians from Houston, Texas, USA HapMap3 Release 3 97

East Asian (eas) CHD Chinese Metropolitan Denver, Colorado, USA HapMap3 Release 3 106

JPT Japanese from Tokyo, Japan HapMap3 Release 3 113

Data sets used to represent the five source populations of the South African Coloured population. The sample size reflects the group size after relative pairs have been
removed. Henn et al. [52] merged the Juu San data from the Human Genome Diversity Project (HGDP) and Schuster et al. [53] and the African non-San data from Bryc
et al [54].
doi:10.1371/journal.pone.0082224.t001

AIMs for the South African Coloured Population
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For investigating the effect of heterogeneity between subgroups

of a source population (the subgroups are summarized under the

Population Group heading of Table 1), we used a minimum

distance of 100 000 base pairs between SNPs. We selected

different proportions of markers using the multiple population In-

statistic while the remaining SNPs were selected using the pairwise

In-statistic. The difference between the correlation calculated

using a AIM set selected from all markers versus the correlation of

a AIM set of the same size selected from a marker set containing

no heterogeneous SNPs was measured. A positive difference

indicates that the AIM set selected from all markers has a higher

correlation. Figure S3 depicts the magnitude and direction of the

differences measured for the different AIM set sizes and multiple

population In-statistic parameter settings. Since 390 of the 400

differences are positive, we ignored heterogeneity in subsequent

AIM selections.

Figure S4 shows the differences between correlations estimated

using a minimum distance of 100 000 versus a 1 000 000 base

pairs between SNPs for different AIM set sizes and multiple

population In-statistic parameter settings. A positive difference

indicates that the 100 000 base pair distance has a larger

correlation. Although the differences are small and the number

of positive differences are not much larger than the number of

negative differences, the magnitude of the positive differences are

greater compared to the negative differences, except for one of the

multiple population In-statistic parameter settings. For this reason,

we used a minimum distance of a 100 000 base pairs between

markers in our subsequent AIM selections.

A proportion of 0, 0.1, 0.25, 0.5 and 1 markers per set were

selected using the multiple population In-statistic while the

remaining SNPs were selected using the pairwise In-statistic.

Selecting all markers using the multiple population statistic (i.e. a

proportion of 1) resulted in the ambiguous classification of the

source populations for smaller AIM sets; at least 200 SNPs were

required for classifying the source populations correctly. Figure 1

shows the correlation per source population for AIM sets of

increasing size for the first four multiple population In-statistic

parameter settings. The figure shows that the optimal estimated

proportions in terms of cost vs. benefit are obtained using

approximately 100 SNPs - incremental improvement in accuracy

of estimation using more markers is smaller after this point.

Selecting all SNPs by balancing the total pairwise In-statistic

appears to be slightly better compared to selecting some of the

SNPs using the multiple population In-statistic and we therefore

used this parameter setting for selecting the final panel of AIMs.

As it is conceivable that future cost reductions may render the

cost of genotyping additional SNPs irrelevant, Table S3 presents a

panel of 2000 ordered AIMs that were selected using the criteria

described above. This large panel can potentially also be used for

local ancestry inference. It is currently possible to genotype 96

SNPs cost-effectively on a number of platforms, such as the

BeadXpress system, and we therefore evaluated the first 96 SNPs

(roughly the optimal number of markers) as our primary panel of

AIMs. We also evaluated a panel with 24 additional SNPs, since

this slightly larger set of 120 SNPs provides a 3.54% and 5.15%

increase in correlation for the estimated African San and South

Asian ancestry proportions respectively. This larger marker set can

be genotyped using technologies such as Sequenom plexes and

Taqman assays, and the results of its evaluation are detailed in the

Supporting Information. As expected, for both the 96 and 120

SNP panels the number of AIMs selected per population pair is

inversely proportional to the genetic distance between the two

populations (Table S4).

Table 2 summarizes the correlation and RSME for the 96 and

120 AIMs. Figure S5 shows Bland Altman plots per ancestral

population of the difference between the genome-wide and AIMs

estimated proportions versus the genome-wide estimated propor-

tions for each individual (for the 96 AIMs panel). The figure

suggests that there are no systematic differences in the ancestry

estimation.

As large study groups may require fewer markers to differentiate

ancestries [36], the ability of the AIMs to estimate ancestry

proportions of a smaller group of South African Coloured

individuals were evaluated using permutation testing. 100

individuals were randomly selected from the total of 733 and

their ancestry proportions were estimated. The correlation with

the genome-wide ancestry proportions for those individuals was

then calculated. This process was repeated a 100 times. Figure S6

gives boxplots of the correlation coefficients calculated for each

permutation. The red diamonds in the figure are the correlation

coefficients calculated using all 733 individuals; this shows that the

AIMs perform well for a smaller group of individuals.

Markers used to estimate the ancestry proportions of an

admixed population can only perform well if they can also

distinguish between the source populations of the admixed

population. Figure 2 is a barplot of the estimated ancestry

proportions for the combined data set, using AIMs and using

genome-wide data for the estimation. It shows that for most of the

source population individuals, the largest proportion of ancestry is

correctly assigned to the relevant population group using AIMs,

albeit less well when compared to using genome-wide data. The

first three principal components formed using the AIMs for the

source population data are depicted in Figure S7, which also

suggests that the AIMs can be used to group the five source

populations, although the the clusters are wider compared to

genome-wide data. Fifty-one percent of the variance in the data is

explained by the first three components.

Figure S8 is a histogram of the number of AIMs found on each

chromosome, showing that the panel is representative of the entire

genome, and that more markers are generally found on the larger

chromosomes. This is important since ancestry proportions

estimated from markers that are localized to only one part of

the genome may differ substantially from an admixed individual’s

true ancestry proportions across their entire genome. The position

of the markers on each chromosome is represented in Figure S9.

Figure 3 depicts boxplots of ancestry proportions estimated

using genome-wide data and proportions estimated using AIMs

per source population. It shows that the distribution of proportions

estimated using AIMs are similar to proportions estimated using

genome-wide data, especially for the median ancestry proportions,

while the variation of the proportions is only slightly inflated when

using AIMs.

To assess the accuracy of the application of the panel to

Coloured groups sampled from different geographic locations, we

selected markers from the additional Coloured data sets described

in Materials and Methods that overlapped with the 120-SNP

panel. 76 overlapping SNPs were found in the Upington data set

and 84 SNPs were found in the Schlebusch data sets. The number

of markers per ancestry pair for each set is shown in Figure S10.

Table 3 summarizes the correlations between ancestry proportions

estimated using the overlapping AIMs and genome-wide data for

each study group. This shows that the markers perform well for

each of the groups, considering the reduced size of the AIM panel,

possible non-optimal number of markers per ancestry pair and the

small group size. Figure S11 depicts boxplots of ancestry

proportions estimated using genome-wide data versus proportions

estimated using AIMs per source population. The figure illustrates

AIMs for the South African Coloured Population
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that the distribution of the proportions estimated using AIMs are

comparable to the distribution of genome-wide proportions for all

the groups. The median and interquartile range of the ancestry

proportion estimates inferred from genome-wide data and AIMs

are also presented in Table 4, for all the study groups.

Tables S5 and S6 present correlations achieved by AIM sets of

sizes 88, 194 and 314 AIMs for the Galanter et. al. study [13] and

our large SAC study group, as well as sets of 500 and 2000 AIMs

for five-way admixture in the SAC. The tables can be used to

compare correlations in this study to those obtained by Galanter et

al. As expected, the more complex five-way admixture modelling

does not yield correlations that are quite as high as the Galanter

study for sets of the same size, but this is easily rectified by

including additional markers. In addition, when using only the

markers that were selected to distinguish the African San, African

non-San and European populations and using a simpler three-way

admixture model, the correlations are comparable.

We also evaluated AIM panels selected by Lao et al.’s [15] and

Paschou et al.’s methods [18], but could not find a smaller set of

markers that resulted in stronger correlation between AIM and

genome-wide estimated ancestry proportions.

Figure 1. Admixture proportion correlation versus number of AIMs in set. Correlation between admixture proportions estimated using
AIMs and proportions estimated using genome-wide data, using AIM sets of increasing size (increments of 25) for the Cape Town study group
(n = 733). A proportion of the SNPs in each set of AIMs were selected using the multiple In-statistic, indicated in each panel as a percentage, while the
remaining SNPs were selected using the pairwise In-statistic, as described in the Methods section.
doi:10.1371/journal.pone.0082224.g001

Table 2. Correlation and RSME of 96 and 120 AIMs.

96 panel 120 panel

Ancestry Correlation RSME Correlation RSME

African San 0.7565 0.0684 0.7905 0.0621

African non-San 0.7930 0.0774 0.8160 0.0719

European 0.8019 0.0554 0.8150 0.0535

South Asian 0.4808 0.0658 0.5283 0.0625

East Asian 0.5665 0.0560 0.5822 0.0522

Correlation and RSME between ancestry proportions estimated using the 96
and 120 AIM panels respectively and proportions estimated using genome-
wide data, for the Cape Town study group (n = 733).
doi:10.1371/journal.pone.0082224.t002
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Discussion

We report the development of a panel of AIMs for the South

African Coloured population that enables researchers working

with this population to assess population ancestry proportions and

correct for substructure. The SAC has a complex history of

admixture [1,22] and has been used in many genetic association

studies [37–48]. Such candidate gene association studies investi-

gate variants that are often not available in micro-array data.

Obtaining genome-wide markers to then simply adjust for

admixture may be prohibitively expensive. A viable cost-effective

alternative is the genotyping of AIMs. To date, none of the

published lists of AIMs have been developed or adequately

assessed for distinguishing the ancestries of the SAC, which

received genetic contributions from five source populations.

Wacholder et al. has argued that confounding due to admixture

is minimal for more than three source populations, and that the

effect of admixture decrease as the number of strata increases [49].

This study was however limited to U.S. citizens with admixed

European ancestry. Studies of multi-way admixed populations

formed from different continental populations, that display larger

differences in allele frequencies compared to intra-continental

populations, may still suffer from the confounding effect of

admixture. As an illustration, in a genome-wide tuberculosis (TB)

case-control study of the SAC (642 cases and 91 controls),

Chimusa et al. found a statistically significant positive correlation

between the proportion of African San ancestry and TB

susceptibility, and significant negative correlations when regarding

European, East Asian and South Asian ancestries [50]. We

therefore developed a panel of 96 AIMs for the SAC, by selecting

Figure 2. Barplots of ancestry proportions estimated using genome-wide data and using AIMs. In the first panel ancestry proportions
were estimated using genome-wide data. The admixed study group (sac) is ordered by proportions of African San, African non-San, European, South
Asian and East Asian ancestry. In the second panel ancestry proportions were estimated using 96 AIMs. Individuals appear in the same order as in the
first panel.
doi:10.1371/journal.pone.0082224.g002

Figure 3. Boxplots of ancestry proportions of the Cape Town
study group. Boxplots of ancestry proportions estimated using
genome-wide data and proportions estimated using the panel of 96
AIMs are shown in this figure per source population, for the Cape Town
study group (n = 733).
doi:10.1371/journal.pone.0082224.g003
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SNPs that can distinguish between all pairs of source populations,

as measured by Rosenberg’s In-statistic. The AIMs can be used to

adjust for the confounding effect of admixture in genetic

association studies of the SAC. The correlation between AIMs

and genome-wide estimated ancestry proportions may not be

sufficient to suggest confidence in ancestry proportions estimated

by AIMs at an individual level. However, when the entire study

group is considered, the distribution of ancestry proportions are

comparable. The panel therefore also has value for inferences

about ancestry proportions at the population level. Although we

focused on the ability of a small panel of AIMs to adjust for

admixture, the entire set of 2000 AIMs can potentially be used to

infer local ancestry. Note that accurate local ancestry inference in

complex multi-way admixed populations such as the SAC, which

has more than three source populations, is currently an unsolved

problem. Whilst existing methods may achieve good accuracy on

average, inference at particular regions, e.g. regions where the

modeled and true ancestral populations differ due to selection, is

still problematic.

We have used ancestry proportions estimated using genome-

wide data as our gold standard against which to compare

proportions estimated using AIMs. However, genome-wide

estimated proportions are by no means perfect. Accuracy will

vary depending on the choice and number of source populations

used. We have therefore taken care to select the best source

populations for which genome-wide data is available while taking

into account that sample sizes should be reasonable.

Excluding SNPs based on heterogeneity between subgroups of

a source population, for example excluding SNPs that are

heterogeneous in the three different Khoe-San groups, results in

the exclusion of SNPs that can also distinguish source populations.

This feature was introduced by Galanter et al. to ensure that their

panel of AIMs can be applied to diverse American admixed

populations, which may have received genetic contributions from

different Native American populations [13]. Since this scenario

does not apply to the SAC, and using this criterion results in a

lower overall correlation between ancestry proportions estimated

using AIMs and proportions estimated using genome-wide data,

we ignored heterogeneity between subgroups in our final selection

of AIMs.

The ability of the AIMs to distinguish South Asian and East

Asian ancestries is markedly lower compared to the African San,

African non-San and European ancestries. This could potentially

be explained if the groups used as proxies for the South and East

Asian source populations are not ideal representations of these

ancestries in the SAC, although we have attempted to use the best

reference groups for which genome-wide data were available. In

addition, the genetic distance between South Asians and

Europeans is relatively small compared to the genetic distance

between other pairs of populations, and it is therefore more

difficult to distinguish. Alternatively, the lower correlation of the

Asian ancestries could be ascribed to the small proportions

observed in our study groups. In the Galanter et. al. study,

ancestry estimates for source populations that contributed less to

the admixed population also had a relatively low correlation [13].

Due to these reasons, a much larger panel of AIMs would be

required to improve the ability to distinguish the Asian ancestries.

As the genetic contribution of the Asian ancestries to the SAC is

Table 3. Correlation for different admixed study groups.

Study group Number AIMs African San African non-San European South Asian East Asian

Colesberg (n = 20) 84 0.7661 0.8437 0.8996 0.4675 0.4731

Karretjie (n = 20) 84 0.8436 0.7007 0.7724 0.5590 0.1815

Wellington (n = 20) 84 0.7252 0.7102 0.8008 0.6783 0.3311

Upington (n = 21) 76 0.8747 0.6304 0.8739 0.3777 0.3426

Correlation between ancestry proportions estimated using AIMs and proportions estimated using genome-wide data, for small admixed study groups from different
geographic locations. The number of AIMs reflects the number of markers in the 120 panel that were found in the genome-wide data sets of the study groups.
doi:10.1371/journal.pone.0082224.t003

Table 4. Ancestry proportion distribution.

Study group Data set African San African non-San European South Asian East Asian

Cape Town Chip 0.31 (0.23–0.39) 0.26 (0.18–0.37) 0.18 (0.10–0.26) 0.12 (0.08–0.17) 0.07 (0.04–0.10)

(n = 733) 96 AIMs 0.31 (0.21–0.40) 0.26 (0.16–0.40) 0.17 (0.09–0.27) 0.10 (0.02–0.18) 0.09 (0.03–0.16)

120 AIMs 0.31 (0.22–0.40) 0.27 (0.16–0.39) 0.17 (0.09–0.27) 0.11 (0.03–0.19) 0.08 (0.03–0.15)

Colesberg Chip 0.33 (0.25–0.40) 0.29 (0.21–0.40) 0.18 (0.10–0.29) 0.05 (0.03–0.09) 0.05 (0.02–0.07)

(n = 20) 84 AIMs 0.31 (0.24–0.35) 0.27 (0.18–0.46) 0.17 (0.03–0.29) 0.07 (0.03–0.19) 0.01 (0.00–0.05)

Karretjie Chip 0.69 (0.57–0.77) 0.20 (0.15–0.23) 0.08 (0.04–0.12) 0.03 (0.01–0.04) 0.02 (0.01–0.04)

(n = 20) 84 AIMs 0.66 (0.59–0.74) 0.17 (0.08–0.27) 0.04 (0.01–0.16) 0.03 (0.00–0.06) 0.00 (0.00–0.02)

Wellington Chip 0.13 (0.12–0.15) 0.21 (0.19–0.23) 0.29 (0.24–0.31) 0.17 (0.12–0.23) 0.17 (0.15–0.18)

(n = 20) 84 AIMs 0.14 (0.04–0.25) 0.22 (0.14–0.33) 0.28 (0.19–0.37) 0.10 (0.03–0.16) 0.19 (0.11–0.26)

Upington Chip 0.61 (0.47–0.72) 0.11 (0.08–0.17) 0.13 (0.10–0.23) 0.04 (0.01–0.09) 0.02 (0.01–0.06)

(n = 21) 76 AIMs 0.62 (0.43–0.67) 0.08 (0.02–0.17) 0.18 (0.07–0.26) 0.02 (0.00–0.07) 0.00 (0.00–0.07)

Median and IQR of the ancestry proportions estimated using genome-wide data and AIMs, per admixed study group.
doi:10.1371/journal.pone.0082224.t004
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relatively small, and because South Asians and Europeans are

genetically similar, confounding due to the Asian ancestries are

likely to be trivial in association studies. The list of AIMs presented

in our study does state which source population pair each marker

has been selected for. Markers selected for pairs that include the

Asian ancestries can therefore easily be excluded, especially when

a small panel is required. It is however our opinion that it is

important to consider the Asian ancestries, since ignoring them

would result in a less accurate overall estimation of ancestry.

The AIMs were selected from a set of markers that were

successfully genotyped on the Affymetrix 500K chip for the

admixed Cape Town study group, and that overlapped with

source population data sets used in this study. The source

population data sets were genotyped on a number of different

microarray chips, including Illumina chips. It is therefore likely

that the markers will also be genotyped successfully by other

technologies, such as custom designed genotyping chips, the

BeadXpress system, Sequenom plexes and Taqman assays.

According to the 2011 South African census, the majority of

individuals who self-identify as South African Coloured reside in

the Western Cape province [51]. The Cape Town study group of

admixed individuals, recruited from the suburbs of Ravensmead

and Uitsig in the Western Cape and who self-identified as South

African Coloured, was used to assess the accuracy of the AIMs

panel. We therefore believe that our panel of AIMs is applicable to

the majority of individuals constituting this population group. We

have also shown that the AIMs perform well for other Coloured

groups residing in the Western Cape and the Northern Cape.

These groups may be genetically distinct from one another due to

genetic drift and different dates and levels of admixture between

the different source populations. Since we have shown that the

AIMs can distinguish the ancestries of the different admixed

groups, the panel can also be used to correct for stratification when

a study group has not been sampled from a relatively homoge-

neous admixed population. This is important as recent migration

might introduce additional unknown heterogeneity into commu-

nities. It remains to be seen how well the AIMs perform in other

Southern African mixed ancestry groups, such as the Cape Malay,

a group which may have retained some distinction from the

general South African Coloured population, groups living in the

Eastern Cape and the Basters who reside mainly in Namibia. We

have not been able to assess the accuracy of the panel for such

groups due to the lack of availability of genome-wide data. It is,

however, likely that the AIMs will also be applicable to these

groups, since they were formed from the same source populations,

or subsets of the same source populations. Consequently, the cost

of studies regarding the overall genetic make-up of other Coloured

groups can be much reduced. Based on our recent experience in

Southern Africa, genotyping 120 AIMs were five times more cost-

effective using Sequenom plexes compared to the most cost-

efficient micro-array chips, which is particularly relevant when

sample sizes are large. This is especially important in the light of

limited access to research funding in Southern Africa. Although

the cost of micro-array genotyping continues to decline, this also

holds true for platforms designed for smaller marker sets, making it

difficult to speculate on when the cost reduction will become a

moot point.

In summary, we have developed a panel of 96 AIMs that is

tailored to the complex five-way admixture that occurred in the

South African Coloured population. This panel can be used as a

cost effective alternative to genome-wide data for reducing false

positive findings resulting from ignoring admixture in genetic

association studies of the population.

Supporting Information

Figure S1 Ancestry proportion and principal compo-
nent analysis (PCA) of the SAC and the Oceania HGDP
populations. (A) The proportion of each individual’s ancestry.

(B) The first and second eigenvectors of the PCA of the combined

populations.

(PDF)

Figure S2 World map with source and admixed popu-
lations. Abbreviations used for the source populations corre-

spond to Table 1. The admixed populations are indicated as

follows: Cape Town = cpt, Colesberg = col, Karretjie = kar, Well-

ington = wel, Upington = upt. The ceu, chd and gih HapMap

populations received ancestry from continents that differ from

their sampling locations. Their approximate area of origin is in

solid colour, with migration shown by arrows.

(PDF)

Figure S3 Scatter plots of the difference in correlation
coefficients against the number of AIMs used in the
calculation of the correlations, when ignoring hetero-
geneity versus removing heterogeneous SNPs. Both

correlations are between ancestry proportions estimated from

genome-wide data and ancestry proportions estimated using a

set of AIMs selected from the genome-wide data. The difference

is between the AIMs selected from all the genome-wide SNPs

and those selected from genome-wide SNPs from which

markers that are heterogeneous in subgroups of the source

populations have been removed. The percentage of SNPs

selected using the multiple In-statistic (the remainder were

selected using the pairwise In-statistic) are shown for each plot.

SNPs were selected with a minimum distance of 100 000 base

pairs between them.

(PDF)

Figure S4 Scatter plots of the difference in correlation
coefficients against the number of AIMs used in the
calculation of the correlations, when using a minimum
distance of 100 000 base pairs between SNPs versus a
1 000 000 base pairs. Both correlations are between ancestry

proportions estimated from genome-wide data and ancestry

proportions estimated using a set of AIMs selected from the

genome-wide data. The difference is between the AIMs selected so

that there is a minimum distance of 1 000 000 base pairs between

them and those selected with a minimum distance of 100 000 base

pairs between them. AIM sets were selected from all the genome-

wide SNPs. The percentage of SNPs selected using the multiple In-

statistic (the remainder were selected using the pairwise In-statistic)

are shown for each plot.

(PDF)

Figure S5 Bland Altman plots of differences between
ancestry proportion estimates. Bland Altman plots per

ancestral population of the difference between the genome-wide

and AIMs estimated proportions (y-axis) versus the genome-wide

estimated proportions (x-axis) for each individual, using 96 AIMs.

Each panel respresents the ancestry proportions of one of the

source populations of the SAC.

(PDF)

Figure S6 Boxplot of permutation correlation. A

boxplot of correlation coefficients calculated in 100 permuta-

tions per source population, each permutation comprising a

random draw of 100 individuals from the Cape Town study

group (n = 733). The correlation was measured between

admixture proportions estimated using the panel of 96 AIMs
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and proportions estimated using genome-wide data. The red

diamonds represent the correlation coefficients calculated using

the entire study group.

(PDF)

Figure S7 Principal components formed using genome-
wide data and AIMs. The first two panels show principal

components 1 and 2 and 2 and 3 respectively, inferred from the

source population genome-wide data. Similarly, panels 3 and 4

shows principal components inferred from 96 AIMs. Each data

point represents the score of an individual for a principal

component. The legend shows which source population each

individual belongs to.

(PDF)

Figure S8 Histogram of the number of AIMs on each
chromosome. Histogram that represents the number of markers

in the panel of 96 AIMs per chromosome.

(PDF)

Figure S9 Base pair position of AIMs per chromosome.
The figure shows the position in number of base pairs of each of

the 96 AIMs per chromosome.

(PDF)

Figure S10 Number AIMs found in admixed study
groups per population pair. The number of AIMs per source

population pair found in the different admixed study group data

sets.

(PDF)

Figure S11 Boxplot of ancestry proportions of small
admixed study groups. The distribution of ancestry propor-

tions estimated using genome-wide data and proportions estimated

using AIMs are shown in this figure for the small admixed study

groups, per source population. The Colesberg, Karretjie and

Wellington study groups are each comprised of 20 individuals and

84 AIMs were used to estimate ancestry proportions. The

Upington study group comprises 21 individuals and 76 AIMs

were used to estimate ancestry proportions.

(PDF)

Table S1 Proxy ancestry scores. The results of the PROXYANC

algorithm ordered by the magnitude of the score, per source

population.

(PDF)

Table S2 The number of markers used for genome-wide

ancestry proportion estimation per admixed study group. After

the set of SNPs that overlap with all the source population data

sets was found, a LD filter was applied to each admixed study

group, using a window size of 50 SNPs and a shift size of 10 SNPs.

Only the remaining SNPs were used for ancestry proportion

estimation.

(PDF)

Table S3 2000 AIMs. The top 2000 markers selected by our

algorithm as AIMs for the South African Coloured population are

found in table_s3.xls. The table presents information on the marker

location, allele frequency and population pair that a marker was

selected for. The list is ordered according to marker selection, i.e.

the panel of 96 AIMs evaluated are the first 96 markers in the

table.

(XLS)

Table S4 Number markers selected per source population pair.

The number of markers selected per pair of source populations, for

the panels of 96 and 120 AIMs. The number of markers selected

are inversely proportional to the genetic distance between the

populations that constitute the pair, as measured by Fst.

(PDF)

Table S5 Correlation obtained by Galanter et al. Correlation

between ancestry proportions estimated using 88, 194 and 314

AIMs and proportions estimated using genome-wide data, for two

of the admixed study groups in the Galanter et al. study.

(PDF)

Table S6 Correlation obtained in the Cape Town study group

for comparision to the Galanter et al. study. Correlation between

ancestry proportions estimated using 88, 194 and 314 AIMs and

proportions estimated using genome-wide data, for a 5-way and 3-

way admixture model. Correlations for AIM sets of sizes 500 and

2000 are also given for the 5-way admixture model.

(PDF)

File S1 AIM selection script. A zip file containing the python

script we used to select AIMs (AIMs_generator.py), a text file with

instructions for running the script, and two example input

parameter files.

(ZIP)
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