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Abstract

Reports of the increasing incidence of male infertility paired with decreasing semen quality have triggered studies
on the effects of lifestyle and environmental factors on the male reproductive potential. There are numerous exogenous
and endogenous factors that are able to induce excessive production of reactive oxygen species (ROS) beyond that of
cellular antioxidant capacity, thus causing oxidative stress. In turn, oxidative stress negatively affects male reproductive
functions and may induce infertility either directly or indirectly by affecting the hypothalamus-pituitary-gonadal (HPG)
axis and/or disrupting its crosstalk with other hormonal axes. This review discusses the important exogenous and
endogenous factors leading to the generation of ROS in different parts of the male reproductive tract. It also highlights
the negative impact of oxidative stress on the regulation and cross-talk between the reproductive hormones. It further
describes the mechanism of ROS-induced derangement of male reproductive hormonal profiles that could ultimately
lead to male infertility. An understanding of the disruptive effects of ROS on male reproductive hormones would
encourage further investigations directed towards the prevention of ROS-mediated hormonal imbalances, which in turn
could help in the management of male infertility.
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Background
Over the past 40 years, reports regarding the decline in
semen quality [1–4] and its probable consequences on
male fertility have encouraged studies about the effects
of environment and lifestyle factors on the male repro-
ductive potential. Reactive oxygen species (ROS) pro-
duced by exogenous and endogenous factors are highly
reactive oxygen derivatives with half-lives in the nano-
to milliseconds range. These molecules reportedly play a
key role in altering male reproductive functions [5, 6].
Lifestyle modifications, technological advancements, es-
calating levels of pollution, alcohol consumption, smoking
of cigarettes and vaping, and physical stress are among the
prime exogenous causes of ROS production [7–9]. Also,
multiple mechanisms involving metabolism in the cell

membrane, mitochondria, peroxisomes, and endoplasmic
reticulum can produce endogenous ROS [7, 9].
Antioxidants defend against excessive ROS levels

through enzymatic (superoxide dismutase, catalases, and
peroxidases) and non-enzymatic (vitamins, steroids etc.)
mechanisms [7, 10]. In cases where the imbalance be-
tween oxidants (ROS) and antioxidants leans towards
the oxidants, oxidative stress (OS) occurs, which puts
the cells and the body under stress. As a result, excessive
ROS can induce lipid peroxidation, disrupt DNA, RNA
as well as protein functions in the spermatozoa and
other testicular cells [10].
High ROS levels can increase the possibility of infertil-

ity not only directly by inducing OS, but also indirectly
by acting through the hypothalamic axes of hormone re-
lease [11–13]. ROS reduce male sex hormone levels and
disrupt the hormonal balance that regulates male repro-
ductive functions [14], and thus causes infertility. These
“endocrine disruptors” not only interfere in the commu-
nication between testis and the hypothalamic-pituitary
unit, they also disrupt the cross-talk between the
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hypothalamic-pituitary-gonadal (HPG) axis with other
hypothalamic hormonal axes [15, 16]. The testis, as the
primary male sex organ, is not only concerned with
spermatogenesis, but also with the secretion of several
hormones [17] which are required for regulation of go-
nadotropin secretion, spermatogenesis, formation of
male phenotype during sexual differentiation, and nor-
mal sexual behaviour [18]. Hence, by interfering with
normal hormonal release, ROS disrupt these essential
reproductive functions.
Therefore, this review precisely elucidates (a) the role

of ROS, generated by various exogenous and endogen-
ous factors, in disrupting hormone secretion by interfer-
ing in the endocrine pathways, as well as in their
cross-talk, (b) hormonal regulation of the oxidative sta-
tus of male reproduction, and (c) a possible mechanism
of action of ROS-induced disruption of the male repro-
ductive hormonal profile.

Endocrinology of male fertility
The gonadotropin releasing hormone (GnRH) secreted
by the hypothalamus regulates the release and secretion
of gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) from anterior pituit-
ary that in turn regulate testicular functions [17]. These
gonadal steroids as well as the pituitary gonadotropins,
via feedback regulatory mechanisms, further establish
physiological homeostasis and maintains normal repro-
ductive functions [14, 17, 19]. FSH receptors are located
on the membrane of Sertoli cells, while those of LH are
on the Leydig cells. They coordinate to synthesize testos-
terone, maintain normal spermatogenesis, sperm health
and density [19–21].
Moreover, other hormones like estradiol (E2) and pro-

lactin (PRL) also take part in the management of male
reproductive function. E2, produced both by the testis
and via the peripheral conversion of androgenic precur-
sors, is a potent inhibitor of LH and FSH [18, 19] (Fig. 1).
PRL-inhibiting GnRH secretion via modulation of dopa-
minergic pathway may also reduce LH and testosterone
level and thus is associated with hypogonadism [22].
Dehydroepiandrosterone (DHEA) is another male
reproduction ameliorating, steroid hormone secreted by
the adrenal cortex [23, 24]. Inhibin A and B, dimeric hor-
mones produced by Sertoli cells, exhibit negative feedback
on FSH secretion and thus also on testicular functions
[25]. Moreover, melatonin (MLT), a tryptophan-derived
hormone of the pineal gland, positively regulates gonado-
tropin and testosterone secretion, and thus aid male
reproductive functions [26, 27]. Anti-Mullerian hormone
(AMH), a dimeric glycoprotein hormone produced in em-
bryonic Sertoli cells, is structurally related to inhibin and
is responsible for regression of Mullerian ducts during the
first 8 weeks of embryogenesis. It reflects Sertoli cell

functions and is inhibited by testosterone under the influ-
ence of LH [28–30]. Interactions between the
hypothalamo-pituitary-thyroid (HPT) and HPG axes
potentially influence testicular development, mostly by
the participation of thyroid hormones and FSH [31].
Thus, besides the central control through the HPG

axis, the major male reproductive hormones act either in-
dividually or via the cross-talks among different endo-
crine axes to influence male reproductive functions.
Consequently, any disruption to these networks may ad-
versely affect male fertility.

Generation of ROS in the male reproductive tract
Reactive oxygen species (ROS), which are short-lived,
unstable, and highly reactive species containing at least
one oxygen atom, are able to snatch electrons from
other molecules to achieve an electronically-stable state.
In this process, the other molecule loses an electron fol-
lowing which a new radical is formed. Subsequently, this
radical reacts with another neighbouring molecule, thus
passing on the radical status via a reaction called ‘radi-
cal-chain reaction’ until two radicals react with one an-
other forming a stable bond. These reactions amplify the
degree of alterations in the cellular structures [32–34].
Human spermatozoa contain abundant mitochondria,

particularly in its midpiece [35]. An NADH-dependent
oxidoreductase (in the inner mitochondrial membrane)
and NAD (P) H-oxidase (in the plasma membrane) are
two main sources of superoxide (O2

●-) [32, 33, 36]. The
majority of ROS generated in human spermatozoa is
O2

●- which is a product of oxidative phosphorylation by
addition of an electron to intracellular oxygen and is
created between complex I and III of the electron trans-
port chain [37]. H2O2 is an uncharged, membrane per-
meable molecule which has been found to be the major
initiator of peroxidative damage of the plasma mem-
branes of germ cells [34]. In the presence of transition
metals, such as iron (Fe3+) and copper, O2

●- and H2O2

can generate the extremely reactive OH• through the
Haber-Weiss reaction, which consist of a reduction of
ferric (Fe3+) to ferrous ion (Fe2+) [38]. In a subsequent
second step, called Fenton reaction, Fe2+ is oxidized by
H2O2 to Fe3+ whereby hydroxide (OH−) and the most
reactive hydroxyl radical (OH•) are formed. Further-
more, O2

●- has the ability to interact with nitric oxide
(NO) to form peroxynitrite (ONOO−), subsequent reac-
tions of which may lead to either apoptotic or necrotic
cell death [39]. In the male reproductive tract, ROS
finally can be generated by one of these sources accord-
ing to the above-mentioned mechanisms.
In order to produce the immense amount of energy

needed for motility, spermatozoa possess numerous
mitochondria in the mid-piece of the flagellum. In the
mitochondria, disruption of the membrane potential
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leads to electron leakage in the electron transfer chain
and subsequently produces ROS. The Ca2+-dependent
NADPH oxidase, called NOX5 (encoded by the NOX5
gene) was initially detected in the human testis, but was
also found to be present in the acrosomal and mid-piece
regions of human spermatozoa [40]. NOX5 is a major
generator of ROS and could subsequently induce OS.
This enzyme is activated when Ca2+ binds to its cytosolic
N-terminal EF-hand and causes conformational changes
to the cell through OS [41]. Moreover, during spermato-
genesis, the developing spermatozoa extrude their cyto-
plasm. When spermiogenesis is disrupted and/or excess
cytoplasm is not completely extruded (excess residual
cytoplasm), the excess cytoplasm will be retained around
the mid-piece. Since cytoplasm contains the enzymatic
machinery to produce ROS, any hindrance in the elimin-
ation of excess cytoplasm would trigger the production

of intrinsic amounts of ROS in excess, which, in turn,
would lead to oxidative damage of the plasma mem-
brane and sperm DNA [42].
The prostate and seminal vesicles are the major

sources of peroxidase-positive leukocytes (polymorpho-
nuclear leukocytes (50 ∼ 60%) as well as macrophages
(20 ∼ 30%)) [43, 44]. Inflammatory responses trigger
these cells to generate ROS about 100-times more than
it is produced under normal conditions [34, 45, 46]. This
elevated ROS production is a part of the natural defense
mechanisms of these cells, whereby NADPH-production
through the hexose monophosphate shunt is elevated.
Leukocyte participation in inflammation is closely con-
nected with the accompanying leukocytospermia [47], a
condition defined by the World Health Organization
(WHO) as semen samples containing more than one
million peroxidase-positive leukocytes per milliliter of

Fig. 1 Sources of reactive oxygen species (ROS) and their impact on the complex endocrine network regulating male reproduction. a High levels of ROS
impact upon the HPG axis which results in decreased secretion of male reproductive hormones. b Through the HPA axis, ROS increases the release of the
stress hormone cortisol, which through the HPA-HPG axes cross-talk, further decreases LH secretion. c Elevated ROS also affects the HPT axis which results
in decreased T3 production from the thyroid gland, which through the cross-talk between HPT and HPG axes, again decreases testosterone synthesis. ROS
also affects the other endocrine glands which interfere with these endocrine axes to result in decreased testosterone production. Increased oxidative stress
(OS), in different conditions, decreases insulin production from the pancreas which again reduces T3 production from the thyroid gland and through
HPT-HPG axes cross-talk decreases testosterone biosynthesis. ROS production in obesity also increases circulating leptin levels which directly reduces
testosterone synthesis in the testis. Reduced melatonin in OS, and increased production of pro-inflammatory cytokines during reproductive tract infections,
affects the HPG axis to reduce testosterone biosynthesis. OS also increases prolactin secretion from the anterior pituitary and E2 synthesis from the testis.
These two hormones reduce GnRH secretion from the hypothalamus and testosterone biosynthesis from the testis, respectively
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semen [48]. Varicocele, a condition caused by an abnor-
mal dilation of veins in the pampiniform plexus sur-
rounding the spermatic cord [49], is also associated with
elevated levels of seminal ROS [50].

ROS and male reproductive hormones
ROS generation, which can be elicited through various
exogenous and endogenous pathways, may adversely
affect the male reproductive potential by interfering with
the endocrine axes both individually and via their
cross-talks (Table 1).

Exogenous factors
Psychological stress
Psychological stress has been demonstrated as a cause of
idiopathic male infertility and several studies have

described a correlation between stress and impaired
semen parameters [51–53]. It was reported that psycho-
logical stress can increase the circulating levels of corti-
sol and norepinephrine [54]. These hormones have a
significant impact on increasing intracellular levels of
ROS/reactive nitrogen species (RNS) to have damaging
effects on cellular microstructures and activation of the
immune and inflammatory systems [54, 55]. Psycho-
logical stress inhibits male reproductive functions by dir-
ectly affecting the action of glucocorticoids on Leydig
cells [11]. As a result, circulating testosterone levels de-
crease through suppression of androgen synthesis and
induction of apoptosis of Leydig cells [56]. Psychological
stress can also increase the serum levels of cortico-
sterone (in animals) and cortisol (in humans), which
then enhance the apoptotic frequency of Leydig cells

Table 1 Sources of reactive oxygen species (ROS), their mechanism of generation and effects on male reproductive hormones

Sources of ROS Mechanism of ROS generation Effects on male reproductive hormones

Exogenous sources

Psychological
stress

By increasing stress hormone (cortisol) levels and activating
the immune–inflammatory system

Decreases serum testosterone and LH levels by suppressing
androgen synthesis and inducing Leydig cells apoptosis

Heat stress By decreasing antioxidant enzyme activities, increasing NADPH
oxidase activity and disrupting mitochondrial homeostasis

Disrupts Sertoli cell functions, decreases testosterone and LH
levels

Environmental
toxicants

By activating inflammatory mechanisms and cellular death Decreases Leydig and Sertoli cell functions, hormonal
biosynthesis

Electromagnetic
radiations

By decreasing total antioxidant capacity Decreases serum testosterone and LH levels

Long-term
heavy exercise

By stimulating mitochondrial enzymes including NOX and XO Decreases LH, FSH, and testosterone levels

Obesity By increasing leptin levels in human endothelial cells and
increasing mitochondrial fatty acid oxidation

Activation of the HPG axis stimulates FSH and LH release. Leptin
can directly affect the gonads due to its receptor isoforms in
gonadal tissue and stimulate steroid secretion, through
increasing the GnRH

High-fat and
high-protein
food

By decreasing natural food antioxidants and free radical
scavengers

Decreases testosterone biosynthesis, LH secretion and androgen
profile

Alcohol By stimulating cytochrome P450s enzyme activities in the liver,
altering levels of necessary metals in the body, and reducing
antioxidant levels

Increases Sertoli cells and Leydig cells apoptosis, reduces serum
testosterone, LH and FSH levels

Marijuana and
narcotic drugs

By increasing inflammation and cytochrome p53-induced
apoptotic cell death

Inhibits GnRH release and LH production, inhibits HPG axis,
reduces testosterone level, and increases SHBG level

Smoking By decreasing oxygen delivery to the testis and the high
metabolic requirements of spermatogenesis, releasing a large
number of mutagens and metabolites, weakening of the
antioxidant defense systems. Stimulation of NOX enzymes

Alters plasma levels of testosterone, prolactin, estradiol, FSH, LH
and SHBG by affecting the Leydig and Sertoli cells

Anabolic
steroids

By stimulating mitochondrial respiratory chain complexes,
inflammatory cytokine release and cellular apoptosis

Disrupts Leydig cell functions, suppresses HPG axis, reduces LH
release and thus testicular testosterone biosynthesis

Endogenous sources

Aging By decreasing the activities of antioxidant enzymes, alteration
in the mitochondrial membrane potential

Increases lipid peroxidation of Leydig cells, LH sensitivity by
diminishing LH receptors, reduces the rate of steroidogenesis,
testosterone biosynthesis and secretion

Infections of the
reproductive
tract

Bacterial strains that colonize the male reproductive tract
causes inflammatory damage by inducing leukocyte migration,
release of cytokines and other inflammatory mediators,
activation of macrophages, lymphocytes and other
immunoreactive cells

Reduces serum testosterone levels by disrupting the hormonal
axis, increase in LH and FSH levels
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[57]. Furthermore, during glucocorticoid production
by 11β-hydroxysteroid dehydrogenase-1 (11βHSD-1),
NADPH was produced as a cofactor that is used for
the biosynthesis of steroidogenic enzymes and testos-
terone [58].
Stress adversely affects steroidogenesis, since changes

in the autonomic catecholaminergic activities during
stress may suppress Leydig cell functions, thus inhibiting
steroidogenic enzyme activities and testosterone produc-
tion [11]. Stress-induced elevations of glucocorticoid
levels can directly decrease testosterone levels without
altering LH levels [59–61]. Further, in case of chronic
stress, a decrease in LH and GnRH levels becomes
apparent [62, 63].

Heat stress on gonads
In males, testes are suspended in a scrotum outside the
body in order to keep the temperature 2 to 4 °C lower
than that of core body temperature. This is a require-
ment for normal spermatogenesis [64]. However, heat
stress to the testes not only decreases semen quality but
also indirectly lowers embryo quality after fertilization as
the spermatozoa produced in overheated testis exhibits
damage [65–67]. In this context, heat stress is respon-
sible for enhancing ROS production as well as decreas-
ing antioxidant enzyme activities, increasing NADPH
oxidase activity and disrupting mitochondrial homeosta-
sis [68, 69]. Numerous reports have documented that
factors such as fever, sauna or steam room use, sleeping
posture, long time sitting or driving, polyester-lined ath-
letic supports, using a laptop on the lap and electric
blankets impose negative effects on scrotal temperatures
and subsequently spermatogenesis [70, 71]. Studies have
also reported that clinical conditions such as cryptorchid-
ism, varicocele, and acute febrile illness can increase tes-
ticular temperature and suppress spermatogenesis [70].
Activation of the hypothalamic–pituitary–adrenal (HPA)

axis and the consequent increase in plasma glucocorticoid
concentrations are two of the most important responses to
heat stress. Heat stress imparts detrimental effects on male
reproduction partly by disrupting the normal release of
GnRH from the hypothalamus as well as LH and FSH from
the anterior pituitary gland [72]. Several studies have indi-
cated that testicular heat stress leads to a decline in the
circulating levels of testosterone and LH but increases
serum cortisol levels [73, 74]. Testicular heat stress also
leads to Leydig cell apoptosis and a reduction in testoster-
one biosynthesis in adult rat testes [75]. Moreover, in-
creased testicular temperature adversely affects Sertoli cell
function, production of testicular androgen-binding pro-
tein, spermatogenesis and semen parameters [76]. Thus,
increased heat stress elevates the generation of ROS in the
male reproductive tract by directly affecting cellular metab-
olism [69] and by influencing stress hormone levels [77].

The resulting increase in ROS production, in turn, damages
testicular germ cells and other endocrine cells to disrupt
the hormonal balance, thereby curbing male fertility [34].

Environmental toxicants
Exposure to environmental contaminants adversely af-
fects the male reproductive potential [78, 79]. Male in-
fertility caused by exposure to environmental toxicants
such as cadmium [80, 81], mercury [82, 83], bisphenol A
(BPA) [84, 85] and dioxin [86] is a worldwide problem.
Even chemical components of air pollution can induce
OS by triggering redox-sensitive pathways subsequently
leading to various malaise, such as inflammation and cell
death [87].
These contaminations deteriorate semen parameters,

DNA integrity via disrupting Leydig and Sertoli cell
function, hormone biosynthesis, gene expression and
epigenetic modifications [12, 88, 89]. These toxicants
commonly act as ‘endocrine disrupting chemicals’
(EDCs) that interfere with normal hormonal functions
[90], enhance the level of circulating cortisol owing to
OS induction [91] and reduces circulating testosterone
levels [92, 93]. Increased cortisol decreases LH secretion
through crosstalk between the HPG-HPA axes. De-
creased LH concentration fails to stimulate the Leydig
cells resulting in decreased testosterone production,
whereas decreased FSH affects normal Sertoli cell func-
tions [94]. These toxicants also interfere with the cellular
communications and adhesions between Sertoli–Sertoli
cells and Sertoli–germ cells via the phosphatidylinositol
3-kinase (PI3K)/c-Src/focal adhesion kinase (FAK)
signalling pathway which leads to reproductive dysfunc-
tion [95] and disrupted hormonal secretion. Thus, these
toxicants disrupt normal male reproductive hormonal
balance by their disruptive influence upon the endocrine
and reproductive organs as well as by interfering in the
cross-talk among different endocrine axes [96].

Electromagnetic radiations
Since the last few decades, it has been widely reported
that long-term exposure to electromagnetic radiations
can generate ROS in reproductive organs, which not
only declines motility, viability, and normal morphology
of functional spermatozoa [97, 98], but also disorients
reproductive hormonal profiles. The use of cell phones
[99], wireless internet [100] and other occupational or
environmental radiations [101] are found to be major
causative factors directly augmenting ROS generation in
male reproductive organs [102, 103]. Electromagnetic
radiation affects the HPA axis and increases adrenocorti-
cotropic hormone (ACTH) secretion from the anterior
pituitary thereby increasing the production of cortisol
from adrenal cortex [104]. These radiations can also
decrease testosterone secretion from Leydig cells by
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disrupting the male reproductive hormonal axis [105].
Electromagnetic radiation significantly affect LH levels
but not FSH and PRL levels [106]. It has also been re-
ported that exposure to electromagnetic waves directly
affects the pineal gland, thereby deteriorating the bio-
logical effect of melatonin on GnRH pulse in the hypo-
thalamus [107]. Thus, altered GnRH levels influence
FSH and LH secretion and negatively affects testoster-
one synthesis in the testis [108].

Exercise
Contrary to regular exercise that enhances antioxidant
defences in the body, unaccustomed and/or exhaustive
exercise can lead to the undesirable generation of exces-
sive ROS [109]. Although the exact redox mechanisms
remain elusive, it seems that mitochondria, NADPH oxi-
dase (NOX), and xanthine oxidase (XO) are the major
endogenous sources of ROS in skeletal muscle [109].
Some studies showed that moderate physical activity can
increase FSH, LH, and testosterone levels [110], which is
widely associated with increased energy and muscle
strength [111, 112]. Despite the impact of moderate
exercise, data suggest that vigorous exercise may de-
crease LH, FSH, and testosterone levels as well as semen
parameters [113, 114]. However, other investigators have
reported that testosterone levels remain unaltered fol-
lowing heavy exercise [115, 116].

Obesity
Obesity is a complex health disorder that severely affects
hormonal balance [117]. Obesity disrupts serum levels of
leptin [118], ghrelin [119], adiponectin [120], orexin
[121], obestatin [122] and other metabolic hormone pro-
files [117]. Reportedly, leptin correlates positively with
body fat mass [123, 124] and a leptin-induced generation
of ROS in human endothelial cells result from increased
mitochondrial fatty acid oxidation [123, 124]. The activa-
tion of the HPG axis could be enhanced by leptin and
thus stimulate the release of GnRH, FSH and LH [125].
Moreover, leptin can directly affect the gonads due to its
receptor isoforms in gonadal tissue [125].
Though the impact of ghrelin on serum testosterone

level is contentious [126–128], it is reported that ghrelin
receptors are present in the testis and that ghrelin plays
a key role in testosterone production, but not directly in
spermatogenesis [126]. Increased ROS levels appear to
cause increased levels of ghrelin [129] which may, in
turn, result in obesity and further ROS production.
Serum adiponectin level is negatively correlated with

both testosterone [130] and ROS production [131].
Orexin (hypocretin) is known to stimulate testosterone
production by enhancing the activities of steroidogenic
enzymes in Leydig cells [132]. It is also reported to at-
tenuate ROS-induced cell damage [133]. All these

metabolic hormones either directly or indirectly reduce
the androgen profile in men.
The complex cross-talk among these hormones is

interrupted in obesity, thus causing a massive annihila-
tion of the hormonal milieu, which in turn affects male
reproductive functions. Although there is a body of evi-
dence highlighting the complexity and the multifactorial
effects that obesity has on certain male reproductive
functions, the correlation between obesity and semen
parameters is still debated [134, 135].

Food intake
There is an inverse relationship between the dietary intake
of antioxidant-rich food and incidence of human diseases
[136]. Many naturally-occurring antioxidant compounds
from plant sources have been identified as free radicals or
active oxygen scavengers [136]. Studies show that men
who consume high dietary fish, fruits, vegetables, legumes,
whole grains and omega-3- and omega-6-fatty acids have
better semen parameters compared with men con-
suming high fat, caffeine (> 800 mg/day), red meat,
processed meat, pizza, sugary drinks, and sweets in
their diet [137, 138]. Therefore, in order to compen-
sate for poor nutritional vitamin intake, food and
medicine are routinely supplemented with synthetic
and natural food antioxidants.
It is well-known that chronic high-fat and

high-protein diets lead to an increase in ROS generation
and subsequently OS [139, 140] by disrupting the anti-
oxidant defence [140] and mitochondrial metabolism
[139, 141]. This in turn negatively impacts semen quality
through alteration of hormone levels [142, 143]. Antioxi-
dant therapies may possibly have a beneficial impact on
semen parameters, probably by protecting semen from
ROS, reducing OS and improving basic sperm parame-
ters. This improvement can be established by stimula-
tion of testosterone biosynthesis, FSH and LH secretion,
inhibin B and enhancement of androgen profile [144].
Investigators have showed that mainly selenium, coen-
zyme Q10 (CoQ10), and N-acetyl-cysteine can affect
semen parameters by increasing testosterone and inhibin
B [145]. However, further research is warranted to deter-
mine if there are any appropriate antioxidant com-
pounds as well as suitable doses that could potentially
be used in clinical practice.

Alcohol
Alcohol consumption promotes the generation of ROS
through its metabolism pathway in the liver by stimulat-
ing the activity of cytochrome P450 enzymes, alteration
of certain levels of metals (particularly free iron or cop-
per ions) in the body, and finally, reduction in the anti-
oxidant levels [146]. Due to the critical contribution of
certain metals (particularly iron and copper) to the
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production of hydroxyl radical, anything that increases
the levels of these metals can also promote ROS gener-
ation and OS [147]. It has been reported that alcohol in-
creases iron levels in the body not only by iron-rich
alcoholic beverages, such as red wine, but also by enhan-
cing the absorption of iron from food [148].
Evidences in both animals and humans show that alco-

hol is also associated with high levels of estradiol and
this finds relevance in the fact that estradiol enhances
beta-endorphin release that is conventionally linked with
the effects of alcohol consumption [149]. Chronic alco-
hol consumption can reduce serum testosterone, LH,
and FSH levels by affecting the interactions between the
neural and endocrine systems [149, 150]. Alcohol dis-
rupts the cleavage of GnRH molecule from its precursor
pre-pro GnRH and prevents the movement of protein
kinase C15 which is necessary for the GnRH-stimulation
of LH and FSH [151, 152]. Eventually, this disrupts the
endocrine balance and subsequently affects semen
parameters [153].
Among testicular cells, Sertoli cells are those that are

most affected by chronic alcohol consumption [154].
Since Sertoli cells contribute the most to testicular size,
chronic alcohol abuse eventually causes testicular atro-
phy, degeneration of germ cells, decreased size of lumen
of seminiferous tubules, an abundance of lipid droplets,
vacuoles, dilatation of the blood vessels, variation in
seminal vesicle diameter as well as apoptosis of Sertoli
cells. Due to the intratesticular cross-talk between
Sertoli and Leydig cells, Leydig cells are eventually also
affected by these changes [154, 155]. Though the correl-
ation between alcohol consumption and infertility seems
to be dose-dependent, the threshold of alcohol con-
sumption beyond which would affect male fertility re-
mains ambiguous [156].

Opioids, narcotics and recreational drugs
Opioids administration is associated with disrupted
spermatogenesis and reduced sexual performance [157].
Both endogenous and exogenous opioids inhibit GnRH
secretion, by disrupting the functions of HPG axis [158].
They reportedly generate ROS [159], induce inflamma-
tion as well as aid DNA/chromosomal damages and
apoptosis in cells by p53 [160, 161]. Opioid consumption
leads to increase in serum concentrations of sex hor-
mone binding globulin (SHBG), a protein which tightly
binds testosterone and E2 thus restricting the levels of
unbound testosterone [162, 163]. Therefore, for opioid
users, the level of total testosterone and E2 remain sub-
normal [162, 163]. Consequently, decreased testosterone
levels also result in the decrease of LH levels. The loss
of integrity of the HPG axis via opioid actions on sex
hormones and LH levels, lead to clinical hypogonadism
[162, 164]. The opioid methadone is also reported to

significantly reduce testosterone levels by directly affect-
ing steroidogenesis [158].
Marijuana contains the cannabinoid, delta-9-tetrahy-

drocannabinol (THC), which inhibits GnRH release and
LH production [164]. Thus, THC, by imposing adversities
upon the HPG axis and causing dose-dependent reduction
in testosterone production, impairs spermatogenesis
[164, 165] at different mitotic and meiotic stages,
resulting in several morphogenetic sperm defects as
well as gynecomastia, impaired libido, erectile and
ejaculatory dysfunction [166].
Studies showed that heroin can decrease gonadotropin

and testosterone levels by affecting the HPG axis [158].
Similarly, cocaine exposure can also disrupt normal go-
nadal functions and are associated with decreased testos-
terone production and HPG axis dysregulation [167].
Non-medical use of drug narcotics, such as hydroco-

done and oxycodone can interfere with spermatogenesis
through their effects on the hypothalamus, and suppress
LH release [164].

Smoking
Smoking is a well-known cause of male subfertility/infer-
tility [168]. A major mechanism for this effect appears to
be ROS production by the interference of oxygen delivery
to the testis which compromises the high metabolic re-
quirements of spermatogenesis [168–170]. Smoking also
releases a large number of mutagens and metabolites (in-
cluding radioactive polonium, cadmium, benzopyrene,
carbon monoxide, tar, naphthalene, and aromatic hydro-
carbons) which disrupt the normal structure and function
of the male reproductive organs [168, 169]. It may
enhance OS not only directly through the production of
reactive oxygen radicals in cigarette smoke, but also indir-
ectly through the weakening of the antioxidant defence
systems [171–173]. Studies have indicated that exposure
to smoke can change plasma levels of testosterone, PRL,
E2, FSH, LH and SHBG by effects on Leydig and Sertoli
cells [171–173]. Studies have also shown that smoking is
associated with alterations in semen quality of both fertile
and infertile men by affecting pituitary, thyroid, adrenal
and testicular functions [174].

Anabolic steroids
Regular consumption of exogenous steroids can produce
ROS by disrupting mitochondrial respiratory chain com-
plexes and lead to the release of inflammatory cytokines
and apoptosis [175]. Exogenous steroid hormones inhibit
spermatogenesis by suppressing the HPG axis, thus lim-
iting the release of FSH and LH and in turn decreasing
testosterone biosynthesis in the testis [176, 177]. Hypo-
gonadism associated with anabolic androgenic steroid
(AAS) abuse is usually reversible within 3–6 months
after discontinuation. However, complete recovery takes
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more than 3 years or may even be impossible to achieve
[164]. AAS abuse primarily produces Leydig cell alter-
ations which lead to a decrease in testosterone synthesis
[177]. However, disruption in the end stage of sperm-
atogenesis with a lack of mature spermatozoa (oligo-
zoospermia/ azoospermia), testicular atrophy, and
morphologically-abnormal sperm have been reported
in AAS consumers [178]. Following AAS discontinu-
ation, Leydig cells start further proliferation but cellu-
lar counts generally remain less than normal,
accounting for delayed recovery of testosterone levels
and the occasional irreversible effects of AAS [179].

Endogenous factors
Though endogenous ROS is necessary for normal male
reproductive functions, its excessive production may
interfere with the endocrine axes and their cross-talk.

Aging
In the aged male, Leydig cells are oxidatively damaged due
to excessive generation of endogenous ROS and decreased
concentration and activity of antioxidant enzymes [180].
As a result of excessive ROS generation, oxidative modifi-
cations of DNA and alterations in the mitochondrial
membrane potential required for testosterone synthesis
take place [181, 182]. Alongside these changes, an increase
in LH sensitivity due to diminishing LH receptors per cell
and a reduced ability of LH to activate steroidogenic acute
regulatory (StAR) protein, which transport cholesterol
from the outer mitochondrial membrane to the inner, oc-
curs [183, 184]. Thus, overproduction of ROS may play a
role in age-related testicular degeneration associated with
male infertility [185].
The steroidogenic steps regulated by the P450 enzymes

are the most likely sites of ROS action [186, 187]. FSH
and human chorionic gonadotropin (hCG) together have
been reported to stimulate ROS-producing cellular metab-
olisms affecting differentiation processes in germ cells
[185, 188, 189]. Furthermore, following ROS production,
the activities of several enzymes of the testosterone bio-
synthetic pathway are reduced, resulting in further de-
crease in testosterone synthesis and secretion [190, 191].

Reproductive tract infections
Reproductive tract infections is an important cause of dis-
rupted male reproductive function and infertility [47].
Many immunoregulatory and pro-inflammatory cytokines
are produced by testicular spermatogenic and somatic
cells, both under normal conditions as well as during an
inflammatory scenario [192]. Cytokines (such as IL–1, IL–
6 or TNF-α) are even produced by non-immune cells like
Leydig cells and Sertoli cells, that appear as typical com-
ponents of seminal plasma to maintain normal spermato-
genesis [192, 193]. Reproductive tract infections can be

caused by ejaculatory duct inflammation, epididymitis,
sexually transmitted infections (e.g. gonorrhoea, Chla-
mydia trachomatis, Escherichia coli, mycobacteria and
Ureaplasma urealyticum), urethritis, testicular torsion,
varicocele and several other causes like chronic prostatitis,
inflammation of one or both testes (orchitis), and even by
some drug therapy (escitalopram, tramadol, levonorgestrel
etc.) [47, 194]. With the progression of inflammatory
damage and weakening of antioxidant defence, as a miti-
gation strategy against the colonised bacterial strains,
there can be increased ROS levels in the male genital tract,
affecting the prostate gland, seminal vesicles or the epi-
didymis [47, 195].
Reproductive tract infections indirectly cause germ cell

degeneration and disruption of spermatogenesis through
either of the following occurrences [196]: (i) changes in
testicular temperature following high fever; (ii) conges-
tion of seminiferous tubule following interstitial oedema;
or (iii) modification of testosterone production. Though
studies on male sex hormones and reproductive tract in-
fections are scanty, some investigators observed the re-
duction of testosterone together with an increase in LH
and FSH levels in patients with reproductive tract infec-
tions [196–198]. It has been reported that in patients
with chronic prostatitis, corticosterone level decreases,
while testosterone level increases compared to normal
controls [199]. Whereas in mumps orchitis, increased
corticosterone level decreases both LH and FSH levels
which results in reduced production of testosterone
from Leydig cells [200].

Hormonal influence on the oxidative status of
male reproduction
OS that occurs due to either the enhanced production of
ROS or reduced availability of antioxidants may cause
lipid peroxidation in Leydig cells and germ cells, damage
to lipoproteins, protein aggregation and fragmentation,
and steroidogenic enzyme inhibition [10]. Testicular OS
causes a reduction in testosterone production, either
as a result of the injury to the Leydig cells or to
other endocrine structures like the anterior pituitary
[201, 202]. Reportedly, normal steroidogenesis also
generates ROS, which are largely produced by mito-
chondrial respiration and the catalytic reactions of the
steroidogenic cytochrome P450 enzymes [186]. ROS
generated in this way, in turn, have been identified to
inhibit subsequent steroid productions, and to damage
mitochondrial membranes of spermatozoa [203]. OS
is associated with increased numbers of immature
spermatozoa via an indirect effect on the male
hormone production that is correlated with spermato-
genesis [204, 205].
It has been reported that systemic hormones (FSH,

LH, testosterone, E2, PRL) may regulate seminal total
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antioxidant capacity (TAC) [206, 207]. A positive rela-
tionship between PRL or free T4 (fT4) and a negative
correlation between gonadotropins or gonadal steroids
with TAC have also been shown [22]. It is evident that
some hormones like testosterone and MLT may act as
antioxidants to protect sperm and other testicular cells
from damage induced by ROS [208, 209]. Other metabo-
lites of the steroidogenic pathway like DHEA are
reported to enhance the level of cellular antioxidants,
but the proper mechanism is still unclear [210]. Direct
and indirect relationships between testosterone and anti-
oxidant levels like selenium and/or CoQ10 and between
testosterone and zinc in infertile men, respectively, have
been observed [207, 211]. CoQ10 can decrease FSH and
LH levels [212]. A negative relationship has been found
between serum level of testosterone, E2, fT4 and sperm
DNA damage [213, 214]. Also, the antioxidant inhibition
could affect triiodothyronine (T3), thyroxine (T4), neuro-
transmitter noradrenaline and increase sperm DNA dam-
age [215]. Intramuscular or subcutaneous injection of
highly purified FSH to idiopathic infertile men reduces
ROS production [216] and the subsequent sperm DNA
damage [217]. Although it has been reported that testos-
terone could produce DNA fragmentation in Sertoli and
germ cells by stimulating caspase activities in Sertoli cells
[218], long-term effects of antioxidants can alter FSH, tes-
tosterone, and inhibin B levels [219].

Mechanism of action
Innumerable exogenous and endogenous factors, as dis-
cussed above, can produce ROS in the male reproductive
system by disrupting the balance of oxidants and antiox-
idants. Following the generation of ROS, the HPA axis
becomes activated and releases corticosterone (in ani-
mals) and cortisol (in humans) in response to stress.
These stress hormones, through the cross-talk between
the HPG and HPA axes, negatively affect LH secretion
from the anterior pituitary. Decreased LH fails to stimu-
late Leydig cells to produce enough testosterone.
Decreased FSH diminishes the release of androgen-bind-
ing protein (ABP) from the Sertoli cells, and thus, an
overall decline in circulating testosterone occurs during
severe OS.
ROS also affect HPT axis to reduce T3 and T4 secre-

tion. Decreased T3 reduces the levels of the StAR
mRNA and protein in Leydig cells, as well as testoster-
one production [220]. Increased OS also decreases the
secretion of insulin from the pancreas which further
negatively affects T3 release from the thyroid gland and
thereby testosterone biosynthesis.
Conditions such as obesity not only involve the HPA

and HPT axes, it also includes several metabolic hor-
mones that manifest ROS-induced alterations in male
reproductive functions. Obesity-induced ROS can affect

adipocytes to secrete more leptin, which together with
insulin, negatively regulate T3-release and thereby in-
hibit testicular functions. Leptin, secreted by adipocytes
also inhibit GnRH release from the hypothalamus.
Testicular E2 and inhibin are produced intensely dur-

ing OS, which then inhibit testosterone release. Follow-
ing ROS exposure, aromatase activity increases which
result in more E2 production. ROS exposure is also
reported to increase PRL secretion from anterior pituit-
ary which causes decreased GnRH release. Infections in
the reproductive tract can lead to the production of
pro-inflammatory cytokines (TNF-α, IL-1b, and IL-6)
which again inhibit both GnRH release and testosterone
secretion.
Thus, through its actions on an individual hormonal

axis and/or by disrupting the cross-talk among different
endocrine systems, ROS can lead to decreased testoster-
one production as the outcome of endocrine disruption.
Decreased testosterone fails to regulate spermatogenesis
properly to produce enough mature spermatozoa. It also
fails to maintain the normal growth of accessory repro-
ductive organs which play crucial roles in sperm matur-
ation. As a prime regulator of male reproductive
behaviour, testosterone deficiency may lead to sup-
pressed sexual behaviour among men. Thus, by disrupt-
ing the endocrine reproductive functions, ROS may
result in male infertility (Fig. 1).

Conclusion
This review summarizes the alterations of the reproduct-
ive endocrinological status by numerous endogenous
and exogenous sources of ROS. Pivotal hormonal regula-
tors of male reproductive functions can be affected by
the disruption of the balance between ROS production
and the antioxidant defence mechanism in the male re-
productive system. Uncontrolled generation of ROS may
directly damage reproductive tissues or can interfere
with the normal regulatory mechanisms of the HPG axis
and its crosstalk with other endocrine axes, to adversely
affect male reproductive functioning, thereby inducing
male infertility.

Abbreviations
11β-HSD: 11β-hydroxysteroid dehydrogenase; AAS: Anabolic androgenic steroid;
AMH: Anti-Mullerian hormone; CORT: Corticosterone; delta-9-THC: Delta-9-
tetrahydrocannabinol; DHEA: Dehydroepiandrosterone; E2: Estradiol; FSH: Follicle-
stimulating hormone; fT4: Free T4; GC: Glucocorticoid; GnRH: Gonadotropin
releasing hormone; HPG: Hypothalamic-pituitary-gonadal; LH: Luteinizing
hormone; MLT: Melatonin; NOX: NADPH oxidase; OS: Oxidative stress;
PRL: Prolactin; ROS: Reactive oxygen species; SHBG: Sex hormone binding
globulin; TAC: Total antioxidant capacity; XO: Xanthine oxidase

Acknowledgements
Authors acknowledge the support by the American Center for Reproductive
Medicine, Cleveland Clinic, USA.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 9 of 14



Authors’ contributions
MD and SD drafted this article and contributed equally in the writing of the
manuscript. AA conceived the original design for this study and supervised
the project. PS, DD and RH revised the article critically for its scientific
content and edited the manuscript and MRS helped supervise the writing of
the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Reproductive Biotechnology Research Center, Avicenna Research Institute,
Academic Center for Education, Culture and Research, Tehran, Iran.
2American Center for Reproductive Medicine, Cleveland Clinic, Cleveland,
Ohio 44195, USA. 3Department of Physiology, Faculty of Medicine, MAHSA
University, Jalan SP2, Bandar Saujana Putra, 42610 Jenjarom, Selangor,
Malaysia. 4Department of Physiology, Faculty of Medicine, Universiti
Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh,
Selangor, Malaysia. 5Department of Medical Biosciences, University of the
Western Cape, Bellville, Cape Town 7535, South Africa. 6Reproductive
Immunology Research Center, Avicenna Research Institute, Academic Center
for Education, Culture and Research, Tehran, Iran.

Received: 14 June 2018 Accepted: 30 August 2018

References
1. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing

quality of semen during past 50 years. Bmj. 1992;305(6854):609–13.
2. Swan SH, Elkin EP, Fenster L. The question of declining sperm density

revisited: an analysis of 101 studies published 1934-1996. Environ Health
Perspect. 2000;108(10):961.

3. Rolland M, Le Moal J, Wagner V, Royère D, De Mouzon J. Decline in
semen concentration and morphology in a sample of 26 609 men
close to general population between 1989 and 2005 in France. Hum
Reprod. 2012;28(2):462–70.

4. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of
reports published between 1980 and 2015. Am J Mens Health. 2017;11(4):
1279–1304.

5. Sikka SC. Relative impact of oxidative stress on male reproductive function.
Curr Med Chem. 2001;8(7):851–62.

6. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of
oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;
43(11):963–74.

7. Rakhit M, Gokul SR, Agarwal A, du Plessis SS. Antioxidant strategies to
overcome OS in IVF-embryo transfer. In: Studies on Women’s Health.
Editors: Agarwal, A., Aziz, N. and Rizk, B. Humana Press, Springer Science
+Business Media, New York; 2013. p. 237–262.

8. Barazani Y, Katz BF, Nagler HM, Stember DS. Lifestyle, environment, and
male reproductive health. Urol Clin North Am. 2014;41(1):55–66.

9. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer.
Cancer Metab. 2014;2:17.

10. Darbandi S, Darbandi M. Lifestyle modifications on further reproductive
problems. Cresco J Reprod Sci. 2016;1(1):1–2.

11. Hardy MP, Gao H-B, Dong Q, Ge R, Wang Q, Chai WR, et al. Stress hormone
and male reproductive function. Cell Tissue Res. 2005;322(1):147–53.

12. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS,
Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society
scientific statement. Endocr Rev. 2009;30(4):293–342.

13. Spiers JG, Chen HJ, Sernia C, Lavidis NA. Activation of the hypothalamic-
pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci.
2014;8:456.

14. Appasamy M, Muttukrishna S, Pizzey A, Ozturk O, Groome N, Serhal P, et al.
Relationship between male reproductive hormones, sperm DNA damage
and markers of oxidative stress in infertility. Reprod BioMed Online. 2007;
14(2):159–65.

15. Baker H, Burger H, de Kretser D, Hudson B (1986) Relative incidence of
etiologic disorders in male infertility. In: Santen RJ, Swerdloff RS (eds) Male
reproductive dysfunction: diagnosis and management of hypogonadism,
infertility and impotence. Marcel Dekker, New York, pp 341–372.

16. Santen R, Paulsen C. Hypogonadotropic eunuchoidism. I. Clinical study of
the mode of inheritance. J Clin Endocrinol Metab. 1973;36(1):47–54.

17. Kavoussi P, Costabile RA, Salonia A. Clinical urologic endocrinology:
principles for Men’s health. London: Springer; 2012.

18. Jameson JL. Harrison’s endocrinology, 4E. New York: McGraw-Hill Education; 2016.
19. Patton PE, Battaglia DE. Office andrology. New York: Humana Press; 2007.
20. Byrd W, Bennett MJ, Carr BR, Dong Y, Wians F, Rainey W. Regulation of

biologically active dimeric inhibin a and B from infancy to adulthood in the
male. J Clin Endocrinol Metab. 1998;83(8):2849–54.

21. Raivio T, Perheentupa A, McNeilly AS, Groome NP, Anttila R, Siimes MA, et
al. Biphasic increase in serum inhibin B during puberty: a longitudinal study
of healthy Finnish boys. Pediatr Res. 1998;44(4):552–6.

22. Mancini A, Festa R, Silvestrini A, Nicolotti N, Di Donna V, La Torre G, et al.
Hormonal regulation of total antioxidant capacity in seminal plasma. J
Androl. 2009;30(5):534–40.

23. Parker CR. Dehydroepiandrosterone and dehydroepiandrosterone sulfate
production in the human adrenal during development and aging. Steroids.
1999;64(9):640–7.

24. Jacob MH, DdR J, Belló-Klein A, Llesuy SF, Ribeiro MF. Dehydroepiandrosterone
modulates antioxidant enzymes and Akt signaling in healthy Wistar erat hearts.
J Steroid Biochem Mol Biol. 2008;112(1):138–44.

25. Lu C, Yang W, Chen M, Liu T, Yang J, Tan P, et al. Inhibin a inhibits follicle-
stimulating hormone (FSH) action by suppressing its receptor expression in
cultured rat granulosa cells. Mol Cell Endocrinol. 2009;298(1–2):48–56.

26. Li C, Zhou X. Melatonin and male reproduction. Clin Chim Acta. 2015;446:175–80.
27. Awad H, Halawa F, Mostafa T, Atta H. Melatonin hormone profile in infertile

males. Int J Androl. 2006;29(3):409–13.
28. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, et al.

Anti-Müllerian hormone (AMH) as a predictive marker in assisted
reproductive technology (ART). Hum Reprod Update. 2010;16(2):113–30.

29. Holdcraft RW, Braun RE. Hormonal regulation of spermatogenesis. Int J
Androl. 2004;27(6):335–42.

30. Trigo RV, Bergadá I, Rey R, Ballerini MG, Bedecarrás P, Bergadá C, et al.
Altered serum profile of inhibin B, pro-αC and anti-Müllerian hormone in
prepubertal and pubertal boys with varicocele. Clin Endocrinol. 2004;60(6):
758–64.

31. Castañeda Cortés DC, Langlois VS, Fernandino JI. Crossover of the
hypothalamic pituitary–adrenal/Interrenal, –thyroid, and –gonadal axes in
testicular development. Front Endocrinol. 2014;5:139.

32. Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility.
Nat Rev Urol. 2017;14(8):470–85.

33. Gosalvez J, Tvrda E, Agarwal A. Free radical and superoxide reactivity
detection in semen quality assessment: past, present, and future. J Assist
Reprod Genet. 2017;34:697–707.

34. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male
reproduction. World J Men’s Health. 2014;32(1):1–17.

35. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A.
Mitochondrial functionality in reproduction: from gonads and gametes to
embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553–72.

36. Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:
ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2006;103(20):7607–12.

37. Vinogradov AD, Grivennikova VG. Generation of superoxide-radical by the
NADH:ubiquinone oxidoreductase of heart mitochondria. Biochem Mosc.
2005;70(2):120–7.

38. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology.
2000;149(1):43–50.

39. Blaylock MG, Cuthbertson BH, Galley HF, Ferguson NR, Webster NR. The
effect of nitric oxide and peroxynitrite on apoptosis in human
polymorphonuclear leukocytes. Free Radic Biol Med. 1998;25(6):748–52.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 10 of 14



40. Sabeur K, Ball B. Characterization of NADPH oxidase 5 in equine testis and
spermatozoa. Reprod. 2007;134(2):263–70.

41. Petrushanko IY, Lobachev VM, Kononikhin AS, Makarov AA, Devred F,
Kovacic H, et al. Oxidation of capital ES, Cyrillicsmall a, Cyrillic2+-binding
domain of NADPH oxidase 5 (NOX5): toward understanding the mechanism
of inactivation of NOX5 by ROS. PLoS One. 2016;11(7):e0158726.

42. Rengan AK, Agarwal A, van der Linde M, du Plessis SS. An investigation of
excess residual cytoplasm in human spermatozoa and its distinction from
the cytoplasmic droplet. Reprod Biol Endocrinol. 2012;10(1):92.

43. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al.
Negative effects of increased sperm DNA damage in relation to seminal
oxidative stress in men with idiopathic and male factor infertility. Fertil
Steril. 2003;79:1597–605.

44. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male
infertility and the significance of oral antioxidant therapy. Hum Reprod.
2011;26(7):1628–40.

45. Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating
ROS sources in male infertility: a common end for numerous pathways. Reprod
Toxicol. 2012;34(3):298–307.

46. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the
pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

47. Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male
reproductive tract. J Reprod Infertil. 2015;16(3):123.

48. World Health Organization. WHO laboratory manual for the examination
and processing of human semen. Fifth Edition. WHO: Geneva, 2010.

49. Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative
stress, varicocele and infertility: a meta-analysis. Reprod BioMed Online.
2006;12(5):630–3.

50. Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male
infertility in the era of assisted reproductive technology. Int J Urol. 2012;
19(6):538–50.

51. Clarke RN, Klock SC, Geoghegan A, Travassos DE. Relationship between
psychological stress and semen quality among in-vitro fertilization patients.
Hum Reprod. 1999;14(3):753–8.

52. Lampiao F. Variation of semen parameters in healthy medical students due
to exam stress. Malawi Med J. 2009;21(4):166–7.

53. Gollenberg AL, Liu F, Brazil C, Drobnis EZ, Guzick D, Overstreet JW, et al.
Semen quality in fertile men in relation to psychosocial stress. Fertil Steril.
2010;93(4):1104–11.

54. Flaherty RL, Owen M, Fagan-Murphy A, Intabli H, Healy D, Patel A, et al.
Glucocorticoids induce production of reactive oxygen species/reactive
nitrogen species and DNA damage through an iNOS mediated pathway in
breast cancer. Breast Cancer Res. 2017;19(1):35.

55. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to
depression via oxidative stress and neuroprogression. Immunol. 2015;144(3):
365–73.

56. O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-
Hilczer J, et al. Autocrine androgen action is essential for Leydig cell
maturation and function, and protects against late-onset Leydig cell
apoptosis in both mice and men. FASEB J. 2015;29(3):894–910.

57. Gao HB, Tong MH, Hu YQ, Guo QS, Ge R, Hardy MP. Glucocorticoid induces
apoptosis in rat leydig cells. Endocrinol. 2002;143(1):130–8.

58. MacAdams MR, White RH, Chipps BE. Reduction of serum testosterone levels
during chronic glucocorticoid therapy. Ann Intern Med. 1986;104(5):648–51.

59. Norman R. Effects of corticotropin-releasing hormone on luteinizing
hormone, testosterone, and cortisol secretion in intact male rhesus
macaques. Biol Reprod. 1993;49(1):148–53.

60. Orr T, Taylor M, Bhattacharyya A, Collins D, Mann D. Acute immobilization
stress disrupts testicular steroidogenesis in adult male rats by inhibiting the
activities of 17α-hydroxylase and 17, 20-Lyase without affecting the binding
of LH/hCG receptors. J Androl. 1994;15(4):302–8.

61. Gao H-B, Tong M-H, Hu Y-Q, You H-Y, Guo Q-S, Ge R-S, et al. Mechanisms of
glucocorticoid-induced Leydig cell apoptosis. Mol Cell Endocrinol. 2003;
199(1):153–63.

62. Almeida S, Anselmo-Franci J, Silva AR e, Carvalho TL. Chronic intermittent
immobilization of male rats throughout sexual development: a stress
protocol. Exp Physiol. 1998;83(05):701–4.

63. Wagenmaker ER, Breen KM, Oakley AE, Tilbrook AJ, Karsch FJ. Psychosocial
stress inhibits amplitude of gonadotropin-releasing hormone pulses
independent of cortisol action on the type II glucocorticoid receptor.
Endocrinol. 2009;150(2):762–9.

64. Ivell R. Lifestyle impact and the biology of the human scrotum. Reprod Biol
Endocrinol. 2007;5(1):15.

65. Paul C, Murray AA, Spears N, Saunders PT. A single, mild, transient scrotal
heat stress causes DNA damage, subfertility and impairs formation of
blastocysts in mice. Reprod. 2008;136(1):73–84.

66. Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress
causes hypoxia and oxidative stress in mouse testes, which induces germ
cell death. Biol Reprod. 2009;80(5):913–9.

67. Yaeram J, Setchell BP, Maddocks S. Effect of heat stress on the fertility of
male mice in vivo and in vitro. Reprod Fertil Dev. 2006;18(6):647–53.

68. Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I,
et al. NADPH oxidase-mediated reactive oxygen species production
activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after
hyperthermia treatment. Proc Natl Acad Sci. 2010;107(47):20477–82.

69. Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M.
Reactive oxygen species, heat stress and oxidative-induced mitochondrial
damage. Rev Int J Hyperthermia. 2014;30(7):513–23.

70. Jung A, Schuppe HC. Influence of genital heat stress on semen quality in
humans. Andrologia. 2007;39(6):203–15.

71. Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal
and molecular evidence that sauna exposure affects human
spermatogenesis. Hum Reprod. 2013;28(4):877–85.

72. Aggarwal A, Upadhyay R. Heat stress and hormones, in heat stress and
animal productivity. India: Springer; 2013. p. 27–51.

73. Rhynes W, Ewing L. Testicular endocrine function in Hereford bulls exposed
to high ambient temperature 1. Endocrinology. 1973;92(2):509–15.

74. Hansen PJ. Effects of heat stress on mammalian reproduction.
Philosophical transactions of the Royal Society of London B. Biol Sci.
2009;364(1534):3341–50.

75. Li Z, Tian J, Cui G, Wang M, Yu D. Effects of local testicular heat treatment
on Leydig cell hyperplasia and testosterone biosynthesis in rat testes.
Reproduction, fertility. Development. 2016;28(9):1424–32.

76. Hagenas L, Ritzen EM, Svensson J, Hansson V, Purvis K. Temperature
dependence of Sertoli cell function. Int J Androl. 1978;1(Supplement 2):
449–58.

77. Megahed G, Anwar M, Wasfy S, Hammadeh M. Influence of heat stress on
the cortisol and oxidant-antioxidants balance during Oestrous phase in
buffalo-cows (Bubalus bubalis): Thermo-protective role of antioxidant
treatment. Reprod Domest Anim. 2008;43(6):672–7.

78. Coutts SM, Fulton N, Anderson RA. Environmental toxicant-induced germ
cell apoptosis in the human fetal testis. Hum Reprod. 2007;22(11):2912–8.

79. Wong W, Yan H, Li W, Lie P, Mruk D, Cheng C. Cell junctions in the testis as
targets for toxicants. In: Richburg J, Hoyer P, editors. Comprehensive
toxicology. Oxford: Elsevier; 2010. p. 167–88.

80. Benoff S, Hauser R, Marmar JL, Hurley IR, Napolitano B, Centola GM.
Cadmium concentrations in blood and seminal plasma: correlations with
sperm number and motility in three male populations (infertility patients,
artificial insemination donors, and unselected volunteers). Mol Med. 2009;
15(7–8):248–62.

81. Luparello C, Sirchia R, Longo A. Cadmium as a transcriptional modulator in
human cells. Crit Rev Toxicol. 2011;41(1):75–82.

82. Choy CM, Yeung QS, Briton-Jones CM, Cheung CK, Lam CW, Haines CJ.
Relationship between semen parameters and mercury concentrations in
blood and in seminal fluid from subfertile males in Hong Kong. Fertil Steril.
2002;78(2):426–8.

83. Mocevic E, Specht IO, Marott JL, Giwercman A, Jonsson BA, Toft G, et al.
Environmental mercury exposure, semen quality and reproductive
hormones in Greenlandic Inuit and European men: a cross-sectional study.
Asian J Androl. 2013;15(1):97–104.

84. Welshons WV, Nagel SC, Vom Saal FS. Large effects from small exposures. III.
Endocrine mechanisms mediating effects of bisphenol a at levels of human
exposure. Endocrinology. 2006;147(6 Suppl):S56–69.

85. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S.
population to bisphenol a and 4-tertiary-octylphenol: 2003-2004. Environ
Health Perspect. 2008;116(1):39–44.

86. Galimova EF, Amirova ZK, Galimov Sh N. Dioxins in the semen of men with
infertility. Environ Sci Pollut Res Int. 2015;22(19):14566–9.

87. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. Journal of
toxicology. 2011;2011:1–9.

88. Pacey A. Environmental and lifestyle factors associated with sperm DNA
damage. Hum Fertil. 2010;13(4):189–93.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 11 of 14



89. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational
actions of environmental factors in disease etiology. Trends Endocrinol Metab.
2010;21(4):214–22.

90. Sengupta P, Dutta S. Metals. In M. K. Skinner (Ed.), Encyclopedia of
Reproduction. vol. 1, pp. 579–587. Academic Press: Elsevier, Cambridge,
Massachusetts, United States.

91. Güven M, Bayram F, Ünlühizarci K, Kelestimur F. Endocrine changes in patients
with acute organophosphate poisoning. Hum Exp Toxicol. 1999;18(10):598–601.

92. Herath CB, Jin W, Watanabe G, Arai K, Suzuki AK, Taya K. Adverse effects of
environmental toxicants, octylphenol and bisphenol a, on male
reproductive functions in pubertal rats. Endocrine. 2004;25(2):163–72.

93. Meeker JD, Rossano MG, Protas B, Padmanahban V, Diamond MP,
Puscheck E, et al. Environmental exposure to metals and male
reproductive hormones: circulating testosterone is inversely associated
with blood molybdenum. Fertil Steril. 2010;93(1):130–40.

94. Shimon I, Lubina A, Gorfine M, Ilany J. Feedback inhibition of
gonadotropins by testosterone in men with hypogonadotropic
hypogonadism: comparison to the intact pituitary-testicular axis in
primary hypogonadism. J Androl. 2006;27(3):358–64.

95. Sharma RP, Schuhmacher M, Kumar V. Review on crosstalk and common
mechanisms of endocrine disruptors: scaffolding to improve PBPK/PD
model of EDC mixture. Environ Int. 2017;99:1–14.

96. Sengupta P, Banerjee R. Environmental toxins: alarming impacts of
pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017–39.

97. Vignera S, Condorelli RA, Vicari E, D'Agata R, Calogero AE. Effects of the
exposure to mobile phones on male reproduction: a review of the
literature. J Androl. 2012;33(3):350–6.

98. Darbandi M, Darbandi S, Agarwal A, Henkle R, Sadeghi MR. The effects of
exposure to low frequency electromagnetic fields on male fertility. Altern
Ther Health Med. 2017;23

99. Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: a
review of recent innovations in technology and consequences. Int Braz J
Urol. 2011;37(4):432–54.

100. Yildirim ME, Kaynar M, Badem H, Cavis M, Karatas OF, Cimentepe E. What is
harmful for male fertility: cell phone or the wireless internet? Kaohsiung J
Med Sci. 2015;31(9):480–4.

101. Al-Quzwini OF, Al-Taee HA, Al-Shaikh SF. Male fertility and its association
with occupational and mobile phone towers hazards: an analytic study.
Middle East Fertil Soc J. 2016;21(4):236–40.

102. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone
usage on semen analysis in men attending infertility clinic: an observational
study. Fertil Steril. 2008;89(1):124–8.

103. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al.
Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular
phones on human ejaculated semen: an in vitro pilot study. Fertil Steril.
2009;92(4):1318–25.

104. Mahdavi SM, Sahraei H, Yaghmaei P, Tavakoli H. Effects of electromagnetic
radiation exposure on stress-related behaviors and stress hormones in male
wistar rats. Biomolecules Ther. 2014;22(6):570.

105. Meo SA, Al-Drees AM, Husain S, Khan MM, Imran MB. Effects of mobile
phone radiation on serum testosterone in Wistar albino rats. Saudi Med J.
2010;31(8):869–73.

106. Merhi ZO. Challenging cell phone impact on reproduction: a review. J Assist
Reprod Genet. 2012;29(4):293–7.

107. Stevens RG, Davis S. The melatonin hypothesis: electric power and breast
cancer. Environ Health Perspects. 1996;104(Suppl 1):135.

108. Malpaux B, Daveau A, Maurice F, Gayrard V, Thiery J-C. Short-day effects of
melatonin on luteinizing hormone secretion in the ewe: evidence for central
sites of action in the mediobasal hypothalamus. Biol Reprod. 1993;48(4):752–60.

109. Adefuye AO, Adeola HA, Sales KJ, Katz AA. Seminal fluid-mediated
inflammation in physiology and pathology of the female reproductive tract.
J Immunol Res. 2016;2016:1–13.

110. Vaamonde D, Da Silva-Grigoletto ME, García-Manso JM, Barrera N, Vaamonde-
Lemos R. Physically active men show better semen parameters and hormone
values than sedentary men. Eur J Appl Physiol. 2012;112(9):3267–73.

111. Grandys M, Majerczak J, Duda K, Zapart-Bukowska J, Kulpa J, Zoladz J.
Endurance training of moderate intensity increases testosterone
concentration in young, healthy men. Int J Sports Med. 2009;30(07):489–95.

112. Fahrner C, Hackney AC. Effects of endurance exercise on free testosterone
concentration and the binding affinity of sex hormone binding globulin
(SHBG). Int J Sports Med. 1998;19(01):12–5.

113. Flynn M, Pizza F, Brolinson P. Hormonal responses to excessive training:
influence of cross training. Int J Sports Med. 1997;18(03):191–6.

114. Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term
treadmill running on reproductive hormones, hypothalamus–pituitary–testis
axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;
200(3):259–71.

115. Kindermann W, Schnabel A, Schmitt W, Biro G, Cassens J, Weber F.
Catecholamines, growth hormone, cortisol, insulin, and sex hormones in
anaerobic and aerobic exercise. Eur J Appl Physiol Occup Physiol. 1982;
49(3):389–99.

116. Jurimae J, Jurimae T. Responses of blood hormones to the maximal rowing
ergometer test in college rowers. J Sports Med Phys Fitness. 2001;41(1):73.

117. Kopelman PG. Hormones and obesity. Baillieres Clin Endocrinol Metab. 1994;
8(3):549–75.

118. Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Invest.
2008;118(7):2380.

119. Álvarez-Castro P, Pena L, Cordido F. Ghrelin in obesity, physiological and
pharmacological considerations. Mini Rev Med Chem. 2013;13(4):541–52.

120. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and
cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.

121. Perez-Leighton C, Butterick-Peterson T, Billington C, Kotz C. Role of orexin
receptors in obesity: from cellular to behavioral evidence. Int J Obes. 2013;
37(2):167–74.

122. Ren A-J, Guo Z-F, Wang Y-K, Lin L, Zheng X, Yuan W-J. Obestatin, obesity
and diabetes. Peptides. 2009;30(2):439–44.

123. Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative
stress in human endothelial cells. FASEB J. 1999;13(10):1231–8.

124. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzman M, Brownlee M. Leptin
induces mitochondrial superoxide production and monocyte
chemoattractant protein-1 expression in aortic endothelial cells by
increasing fatty acid oxidation via protein kinase a. J Biol Chem. 2001;
276(27):25096–100.

125. Wauters M, Considine RV, Van Gaal LF. Human leptin: from an adipocyte
hormone to an endocrine mediator. Eur J Endocrinol. 2000;143(3):293–311.

126. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Ghrelin expression
in human testis and serum testosterone level. J Androl. 2007;28(2):320–4.

127. Wang L, Fang F, Li Y, Zhang Y, Pu Y, Zhang X. Role of ghrelin on
testosterone secretion and the mRNA expression of androgen receptors in
adult rat testis. Systems Biol Reprod Med. 2011;57(3):119–23.

128. Greenman Y, Rouach V, Limor R, Gilad S, Stern N. Testosterone is a strong
correlate of ghrelin levels in men and postmenopausal women.
Neuroendocrinology. 2009;89(1):79–85.

129. Suzuki H, Matsuzaki J, Hibi T. Ghrelin and oxidative stress in gastrointestinal
tract. J Clin Biochem Nutr. 2010;48(2):122–5.

130. Page ST, Herbst KL, Amory JK, Coviello AD, Anawalt BD, Matsumoto AM,
et al. Testosterone administration suppresses adiponectin levels in men.
J Androl. 2005;26(1):85–92.

131. Yuan F, Li Y-N, Liu Y-H, Yi B, Tian J-W, Liu F-Y. Adiponectin inhibits the
generation of reactive oxygen species induced by high glucose and
promotes endothelial NO synthase formation in human mesangial cells. Mol
Med Rep. 2012;6(2):449–53.

132. Zheng D, Zhao Y, Shen Y, Chang X, Ju S, Guo L. Orexin A-mediated
stimulation of 3β-HSD expression and testosterone production through
MAPK signaling pathways in primary rat Leydig cells. J Endocrinol Investig.
2014;37(3):285–92.

133. Duffy CM, Nixon JP, Butterick TA. Orexin a attenuates palmitic acid-induced
hypothalamic cell death. Mol Cell Neurosci. 2016;75:93–100.

134. Aggerholm AS, Thulstrup AM, Toft G, Ramlau-Hansen CH, Bonde JP. Is
overweight a risk factor for reduced semen quality and altered serum sex
hormone profile? Fertil Steril. 2008;90(3):619–26.

135. Al-Ali B M, Gutschi T, Pummer K, Zigeuner R, Brookman-May S, Wieland W,
et al. Body mass index has no impact on sperm quality but on reproductive
hormones levels. Andrologia. 2014;46(2):106–11.

136. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional
foods: impact on human health. Pharmacognosy Rev. 2010;4(8):118.

137. Chavarro JE, Toth TL, Sadio SM, Hauser R. Soy food and isoflavone intake in
relation to semen quality parameters among men from an infertility clinic.
Hum Reprod. 2008;23(11):2584–90.

138. Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-
Grau S, et al. Food intake and its relationship with semen quality: a case-
control study. Fertil Steril. 2009;91(3):812–8.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 12 of 14



139. Ruggiero C, Ehrenshaft M, Cleland E, Stadler K. High-fat diet induces an
initial adaptation of mitochondrial bioenergetics in the kidney despite
evident oxidative stress and mitochondrial ROS production. Am J Physiol
Endocrinol Metab. 2011;300(6):8.

140. Kolodziej U, Maciejczyk M, Niklinska W, Waszkiel D, Zendzian-
Piotrowska M, Zukowski P, et al. Chronic high-protein diet induces
oxidative stress and alters the salivary gland function in rats. Arch Oral
Biol. 2017;84:6–12.

141. Kahle M, Schafer A, Seelig A, Schultheiss J, Wu M, Aichler M, et al. High fat
diet-induced modifications in membrane lipid and mitochondrial-
membrane protein signatures precede the development of hepatic insulin
resistance in mice. Mol Metab. 2014;4(1):39–50.

142. Chakraborty TR, Donthireddy L, Adhikary D, Chakraborty S. Long-term high
fat diet has a profound effect on body weight, hormone levels, and estrous
cycle in mice. Med Sci Monit. 2016;22:1601–8.

143. Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat
and semen quality among men attending a fertility clinic. Hum Reprod.
2012; 27(5):1466–74.

144. Agarwal A, Sekhon LH. The role of antioxidant therapy in the treatment of
male infertility. Hum Fertil (Camb). 2010;13(4):217–25.

145. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements
and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;
14(12):729–36.

146. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage.
Alcohol Res Health. 2003;27:277–84.

147. Qureshi GA, Memon SA, Memon AB, Ghouri RA, Memon JM, Parvez SH. The
emerging role of iron, zinc, copper, magnesium and selenium and oxidative
stress in health and diseases. Brill Online. 2005;19(2):147–69.

148. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG. Effects of alcohol
consumption on indices of iron stores and of iron stores on alcohol intake
markers. Alcohol Clin Exp Res. 2001;25(7):1037–45.

149. Emanuele MA, Emanuele N. Alcohol and the male reproductive system.
Alcohol Res Health. 2001;25(4):282–7.

150. Maneesh M, Dutta S, Chakrabarti A, Vasudevan D. Alcohol abuse-duration
dependent decrease in plasma testosterone and antioxidants in males.
Indian J Physiol Pharmacol. 2006;50(3):291.

151. Uddin S, Wilson T, Emanuele M, Williams D, Kelley M, Emanuele N. Ethanol-
induced alterations in the posttranslational processing, but not secretion of
luteinizing hormone-releasing hormone in vitro. Alcohol Clin Exp Res. 1996;
20(3):556–60.

152. Kim JH, Kim HJ, Noh HS, Roh GS, Kang SS, Cho GJ, et al. Suppression by
ethanol of male reproductive activity. Brain Res. 2003;989(1):91–8.

153. Salonen I, Huhtaniemi I. Effects of chronic ethanol diet on pituitary-testicular
function of the rat. Biol Reprod. 1990;42(1):55–62.

154. Zhu Q, Van Thiel DH, Gavaler JS. Effects of ethanol on rat Sertoli cell function:
studies in vitro and in vivo. Alcohol Clin Exp Res. 1997;21(8):1409–17.

155. Zhu Q, Meisinger J, Emanuele NV, Emanuele MA, LaPaglia N, Thiel DH.
Ethanol exposure enhances apoptosis within the testes. Alcohol Clin Exp
Res. 2000;24(10):1550–6.

156. Pajarinen J, Karhunen PJ, Savolainen V, Lalu K, Penttilä A, Laippala P.
Moderate alcohol consumption and disorders of human spermatogenesis.
Alcohol Clin Exp Res. 1996;20(2):332–7.

157. Subiran N, Casis L, Irazusta J. Regulation of male fertility by the opioid
system. Mol Med. 2011;17(7–8):846–53.

158. Brown TT, Wisniewski AB, Gonadal DAS. Adrenal abnormalities in drug users:
cause or consequence of drug use behavior and poor health outcomes. Am
J Infect Dis. 2006;2(3):130–5.

159. Sarafian TA, Magallanes JAM, Shau H, Tashkin D, Roth MD. Oxidative stress
produced by marijuana smoke: an adverse effect enhanced by
cannabinoids. Am J Respir Cell Mol Biol. 1999;20(6):1286–93.

160. Kim HR, Son BH, Lee SY, Chung KH, Oh SM. The role of p53 in marijuana
smoke condensates-induced genotoxicity and apoptosis. Environ Health
Toxicol. 2012;27:e2012017.

161. Faux SP, Tai T, Thorne D, Xu Y, Breheny D, Gaca M. The role of oxidative
stress in the biological responses of lung epithelial cells to cigarette smoke.
Biomarkers. 2009;1:90–6.

162. Abs R, Verhelst J, Maeyaert J, Van Buyten J-P, Opsomer F, Adriaensen H, et
al. Endocrine consequences of long-term intrathecal administration of
opioids. J Clin Endocrinol Metab. 2000;85(6):2215–22.

163. Daniell HW. Hypogonadism in men consuming sustained-action oral
opioids. J Pain. 2002;3(5):377–84.

164. Fronczak CM, Kim ED, Barqawi AB. The insults of illicit drug use on male
fertility. J Androl. 2012;33(4):515–28.

165. Park B, McPartland JM, Glass M. Cannabis, cannabinoids and reproduction.
Prostaglandins Leukot Essent Fatty Acids. 2004;70(2):189–97.

166. Patra P, Wadsworth R. Quantitative evaluation of spermatogenesis in mice
following chronic exposure to cannabinoids. Andrologia. 1991;23(2):151–6.

167. Heesch CM, Negus BH, Bost JE, Keffer JH, Snyder RW 2nd, Eichhorn EJ.
Effects of cocaine on anterior pituitary and gonadal hormones. J Pharmacol
Exp Ther. 1996;278(3):1195–200.

168. Meri ZB, Irshid IB, Migdadi M, Irshid AB, Mhanna SA. Does cigarette smoking
affect seminal fluid parameters? A comparative study. Oman Med J. 2013;
28(1):12–6.

169. Sheynkin Y, Gioia K. Environmental and lifestyle considerations for the
infertile male. AUA Update Ser. 2013;32(4):30–8.

170. Tostes RC, Carneiro FS, Lee AJ, Giachini FR, Leite R, Osawa Y, et al. Cigarette
smoking and erectile dysfunction: focus on NO bioavailability and ROS
generation. J Sex Med. 2008;5(6):1284–95.

171. Halmenschlager G, Rossetto S, Lara GM, Rhoden EL. Endocrinology:
evaluation of the effects of cigarette smoking on testosterone levels in
adult men. J Sex Med. 2009;6(6):1763–72.

172. Shiels MS, Rohrmann S, Menke A, Selvin E, Crespo CJ, Rifai N, et al.
Association of cigarette smoking, alcohol consumption, and physical activity
with sex steroid hormone levels in US men. Cancer Causes Control. 2009;
20(6):877–86.

173. Trummer H, Habermann H, Haas J, Pummer K. The impact of cigarette
smoking on human semen parameters and hormones. Hum Reprod. 2002;
17(6):1554–9.

174. Kapoor D, Jones TH. Smoking and hormones in health and endocrine
disorders. Eur J Endocrinol. 2005;152(4):491–9.

175. Neri M, Bello S, Bonsignore A, Cantatore S, Riezzo I, Turillazzi E, et al.
Anabolic androgenic steroids abuse and liver toxicity. Mini Rev Med
Chemist. 2011;11(5):430–7.

176. Buchanan JF, Davis LJ. Drug-induced infertility. Drug Intell Clin Pharm. 1984;
18(2):122–32.

177. de Souza GL, Hallak J. Anabolic steroids and male infertility: a comprehensive
review. BJU Int. 2011;108(11):1860–5.

178. El Osta R, Almont T, Diligent C, Hubert N, Eschwege P, Hubert J. Anabolic
steroids abuse and male infertility. Basic Clin Androl. 2016;26:1–8.

179. Foster ZJ, Housner JA. Anabolic-androgenic steroids and testosterone
precursors: ergogenic aids and sport. Curr Sports Med Rep. 2004;3(4):234–41.

180. Fujii J, Iuchi Y, Matsuki S, Ishii T. Cooperative function of antioxidant and
redox systems against oxidative stress in male reproductive tissues. Asian J
Androl. 2003;5(3):231–42.

181. Allen JA, Shankara T, Janus P, Buck S, Diemer T, Held Hales K, et al.
Energized, polarized, and actively respiring mitochondria are required for
acute Leydig cell steroidogenesis. Endocrinology. 2006;147(8):3924–35.

182. Chen H, Zhou L, Lin C-Y, Beattie MC, Liu J, Zirkin BR. Effect of glutathione
redox state on Leydig cell susceptibility to acute oxidative stress. Mol Cell
Endocrinol. 2010;323(2):147–54.

183. Veldhuis JD. Recent insights into neuroendocrine mechanisms of aging of the
human male hypothalamic-pituitary-gonadal Axis. J Androl. 1999;20(1):1–18.

184. Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria
in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR)
protein and steroidogenesis. Endocrinology. 2003;144(7):2882–91.

185. Koksal I, Usta M, Orhan I, Abbasoglu S, Kadioglu A. Potential role of reactive
oxygen species on testicular pathology associated with infertility. Asian J
Androl. 2003;5(2):95–100.

186. Hanukoglu I. Antioxidant protective mechanisms against reactive oxygen
species (ROS) generated by mitochondrial P450 systems in steroidogenic
cells. Drug Metab Rev. 2006;38(1–2):171–96.

187. Peltola V, Huhtaniemi I, Metsa-Ketela T, Ahotupa M. Induction of lipid
peroxidation during steroidogenesis in the rat testis. Endocrinology. 1996;
137(1):105–12.

188. Perheentupa A, De Jong F, Huhtaniemi I. Biphasic effect of exogenous
testosterone on follicle-stimulating hormone gene expression and synthesis
in the male rat. Mol Cell Endocrinol. 1993;93(2):135–41.

189. Perheentupa A, Huhtaniemi I. Gonadotropin gene expression and secretion
in gonadotropin-releasing hormone antagonist-treated male rats: effect of
sex steroid replacement. Endocrinology. 1990;126(6):3204–9.

190. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes.
Oxidative Med Cell Longev. 2008;1(1):15–24.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 13 of 14



191. Chigurupati S, Son TG, Hyun D-H, Lathia JD, Mughal MR, Savell J, et al.
Lifelong running reduces oxidative stress and degenerative changes in the
testes of mice. J Endocrinol. 2008;199(2):333–41.

192. Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE,
et al. Cytokines in male fertility and reproductive pathologies:
Immunoregulation and beyond. Front Endocrinol. 2017;8:1–16.

193. Maegawa M, Kamada M, Irahara M, Yamamoto S, Yoshikawa S, Kasai Y, et al.
A repertoire of cytokines in human seminal plasma. J Reprod Immunol.
2002;54(1–2):33–42.

194. Joki-Korpela P, Sahrakorpi N, Halttunen M, Surcel HM, Paavonen J, Tiitinen
A. The role of Chlamydia trachomatis infection in male infertility. Fertil
Steril. 2009;91(4 Suppl):1448–50.

195. Ochsendorf F. Infections in the male genital tract and reactive oxygen
species. Hum Reprod Update. 1999;5(5):399–420.

196. Dejucq N, Jegou B. Viruses in the mammalian male genital tract and their
effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65(2):208–31.

197. Aiman J, Brenner PF, MacDonald PC. Androgen and estrogen production in
elderly men with gynecomastia and testicular atrophy after mumps orchitis.
J Clin Endocrinol Metab. 1980;50(2):380–6.

198. Adamopoulos DA, Lawrence DM, Vassilopoulos P, Contoyiannis PA, Swyer
GI. Pituitary-testicular interrelationships in mumps orchitis and other viral
infections. Br Med J. 1978;1(6121):1177–80.

199. Dimitrakov J, Joffe HV, Soldin SJ, Bolus R, Buffington CT, Nickel JC.
Adrenocortical hormone abnormalities in men with chronic prostatitis/
chronic pelvic pain syndrome. Urology. 2008;71(2):261–6.

200. Lane TM, Hines J. The management of mumps orchitis. BJU Int. 2006;97(1):1–2.
201. Zirkin BR, Chen H. Regulation of Leydig cell steroidogenic function during

aging. Biol Reprod. 2000;63(4):977–81.
202. Turner TT, Bang HJ, Lysiak JJ. Experimental testicular torsion: reperfusion

blood flow and subsequent testicular venous plasma testosterone
concentrations. Urology. 2005;65(2):390–4.

203. Luo L, Chen H, Trush MA, Show MD, Anway MD, Zirkin BR. Aging and the
brown Norway rat leydig cell antioxidant defense system. J Androl. 2006;
27(2):240–7.

204. Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germ line and
its role in the aetiology of male infertility and genetic disease. Reprod
BioMed Online. 2003;7(1):65–70.

205. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA
damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.

206. Meucci E, Milardi D, Mordente A, Martorana GE, Giacchi E, De Marinis L,
et al. Total antioxidant capacity in patients with varicoceles. Fertil Steril.
2003;79:1577–83.

207. Mancini A, Leone E, Festa R, Grande G, Silvestrini A, Marinis L, et al. Effects
of testosterone on antioxidant systems in male secondary hypogonadism.
J Androl. 2008;29(6):622–9.

208. Chainy G, Samantaray S, Samanta L. Testosterone-induced changes in
testicular antioxidant system. Andrologia. 1997;29(6):343–9.

209. Shang X, Huang Y, Ye Z, Yu X, Gu W. Protection of melatonin against
damage of sperm mitochondrial function induced by reactive oxygen
species. Zhonghua Nan Ke Xue. 2004;10(8):604–7.

210. Lakpour N, Mahfouz RZ, Akhondi MM, Agarwal A, Kharrazi H, Zeraati H, et al.
Relationship of seminal plasma antioxidants and serum male hormones
with sperm chromatin status in male factor infertility. Syst Biol Reprod Med.
2012;58(5):236–44.

211. Oluboyo A, Adijeh R, Onyenekwe C, Oluboyo B, Mbaeri T, Odiegwu C, et al.
Relationship between serum levels of testosterone, zinc and selenium in
infertile males attending fertility clinic in Nnewi, south East Nigeria. Afr J
Med Med Sci. 2012;41:51–4.

212. Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm
function and reproductive hormones in infertile men. J Urol. 2009;182(1):
237–48.

213. Richthoff J, Spano M, Giwercman Y, Frohm B, Jepson K, Malm J, et al. The
impact of testicular and accessory sex gland function on sperm chromatin
integrity as assessed by the sperm chromatin structure assay (SCSA). Hum
Reprod. 2002;17(12):3162–9.

214. Meeker JD, Singh NP, Hauser R. Serum concentrations of estradiol and free
T4 are inversely correlated with sperm DNA damage in men from an
infertility clinic. J Androl. 2008;29(4):379–88.

215. Dobrzyńska MM, Baumgartner A, Anderson D. Antioxidants modulate
thyroid hormone-and noradrenaline-induced DNA damage in human
sperm. Mutagenesis. 2004;19(4):325–30.

216. Palomba S, Falbo A, Espinola S, Rocca M, Capasso S, Cappiello F, et al.
Effects of highly purified follicle-stimulating hormone on sperm DNA
damage in men with male idiopathic subfertility: a pilot study. J Endocrinol
Investig. 2011;34(10):747–52.

217. Colacurci N, Monti MG, Fornaro F, Izzo G, Izzo P, Trotta C, et al.
Recombinant human FSH reduces sperm DNA fragmentation in men with
idiopathic oligoasthenoteratozoospermia. J Androl. 2012;33(4):588–93.

218. Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, et al. In-vitro
effects of FSH and testosterone withdrawal on caspase activation and DNA
fragmentation in different cell types of human seminiferous epithelium.
Hum Reprod. 2002;17(7):1811–9.

219. Nematollahi-Mahani SN, Azizollahi GH, Baneshi MR, Safari Z, Azizollahi S.
Effect of folic acid and zinc sulphate on endocrine parameters and seminal
antioxidant level after varicocelectomy. Andrologia. 2014;46(3):240–5.

220. Manna PR, Tena-Sempere M, Huhtaniemi IT. Molecular mechanisms of
thyroid hormone-stimulated steroidogenesis in mouse Leydig tumor cells
involvement of the steroidogenic acute regulatory (StAR) protein. J Biol
Chem. 1999;274(9):5909–18.

Darbandi et al. Reproductive Biology and Endocrinology  (2018) 16:87 Page 14 of 14


	Abstract
	Background
	Endocrinology of male fertility
	Generation of ROS in the male reproductive tract
	ROS and male reproductive hormones
	Exogenous factors
	Psychological stress
	Heat stress on gonads
	Environmental toxicants
	Electromagnetic radiations
	Exercise
	Obesity
	Food intake
	Alcohol
	Opioids, narcotics and recreational drugs
	Smoking
	Anabolic steroids

	Endogenous factors
	Aging
	Reproductive tract infections


	Hormonal influence on the oxidative status of male reproduction
	Mechanism of action
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

