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Abstract: With the exponential increase in new cases coupled with an increased mortality rate,
cancer has ranked as the second most prevalent cause of death in the world. Early detection is
paramount for suitable diagnosis and effective treatment of different kinds of cancers, but this is
limited to the accuracy and sensitivity of available diagnostic imaging methods. Breast cancer is
the most widely diagnosed cancer among women across the globe with a high percentage of total
cancer deaths requiring an intensive, accurate, and sensitive imaging approach. Indeed, it is treatable
when detected at an early stage. Hence, the use of state of the art computational approaches has been
proposed as a potential alternative approach for the design and development of novel diagnostic
imaging methods for breast cancer. Thus, this review provides a concise overview of past and present
conventional diagnostics approaches in breast cancer detection. Further, we gave an account of
several computational models (machine learning, deep learning, and robotics), which have been
developed and can serve as alternative techniques for breast cancer diagnostics imaging. This review
will be helpful to academia, medical practitioners, and others for further study in this area to improve
the biomedical breast cancer imaging diagnosis.

Keywords: cancer; breast cancer; diagnostics; imaging; computation; artificial intelligence

1. Introduction

Cancer is a non-communicable disease characterized by abnormal cell proliferation or cell division,
with the ability to spread to other parts of the body [1]. Cancer continues to be a major public health
problem and has been labeled as a global threat exacerbated by poor lifestyle choices and environmental
factors [2,3]. Generally, cancer is classified according to the affected body part or tissue of origin.
The most common cancer diseases include but are not limited to lung cancer, ovarian cancer, prostate
cancer, head and neck cancer, breast cancer, etc. [4]. Indeed, breast cancer has been considered as one
of the most common cancers diagnosed among women around the world. Breast cancer comprises 18%
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of the total cases of female cancer and approximately a million new cases are reported in the world
every year [5]. Due to the ability of this type of cancer to metastasize to distant organs or lymph nodes,
it has been considered to be the leading cause of mortality in females [5,6].

Due to the increase in the numbers of breast cancer over the years, there has been a rise in
the number of computational models and algorithms for diagnosis and treatment to assist medical
practitioners. A commonly, and frequently, used computational method is artificial intelligence
(AI). Many Al related models have been developed for detecting and diagnosing diseases not only
for breast cancer or mammography image analysis and classification [7] but for other diseases
such as hycobacterium tuberculosis classification (MTC) [8], human immunodeficiency virus (HIV)
therapy, screening, identification, and prediction [9], coronavirus disease 2019 (COVID-19) detection
and diagnosis [10], etc. These Al models include machine learning, deep learning, and robotics.
Rapid improvement in classification and learning algorithms is one of the main reasons these models
have been widely used for these purposes with good and efficient results. Therefore, the contribution of
this review is to provide a concise overview of past and present conventional diagnostics approaches in
breast cancer detection and diagnosis. Further, we gave an account of several Al related computational
models that have been developed and can serve as alternative models for breast cancer diagnosis.
The remaining part of this paper is organized as follows: The types of biomedical imaging is presented
in Section 2. The computational techniques used in breast cancer imaging diagnostics are outlined in
Section 3. This section discusses the Al models used in breast cancer diagnosis. Finally, the paper is
concluded in Section 4, where some points of future work are recommended.

2. Types of Biomedical Imaging

2.1. Mammography

Mammography is an excellent method used in primary breast imaging. It is used for early
detection of abnormalities in the breast, especially those suspicious for breast cancer before it becomes
apparent clinically, by using low-dose X-ray imaging to generate the images of the breast [11,12].
According to the United States of America preventive services task force (USPSTF), this type of breast
imaging has been helpful in the earlier and better treatment for women over 40 years of age and
has decreased breast cancer mortality by at least 30% [13]. Although this imaging approach remains
the key for early breast cancer detection and screening, the overall accuracy of the test remains low
and second-line accurate imaging techniques are required in some instances to lessen the number of
unnecessary excisional biopsies [14,15].

Screening mammography is credited with the examination of an asymptomatic woman and
decreases the risk of breast cancer-related death [16,17]. Conventional mammography has limitations
in specificity and sensitivity, especially in dense breasts. The sensitivity of this type of imaging in
breast cancer diagnostics is about 50 to 85%, depending on the density of the breast. Meanwhile,
the sensitivity is below 50% in the dense breast due to tissue superposition; this is a major reason for
the false-positive result, which leads to additional imagining and cost and false-negative results due to
masking of true lesions [18-20].

In the breast, the normal internal mammary lymph node chain is usually below 5 mm in diameter.
Metastases to this chain cannot be easily detected by mammography or ultrasonography clinical
examination because they are normally covered by cartilaginous and bony structures of the chest
wall [21,22]. The use of mammography in the detection of recurrent breast cancer is a challenging
task due to changes in the architecture of the breast, mainly in fibrosis and scarring secondary to
radiotherapy and surgery, resulting in difficulties to interpret mammograms. Breast compression is
another major challenge faced by this modality due to accompanied pain which could lead to delayed
diagnosis. Hence, considering all of the aforementioned mammography limitations, there is a call for
alternative and more accurate methods that can resolve the imaging of dense breasts [19,20].
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2.2. Tomosynthesis

Due to the limitations of mammography, breast tomosynthesis was introduced to the clinic
because of its ability to produce three-dimensional information at a lower dose and its relative
cost-effectiveness. Consequently, there has been an upsurge in interest in tomosynthesis. The Food and
Drug Administration (FDA) has approved some products that are now in use and on the market [23].
This technique involves using X-ray projection images acquired over an arc to generate image slices
for a partially 3D image [24]. Tomosynthesis allows for the generation of an arbitrary number of
in-focus planes retrospectively from a series of radiograph projections obtained in a single motion of
the X-ray tube [25]. Notably, a combination of tomosynthesis and digital mammography increases the
brightness of invasive cancers while at the same time decreasing the likelihood of false-positive data [24].
Tomosynthesis has been applied to several clinical tasks, including dental imaging, angiography, breast
imaging, bone imaging, and chest imaging [23]. In breast cancer, tomosynthesis increases the sensitivity
of mammography, which could enhance the early detection of breast cancer due to the improved
lesion margin conspicuity [25]. This is very beneficial to breast cancer patients, especially those
with radiographically dense breasts. However, Poplack et al. [26] showed that breast tomosynthesis
has a comparable or superior image when compared with diagnostic film-screen mammography
in 89% of recruited subjects. More recently, this was supported by another study where one-view
stand-alone digital breast tomosynthesis (DBT) detected more breast cancer than digital mammogram
(DM) [27]. This suggests that the use of one-view DBT alone could be feasible in breast cancer screening.
Although the acquisition procedures of tomosynthesis mimic standard mammography, the X-ray tube
of tomosynthesis takes several low-dose exposures as it travels within a limited arc of motion unlike
conventional mammography [26]. Sechopoulos [28] has written an excellent review of all aspects
of tomosynthesis, including doses and reconstruction processes. When the overall dose used for
visualization is constant, the quality of the image improves with a wider angular range [29]. However,
the quality of image degenerates once the maximum is attained at a particular number of projections.

2.3. Ultrasound Imaging

Ultrasound (US) imaging diagnostics, otherwise known as sonography or ultrasound scanning,
is a painless and safe approach. US makes use of 1 to 10 MHz sound waves to produce pictures that
reveal the movement and structure of the breast, and other soft tissue [30,31]. It can also reveal the
movements of blood and other materials within the blood vessels and body [31]. It is a cross-sectional
technique that uses a small probe, known as a transducer, and gel that is directly placed on the
breast/skin; it displays the tissues without overlap [31-33]. The high-frequency soundwaves travel
from the probe via the gel into the body, and the probe receives the sounds that bounce back, which in
turn produces an image on a computer. This type of imaging technique does not make use of radiation
because it captures images in real-time [31-33].

In recent times, the development of high-resolution US technique has greatly improved the
diagnosis of breast cancer because, in the past, US was thought to only be suitable for the diagnosis of
cysts [34,35]. It has been shown to enhance the differential diagnosis of both benign and malignant
lesions during guided interventional and local preoperative staging diagnosis. Due to the higher
sensitivity of this type of imaging technique, it has been adopted as a complementary technique to
mammography with limited sensitivity to identify early, node-negative cancer in dense breasts [36,37].

However, the use of US imaging techniques is diminishing due to the time and skill required to
detect small tumors with hand-held imaging, and non-palpable cancers. The implementation of this
imaging technique in breast cancer diagnostics has been hampered by limited numbers of qualified
personnel and lack of uniformity in the results; this has caused low specificity that can lead to the
generation of high numbers of false-positive results [38]. This assertion is corroborated by findings
of some previous studies which revealed that US can identify and detect the presence of carcinoma
in dense breasts. Some other studies have shown low detection of cancerous cells in dense breasts,
but have proposed the addition of this imaging method to negate mammography which seems to have
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limited cost-efficiency and is controversial for women with dense breasts without any other major risk
factors. In addition, due to the high scattering ability of the soundwaves at bone and air interfaces,
various parts of the body are invisible, which limits the effectiveness of depth imaging in most organs
to about 10 cm [39,40].

2.4. Dedicated Breast Computed Tomography

Dedicated breast computed tomography (DBCT) is a recently used and fastest-growing imaging
technique that allows for true isotropic and provides three-dimensional (3D) information which can be
reconstructed or rebuilt into several imaging planes. Although DBCT is comparable to breast magnetic
resonance imaging (MRI), the process involved can be carried out without breast compression, and is
not limited by breast implants or the density of the breast [41-43]. The radiation dose in this type of
imaging technique is similar to that of a conventional two-view mammogram [42]. Boone et al. [44]
investigated the feasibility of low dose radiation on the image quality of DBCT. The findings from
their average glandular dose for 80-kVp breast CT study, when compared to two-view mammography,
revealed that the breast CT dose for thicker breasts is approximately one-third lower than that of
two-view mammography. For a typical breast of 5 cm 50% glandular, it was discovered that the
maximum dose of mammography in 1 mm?® voxel is far greater (20.0 mGy) than that of breast CT
with 5.4 mGy. It was further stated that the CT images for 8 cm cadaveric breasts have an average
glandular dose of 6.32 mGy, which is superior to the estimated dose of 5.06 mGy for the craniocaudal
view, with an average glandular dose of 10.1 mGy for standard two-view mammography of the same
specimen [44]. The invention, improvement, and development of DBCT with dedicated scanners with
novel technology has been documented in the literature by Sarno et al. [45]. Studies further reported
the development of low radiation dose scanners with improved spatial resolution and rapid image
acquisition times, which is aimed at addressing the issue of imaging dense breasts and painful breast
compression [41-43].

Kuzmiak et al. [42] investigated the confidence of radiology experts in the characterization
of suspicious breast lesions with a DBCT system compared with the conventional diagnostics of
two-dimensional (2D) digital mammography in terms of overall lesion visibility and dose. It was
discovered that DBCT is superior in the characterization of the masses and radiologists’ visualizations,
although it is inferior to calcifications when diagnostic mammography is used. It was further averred
that the DBCT application could help eliminate the 2D mammography drawback of overlapping tissue.
Their study concluded that the technical challenges in breast imaging remain, but 3D DBCT could
have a promising clinical application in breast cancer diagnosis or screening, however, this needs
further investigation.

In 2008, Lindfors et al. [41] carried out a comparative study between the DBCT and screen-films
mammograms where it was discovered, in the study of the selected group of women, that the
visualization of breast lesions with both the DBCT and screen-film mammography is approximately
the same. Although, DBCT was reported to be superior in the visualization of the masses, while in the
imaging of microcalcification lesions screen-film mammography shows to be better. It was further
deduced in their study that women are more comfortable with DBCT screening when compared to
screen-film mammography. Hence, it was assumed that DBCT is a potential technology and may be a
promising clinical application in diagnostic and screening for breast cancer investigation. Additionally,
it was further presumed that DBCT is more accessible and could be a replacement for breast MRI or
act as a control technique for tumor ablation procedures or robotic breast biopsy, all of this calls for
further studies.

Recently, Shah et al. [43] investigated the characterization of computed tomography (CT).
Hounsfield units were used in clinical settings for the purpose of tissue differentiation in a reconstructed
CT image in 3D acquisition trajectories on a DBCT system. It was depicted in their statistical study
that the approach has a better performance in the saddle orbit, mostly when close to the chest and the
nipple areas of dense breast. It was further discovered that the saddle orbit functions significantly well
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and provides a tighter distribution of Hounsfield unit values in the reconstructed volumes. In addition,
the study demonstrated the significance of the application of 3D acquisition for breast CT trajectories
and other uses through the establishment of the robustness in Hounsfield unit values in the large
reconstructed volumes.

2.5. Magnetic Resonance Imaging

Since the beginning of the third millennium, magnetic resonance imaging (MRI) has developed
into a paramount tool in breast cancer screening, diagnosing, staging, and follow-up [46]. This imaging
tool has played a vital role in the screening of high-risk breast cancer patients. Breast MRI uses
an intravenous contrast agent such as gadolinium, which allows for the visualization of lesions.
The sensitivity of this tool in breast cancer has been documented to be over 90% while the specificity is
still about 72%; hence, the distinction between benign and malignant lesions is still challenging [46].
Although mammography is the basic imaging tool for breast tumor identification, it has been indicated
that MRI has a higher sensitivity for detection of breast cancer, and the breast density does not affect
it [47]. In most cases, the sensitivity of mammography in the detection of multiple malignant foci is
below 50%. It is important to note that breast MRI is not meant to replace mammography particularly
in ductal carcinoma in situ, which is not detectable by MRI but rather by mammography [48]. The MRI
screening in women with genetic susceptibility to breast cancer has proved to be beneficial [49,50]. In a
prospective cohort study, the sensitivity of MRI in women with a high risk of breast cancer but who were
asymptomatic was between 93-100%, the 10-year survival was 95.3% [50]. Similarly, the sensitivity of
MRI in contralateral breast tumor detection was documented to be 91%, and specificity was 88% [51].
In women with a known BRCA1/2 mutation, MRI surveillance detected breast cancer at early stages;
encouragingly, there was no distant recurrence after 8.4 years follow-up since diagnosis [52]. This tool
can be used in identifying the size and degree of the tumor towards achieving better surgery procedures.
Nevertheless, the use of MRI before surgery continues to be controversial with extensive variations in
the outcome; however, it helps in planning conservation in patients that respond to chemotherapy
where feasible [46]. Despite the high sensitivity of this imaging tool in breast cancer, the cost involved
in MRI makes it difficult to be employed in the general population. Conclusively, the invention and
development of new imaging techniques such as diffusion-weighted imaging offer an added advantage
in breast cancer management.

2.6. Diffusion-Weighted Imaging

Since the early years of the 21st century, diffusion-weighted imaging (DWI) has been at the forefront
of cancer imaging attaining widespread recognition due to its ability in the diagnosis of stroke [53,54].
DWTI is a noninvasive MRI technique that relies on the principle of random molecular motion of free
water in tissues (Brownian movement). With the development of stronger diffusion gradients and
application in whole-body imaging, DWI has attracted attention in oncology [55]. In breast cancer,
Sinha et al. [56] demonstrated that DWI is reliable in a clinical setting with an echo-planar sequence
and possesses potential in breast lesion characterization as either benign or malignant using apparent
diffusion coefficient (ADC) values. Generally, breast lesions classified as malignant have a high-cellular
level with limited water diffusion and lower ADC values when compared to benign lesions [57].
An earlier clinical study that recruited women with breast lesions stated that ADC values and the tumor
biological aggressiveness correlate; hence, ADC is a promising factor in the evaluation and analysis of
the degree of the malignancy [58]. In most clinical settings, DWI is interpreted in combination with
dynamic contrast-enhanced (DCE)-MRI to increase the specificity. However, more recently, lesions in
the breast (31 = malignant; 13 = benign) were analyzed using quantitative diffusion-weighted sequence
on 3T MRI with b-values of 500 and 1000 s/mm? [59]. The ADC cut-off value for benign and malignant
lesions was set to 1.21 x 10~ mm?/s for b = 500 s/mm? and 1.22 x 10~3 mm?/s for b = 1000 s/mm?,
respectively. The sensitivity of DCE-MRI was 100% with a specificity of 66.7%, when DCE-MRI was
combined with b = 1000 s/mm?, 100% specificity was attained and sensitivity of 90.6%; there was no
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significant difference between the ADC and prognostic factors [59]. Non-contrast (NC)-MRI can be
an alternative for DCE-MRI for breast cancer diagnosis, though its inferior lesion conspicuity and
lower inter-reader agreement should be considered [60]. This study and many more have documented
explanatory results for DWI as a tool for diagnosing breast lesion and aids the orthodox breast
MRI procedures. Several pitfalls, which include but are not limited to motion artifacts, ADC value
accuracy, image quality, and signal-to-noise ratio, are associated with DWI [61,62]. These challenges
are bothersome and lay emphasis on the need to incorporate computer science into breast cancer
diagnosis, for example, robotics could significantly decrease time in DWI MRI and create improved
breast cancer detection.

2.7. Computed Tomography

CT scan is a method that exposes the pictures of cross-sections or 2D slices of the body’s organs
via a connected computer [63,64]. The use of a contrast solution (iodine), injected into the body via
the arm, dramatically improves and aids in the visualization of the cancerous cells in organs. In 2003,
the use of CT for breast cancer imaging was proposed by Suga et al. [65], after a surgical issue in
patients, to obtain interstitial lymphography that can map and present sentinel lymph nodes of the
breast. The use of CT in breast cancer has some advantages, which includes patient comfort and fast
scanning time. However, CT has not been widely used in breast cancers due to the risks involved in
radiation exposure and poor quality of the image produced.

Due to the dynamic technique of CT, it can be used in the detection and characterization of breast
tumors, investigation of neoadjuvant chemotherapy effects, and local staging of cancerous cells in the
breast. In 2015, Foo et al. [66] employed this imaging scan method to evaluate the staging of cancer
cells in newly diagnosed breast cancer patients that are in a locally advanced stage. It was revealed
that a limited number of patients involved in this study had some pelvic significance with relation to a
patient who had peritoneal cancer with widespread metastasis, and a patient with a presumed gene
carrier of a concurrent primary ovarian malignancy. It was further stated that 50% of all pelvic results
required additional radiological examinations.

Although the CT scan technique in breast cancer examinations may not replace the conventional
mammography routine, based on improvements carried out in some studies [67,68], it can be used
to overcome several limitations associated with mammography such as detection of cancers in
premenopausal, dysplastic, and dense breasts. The mean glandular dose of 8.2 + 1.2 mGy has also
been documented for different types of breast shapes and sizes [69]. As documented by Park et al. [68],
in prone positions, low-dose perfusion CT is possible for imaging with regards to the quantification
of tumor vascularity and radiation doses. CT can be used in the detection of unsuspected very
small cancers in the breast that cannot be identified or seen by physical examinations or conventional
mammography. Itis useful in definitive diagnostic evaluation in a situation where physical examinations
and mammography are inconclusive, and it can also be helpful in recognition of precancerous and
high-risk lesions. More so, CT can be used in the discrimination of tumor tissue from normal tissue in
breast cancer patients without the use of a contrast medium.

2.8. Near-Infrared (NIR) Fluorescence

During human surgery, X-ray fluoroscopy and ultrasound have been used widely. However,
during X-ray fluoroscopy, patients and caregivers are exposed to ionizing radiation; in an ultrasound,
only a thin surgical field-of-view is seen and requires direct contact with tissue, in this case, breast.
Interestingly, none of the methods can be amended by target contrast agents to guide imaging during
oncologic surgery due to the number of procedures required [70,71]. Thus, near-infrared (NIR) light,
with a wavelength range of about 700 to 900 nm, has offered diverse significant advantages over some
widely used tools including relatively high penetration of photon in and out of living tissue (breast)
due to the reduction in the rate of absorbance and scatter. Owing to lower tissue autofluorescence,
NIR has a higher signal-to-background ratio [71,72]. This technique has a great potential to interrogate
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deep tissues (breast) for molecular-based imaging. The NIR light is visible to the human eyes when
conjugated with NIR excitable fluorophore or dyes. These are chemical compounds which convert light
generated from one NIR wavelength into the NIR light of diverse wavelength. It has been recommended
that the mapping of sentinel lymph nodes (SLN) is a standard approach for the management of breast
cancer and care staging of the axilla [71].

NIR fluorescence imaging, which uses indocyanine green (ICG), has been shown to improve the
procedure of the SLN mapping by facilitating percutaneous incisions and identifying the intraoperative
ability of lymphatic channels and SLNs [71,72]. The safety and accuracy of NIR fluorescence imaging
applications for identifying SLNs in patients suffering from breast cancer were demonstrated by
Verbeek et al. [73]. The use of the Mini-FLARE camera system and 1.6 mL of 0.5 mM ICG showed
the excellent identification of the SLN in patients with breast cancer. Although, the technique which
should be used as the gold standard in future analyses, was raised as a question [73]. In a similar
study by Mieog et al. [74], the clinical translation of a novel NIR fluorescence imaging system and
the optimal ratio of ICG to the human serum albumin (HSA) dose for mapping of SLN in breast
cancer was described. It was stated that 400 and 800 uM is the optimal dose of the injection ratio of
ICG:HSA and this can be chosen based on the preferences of local preparation. For instance, a dose of
500 uM was depicted to be the most convenient in the United States due to the minimal requirement in
the manipulation of albumin volumes. Other studies that have employed this approach in mapping
SLNs in breast cancer patients include Sevick-Muraca et al. [75] which demonstrated the prospective
feasibility in the use of the minimal dose of ICG in noninvasive optical imaging of lymph nodes in
the breast cancer patients undergoing SLNs mapping. In 2008, Altinoglu et al. [76]. demonstrated
the synthesis and bioresorbable use of calcium phosphate nanoparticles (CPNPs) which incorporated
the molecule of the NIR emitted fluorophore and ICG. In their study, the in vivo and ex vivo studies
demonstrated the potentiality of the NIR CPNPs in diagnostic imaging of early breast solid tumors.
Although, the result from their ex situ imaging of deep tissue showed that the depths of NIR CPNPs in
porcine muscle tissue is 3 cm. Poellinger et al. [77] employed the use of NIR fluorescence imaging
with the late and early enhancement of ICG, which corresponds to extravascular and vascular phases
of contrast agent enhancement to distinguish between malignant and benign breast lesions as well
as to detect breast cancer. Ke et al. [78] assessed the specificity of continuous-wave NIR fluorescence
imaging by an intensified charge-coupled device (CDD) camera on a novel epidermal growth factor
(EGF)-Cy5.5 to detect EGF receptors in breast cancer xenografts.

2.9. Single-Photon Emission Computed Tomography

Single-photon emission computed tomography (SPECT) is a medical imaging tool based on
tomographic reconstruction protocols and routinely used in a clinical decision in cancer [79], coronary
artery disease, left ventricular dysfunction [80], and Parkinson disease [81]. In fact, it is the most used
tool in myocardial ischemia assessment. SPECT aims at getting a perfect 3D radioactivity distribution
resulting from the uptake of a radiotracer in humans. One or more photons are released in random
directions when a SPECT radioisotope decays [82]. However, collimators are used to focus the angle of
the emitted photons that reach the detector because conventional lenses cannot restrict high-energy
photons, and only 0.02% of the decay events is measured [82]. SPECT, coupled with CT, can be used
when conventional images are complex to interpret, for example, suspicion of contamination [83].
Clinically, SPECT/CT provides more value in anatomical localization of sentinel nodes. This highlights
a relevant role for this tool in the surgical approach and may improve staging [84]. The sentinel lymph
node biopsy is a well-known procedure used in evaluating the status of the axillary lymph node in
patients with early stages of breast cancer [85]. Markedly, SPECT/CT improved visualization from 84%
to 92% in patients, but it only showed sentinel nodes in 11 out of 22 breast cancer patients (50%) with
non-visualization on planar imaging [84]. Similarly, Lerman et al. [86] documented that the addition
of SPECT/CT to lymphoscintigraphy enhances sentinel node identification in breast cancer patients
who are overweight. Notably, SPECT/CT identified hot nodes in 91% of patients and sentinel nodes
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in 29 of 49 patients (59%) who were negative on planar imaging (planar lymphoscintigraphy) [86].
Hence, this technique is of high relevance in overweight breast cancer patients because intraoperative
techniques have failed in the identification of draining nodes. Another SPECT/CT evaluation study
demonstrated a sentinel node in 91.1% of breast cancer patients, and localization was more precise on
SPECT/CT fusion images than on the planar views [87]. Mann et al. [88] documented that the use of
dedicated SPECT identifies regions of interest at a global lower-level threshold within dense breast
tissue without any negative effects, which in turn betters patient care. Additionally, dedicated breast
positron emission tomography (PET)/CT can accurately visualize uncompressed breast suspected
lesions in 3D [89]. However, this scanner was unable to generate a full quantitative image. Recently,
Tornai et al. [90] developed a fully 3D CT in a hybrid SPECT/CT breast imaging system that facilitated
complex trajectories, which improved the quality of the image when compared with simple circular
breast CT acquisitions. The SPECT-subsystem allows viewing of the chest wall for pendant breast
imaging [90]. Recently, it was shown that the hybrid SPECT/CT provides precise anatomical data
that enables clear assessment of patients contaminated with radionuclide during the procedure [83].
Such precise data can assist surgeons towards a better surgical plan. Non-visualization of sentinel
nodes, unexpected lymphatic drainage, and complicated planar imaging interpretation are challenges
faced by these imaging techniques. However, this can be amended by incorporating Al, such as
deep learning and machine learning algorithms, with currently available breast cancer imaging tools.
Overall, such combinations will improve breast cancer diagnosis, predict treatment outcome and
ultimately, improve the patient quality of life. The dose in the dedicated SPECT-CT system using
both the geometric and anthropomorphic phantoms showed that the average doses absorbed in 100%
fibroglandular-equivalent was 4.5 + 0.4 mGy, while 100% adipose-equivalent tissues was 3.8 + 0.2 mGy.
More so, the dose measured in a cadaver breast using a radiochromic film in the same study yielded an
average dose of 4.3 £ 0.3 mGY and 4.2 + 0.3 mGy along two orthogonal planes [91].

3. Computational Techniques Used in Breast Cancer Imaging Diagnostics

A correct diagnosis of mammograms containing malignant tumors is a complex task for even the
most experienced medical practitioner. To circumvent this complexity, several computational models
have been developed to assist medical practitioners to distinguish between benign and malignant
breast tumors. The models described in this paper are based on machine learning, deep learning,
and robotics which have been shown to be useful in breast cancer diagnosis. In this section, we present
some studies that have applied these models.

3.1. Machine Learning Algorithms

Several machine learning algorithms have been proposed for the detection and diagnosis of breast
cancer. Despite this, the development of new algorithms and models for this purpose is still an active
research area, especially in the detection of abnormalities in mammograms. In the following, we review
machine learning models that have been used in diagnosing this type of cancer, such as artificial neural
network (ANN) and support vector machine (SVM).

3.1.1. Support Vector Machines

SVMs are supervised learning models that aim at formulating a computationally effective approach
of learning to separate hyperplanes in high-dimensional feature space [92]. It has been used and proven
to be an efficient learning technique for several real-world problems such as image recognition [93],
bioinformatics [94], and classification problems [95], among others. SVMs are one of the earliest
machine learning techniques used for cancer diagnosis. Acharya et al. [96] focused on detecting
breast abnormalities or cancer automatically by using infrared imaging. The approach used texture
features and SVMs to detect breast cancer based on thermography. Texture features were obtained
from a run-length matrix and co-occurrence matrix from 25 cancerous and 25 normal infra-red breast
images. These features were then fed to an SVM for automatic classification and detection of malignant
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and normal breast conditions. A comparison of SVMs based classifiers with ANNs and Bayesian
classifiers for the prognosis and diagnosis of breast cancer was done in Maglogiannis et al. [97].
The implementation of the comparison was performed on the Wisconsin prognostic breast cancer and
the Wisconsin diagnostic breast cancer datasets. The expected result of the implementation was to
predict a class that corresponds to a likely tumor recurrence in four-time intervals. The result also
shows that SVM outperforms the other classifiers. Huang et al. [98] used SVM to evaluate several
pathologically proven breast tumors. The study presented a computer-aided diagnosis (CAD) system
with textural features for classifying malignant and benign breast tumors on medical ultrasound
systems. The aim of the CAD is to assist medical practitioners and radiologists in identifying lesions and
also to differentiate malignant lesions from benign lesions on the basis of medical images. The proposed
SVM technique was able to identify solid breast nodules at very high accuracy. Recently, Wang et al. [7]
proposed an approach to solving the limitations of machine learning models’ performance in diagnosing
breast cancer. The approach was based on an SVM-based ensemble learning algorithm; this approach
reduces the diagnosis variance and increases diagnosis accuracy. In doing this, 12 different SVMs were
hybrid using the proposed weight area under the receiver operating characteristics curve ensemble
(WAUCE) approach.

3.1.2. Artificial Neural Network

ANN is a computational-intelligent model that uses different optimization tools to learn from
the data available in the past and use that prior training to identify or predict new patterns or to
classify new data. Several research works have applied ANN for medical purposes [99], such as
cancer treatments [100]. The Memetic Pareto ANN (MPANN) approach was proposed by Abbass [101].
The approach was based on a pareto-differential evolution algorithm. This algorithm was augmented
with a local search for the prediction and diagnosis of breast cancer. Tourassi et al. [102] proposed a
new approach for breast cancer diagnosis based on the constraint satisfaction neural network (CSNN)
technique using mammographic and breast cancer patient history findings. The main advantage of
this technique is that it has a non-hierarchical architecture and flexibility that allows it to work as
a predictive tool and as an analysis or data mining tool to discover the knowledge of association
rules among clinical diagnosis and historical findings. In this work, the authors used two different
datasets of breast cancer, each containing 250 patient cases. The CSNN was first used to train the
first 250 datasets and the other 250 datasets were used to test the predictive strength of the CSNN.
The result of the analysis was done based on the kind of mammographic lesions seen in each patient.
The result of this study shows that CSNN is a very efficient CAD tool for predicting and diagnosing
breast cancer from mammographic and historical findings. A study by Janghel et al. [103] implemented
a model using ANN to assist medical practitioners in diagnosing breast cancer. The model has four
phases, namely radial basis function networks (RBFN), back propagation algorithm (BPA), competitive
learning network (CLN), and learning vector quantization (LVQ). The dataset used in this study
consisted of 55 malignant cases and 184 benign cases. The result of the experiment showed that the
LVQ output was the best result during testing then CLN, BPA, and RBEN in order. Figure 1 presents a
simple ANN diagnosis for breast cancer.
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Breast cancer dataset

!

Data processing:
Feature extraction and analysis.
Removal or filling of missing data.
Data normalisation.

!

Simulate ANN models

!

Training and testing phase

|

Diagnosis decision

Performance comparison of
neural network models

Figure 1. A simple artificial neural network (ANN) method on breast cancer [103].

Other works in the literature used data mining methods in diagnosing breast cancer [104,105].
Data mining is the process of extracting useful data from a larger set of raw data using one or more
software. Cakir et al. [106] used Weka, a data mining tool to analyze 462 breast cancer patients data
obtained from the Ankara Oncology Hospital. Classification algorithms are applied to each of the
datasets and the outputs of the classification were compared to find the most effective treatment method.
This work assists oncology doctors to suggest the best treatment method for a patient. Sahan et al. [107]
proposed a hybrid system of a fuzzy-artificial immune system with the k-nearest neighbor (KNN)
algorithm. This method was used to solve diagnosis problems through classifying the Wisconsin breast
cancer dataset (WBCD). The system has a high classification accuracy on large datasets and can be
used for any type of breast cancer diagnosis. Additionally, it can be used for other medical condition
diagnoses. The Table 1 below presents an overview of machine learning (ML) techniques in breast
cancer diagnosis that are explained in this section. The evaluation results presented in the table are the
50-50% training-test partition for the reference with three different training-test partitions.
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Table 1. An overview of machine learning (ML) techniques in breast cancer diagnosis.

Reference

Computation Technique

Scope

Evaluation Results

Datasets

Acharya et al. [96]

Texture features + SVM

Breast cancer detection using
thermal imaging

Accuracy = 88.10%,
specificity = 90.48%,
sensitivity = 85.71%

25 normal and 25 cancerous collected from
Singapore General Hospital, Singapore

Accuracy = 96.91%,

Maglogiannis et al. [97] SVM Diagnosis and prognosis specificity = 97.67%, Wisconsin prognostic breast cancer (WPBC)
Sensitivity = 97.84%
e . Accuracy = 94.4%, . .
Hang al. 1) s Clsitingbenin ey s, s slbei et o
& Sensitivity = 94.3% p p ‘
Wisconsin Breast Cancer, Wisconsin
Reduce the diagnosis variance Variance = 97.89% Diagnostic Breast Cancer, and the U.S.
Wang et al. [7] SVM and increase the diagnostic . . e National Cancer Institute’s Surveillance,
increase in accuracy by 33.34% - .
accuracy of breast cancer Epidemiology, and End Results
(SEER) program
Abbass [101] EANN Diagnosis Average accuracy = 0.981 + 0.005 Wisconsin
Accuracy of 98.24%, 99.63% and 100%
Bhardwaj et al. [108] Genetically optimized Classification fqr 50_50’ 6.0_40' 70._?’0 WBCD
neural network training—testing partition,
respectively
Tourassi et al. [102] CSNN Diagnosis CSNN ROC area index = 0.84 + 0.02 500 private images
Cakir et al. [106] Weka Treatment methods Accuracy = 92% 462 patients data
Sensitivity = 99.11%,
Karabatak [109] Weighted Naive Bayesian Detection specificity = 98.25%, WBCD
accuracy = 98.54%
Sahan et al. [107] Fuzzy + KNN Diagnosis Accuracy = 99.14% WBCD
Bagui et al. [110] Rank nearest neighbor Diagnosis Accuracy = 98.1% WBCD
e . Accuracy = 99.41%,
Chenetal. [111] Rough set_ SVM Distinguishing beT“g“ breast Sensitivity = 100%, WBCD
tumour from malignant one o o
specificity = 100%
Accuracy = 94.87%,
Polat et al. [112] Least square SVM Classification Sensitivity = 96.42%, WBCD

specificity = 95.86%
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3.2. Deep Learning

In recent years, deep learning has set an exciting trend in the fields of machine learning and
AI[113]. Deep learning techniques utilize computational models, composed of multiple processing
layers that are used to learn data representations and applied to many real-world applications.
These applications range from image recognition, object detection, power systems, breast cancer
detection, speech recognition to drug discovery and genomics, etc. [114-117]. In the following sections,
deep learning models for breast cancer diagnosis are presented.

3.2.1. Convolutional Neural Network

The convolutional neural network (CNN), often called ConvNet, is a type of deep learning
model that has become dominant for many computer vision tasks, ranging from image classification,
object tracking and detection to semantic segmentation [118,119]. CNN was designed to adaptively
learn hierarchies of features, usually from low-level to high-level patterns [120]. Indolia et al. [121]
explained that the CNN overcomes limitations as seen in traditional machine learning approaches;
it has shown to be widely used for solving complex problems, especially in the medical imaging
domain. Recent studies have adopted the CNN model for effective breast cancer diagnosis [122-124].
An example of CNN segmentation tasks for breast cancer diagnosis is presented in Figure 2.

Histopathological
images for training

CNN for feature
extraction Extracted
features

Fully
Connected
NN

Processed Data
(resized, reshaped)

Pixels of images converted into
Numpy array

Figure 2. A convolutional neural network (CNN)-based approach for screening mammography [125].

For an improved diagnosis, Tan et al. [126] developed an imaging system called breast cancer
detection using convolutional neural networks (BCDCNN) aimed at assisting medical practitioners
to classify mammographic images into malignant or benign. The results showed that the BCDCNN
system improved the accuracy of the classification tasks on the mini-Mammographic Image Analysis
Society (mini-MIAS) database. Amit et al. [122] proposed an approach for dynamic contrast-enhanced
(DCE) imaging that uses the CNN to correctly classify medical images and a pre-trained classifier to
extract features in the images. The study showed that CNN outperformed the pre-trained classifier
and accuracy improved significantly. In another study, Byra et al. [127] described a CAD approach that
uses the Nakagami imaging method to train a CNN model, aimed at breast cancer diagnosis. The study
was tested on 458 RF data matrices of breast lesions. The study showed that better area under the curve
(AUC) results that amounts to 0.912 were obtained. Gao et al. [128] extended the use of CNN using the
INbreast dataset to overcome the challenges faced with the contrast-enhanced digital mammography
(CEDM), which is prone to a high false-positive rate. CNN was effective at differentiating benign cases
from malignant lesions, which is the main challenge faced with a breast cancer diagnosis.

In a similar study, Wang et al. [129] explored a CAD method that utilizes feature fusion with
CNN using a private dataset. The method uses CNN for feature extraction based on several image
sub-regions. After the feature extraction tasks, the images were then classified into benign or malignant.
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The study concluded that this task outperformed other existing methods. Murtaza et al. [124] applied
the use of CNN on the BreakHis dataset to improve the detection of breast cancer. The study reported
a high accuracy with the use of the CNN model. Other interesting areas of application of CNN to
breast cancer diagnosis are found in the following references [126,130-136].

3.2.2. Generative Adversarial Networks

The advent of generative adversarial networks (GANs) by Goodfellow [137] has opened a new area
of research within the image segmentation domain. According to Kazeminia et al. [138], GANs have
been shown to generate realistic-looking images in the large, unlabelled corpus. One of the many
challenges faced within the CV and medical image analysis (MIA) community is the heavy reliance
on labelled training data, which can be a major limitation [7]. The communities have recognized the
potential of GANs and have eagerly investigated in its efficacy to tackle many problems. Recently,
a good deal of research has leveraged the use of GANSs for image-to-image translation [139,140]. GANs
have found many applications in generative modelling and distribution learning [139]. Furthermore,
GANSs unique generation and identification network is increasingly used for image segmentation and
has achieved good results. GANs create outputs using its discriminator and generator [141]. Figure 3
shows the structure of GANs.

Discriminator

(00000 (00000

/Geneﬁt“r G(zly) (. . . . .>

(00000 0000

Figure 3. Structure of a generative adversarial networks (GANSs) [142].

Shams et al. [143] developed DiaGRAM (deep GenerRAtive multi-task), which is based on GANs
and CNN in a mammography study to detect early signs of breast cancer. The study concluded that
feature learning with GANs led to high classification performance and an effective end-to-end scheme.
A study by Singh et al. [144] applied GANs to segment mammographic images from regions of interests
(ROIs) with varying length and sizes. GANs helped eliminate issues of overfitting on the datasets
(INbreast and digital database for screening mammography (DDSM)) and showed effectiveness in
the screening of cases. Wu et al. [145] addressed the issue of limited data and class imbalance for
breast cancer classification using GANs. The classification performance of GANs was compared
with other augmentation methods. The results showed that GANs improved the classification task.
Guan et al. [146] applied GANSs to generate synthetic images from a digital database for screening
mammography. The authors opined that GANs performed better in augmenting the training dataset,
which was useful for the study. Together, we have discussed the CNN and GANSs approaches to breast
cancer detection. Most of the works presented in this section are summarised in Table 2. In the table,
we present the deep learning techniques, and scope of work that are used for breast cancer diagnosis.
In addition, the performance metrics for each technique and the type of dataset used were presented.
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Table 2. Summary of deep learning models in breast cancer diagnosis.

Deep Learning Evaluation
Reference Technique Scope Results Datasets
mini-Mammographic
Tan et al. [126] CNN Classification Accuracy = 82% Image Analysis Society
(mini-MIAS)
Accuracy = 83%,
Amit et al. [122] CNN Classification Area under the ED (MRI)
curve =091
Accuracy = 83%,
Byra et al. [127] CNN Classification Area under the ED (US, Nakagami)
curve = 0.912
Accuracy = 90%
Gao et al. [128] CNN Classification Area under the INbreast
curve = (0.92
Wang et al. [129] CNN Classification Accuracy = 76.5% Private
Accuracy = 95%,
Tan et al. [126] CNN Classification Area under the BreakHis
curve = 0.97
Litjens et al. [130] CNN Classification Area under the Private
curve = 0.99
Accuracy = 77.8%
. e (four classes),
Aratjo et al. [132] CNN Classification Accuracy = 83.3% BICBH
(two classes)
Accuracy = 73%, Digital Database for
Ragab et al. [135] CNN with SVM Feature extraction Area under the Screening Mammography
curve = 0.94 (DDSM), CBIS-DDSM
Acharya et al. [136] CNN with Feature extraction Accuracy = 97% Private
K-means
Karthik et al. [147] DNN Classification Accuracy = 98% WBC
Accuracy = 81%,
Yu et al. [134] DNN + CNN Classification Area under the BCDR
curve = (0.88
Accuracy = 82.43%,
Sun et al. [131] CNN Classification Area under the ED(Mg)
curve = (0.8818
Accuracy = 94%,
Hadad et al. [148] CNN Classification Area under the ED(Mg, MRI)
curve = 0.98
Nahid et al. [123] CNN Classification Accuracy =91% BreakHis
Area under the
Shams et al. [143] GANs Classification curve = 0.88, DDSM, INbreast
Area under the
curve = 0.925
Singh et al. [144] GANs + CNN Classification Accuracy =72% DDSM and Private
Wu et al. [149] GANs Classification Accuracy = 89% DDSM
Guan et al. [146] GANs Classification Accuracy = 79.8% DDSM

3.3. Robotics

With the improvements in medical robots” accuracy, robots in healthcare now assist by relieving
medical practitioners from their routine tasks and also make medical procedures less costly and safer
for patients [129]. These could be the reasons research into creating robots to detect and diagnose
breast cancer in patients have been gaining popularity in the last decade. Robotics as a branch of Al,
is developed based on some machine learning algorithms [129,150]. Such algorithms include but are
not limited to reinforcement learning and deep reinforcement learning [150].
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3.3.1. Reinforcement Learning

Reinforcement learning is an approach to machine learning that involves computational learning
by interaction. It involves learning about what to do and how to map situations to actions to maximize
a numerical solution. Unlike other machine learning approaches, reinforcement learning does not
directly demonstrate how to perform a task but works through the problem on its own [129,150].

Examples of systems that are built based on the unsupervised learning approach of reinforcement
learning are self-driving cars, a program playing chess (e.g., Alphago), etc. These systems interact
with their environment, such that, when they complete a task successfully, they receive a reward state.
Such tasks could be driving to a destination safely or winning a game. On the other hand, when the
system does not complete a task successfully, they receive a penalty for performing incorrectly. Such a
task could also be going off the road or being checkmated [150].

These systems, over time, make decisions to maximize their reward and minimize their penalty
using dynamic programming. The advantage of this approach to Al is that it allows an Al program to
learn without a programmer spelling out how a system should perform the task; this type of approach
is popularly called unsupervised learning [150].

3.3.2. Robotic Tools for Breast Cancer Diagnosis

In the research reported by Kato et al. [151], a robotic system called WAPRO-4 was developed for
the automatic palpation of breast cancer. The study aimed at palpating and diagnosing breast cancer
without the assistance of medical personnel. The major objective was to aid the early detection of
breast cancer. Additionally, WAPRO-4 consists of three parts which include the measuring instrument,
the locomotion unit, and the microcomputer system [151]. The WAPRO-4 was constructed to detect
tumors while ignoring breathing and the configuration of the chest wall. Kobayashi et al. [152]
developed a palpation-based needle insertion method for diagnostic biopsy and treatment of breast
cancer. The system locates cancerous tissues from force information and reduces tissue during needle
insertion. Kobayashi et al. [152] compared the palpation-based needle insertion approach to the normal
needle insertion approach using a numerical simulation of a breast tissue model. The outcome showed
that palpation-based needle insertion had a smaller error which suggests that the procedure could be a
safe and effective alternative [152].

Larson et al. [153] developed a robotic device to perform minimally invasive breast interventions
with real-time MRI guidance for the early diagnosis and treatment of breast cancer. In this work,
five computer-controlled degrees of freedom were used to perform minimally invasive interventions
inside a closed MRI scanner. According to Larson et al. [153], the intervention consists of a biopsy of
the suspicious lesion for diagnosis, which involves the therapies to destroy or remove malignant tissue
in the breast. As a result, the procedure includes conditioning of the breast along with a prescribed
orientation, the definition of an insertion vector by its height and pitch angle, and insertion into the
breast. The entire device is made of materials compatible with an MRI machine, avoiding artefacts and
distortion of the local magnetic field. This device was built to be remotely controlled via a graphical
user interface.

Meanwhile, automated detection of breast lesions from DCE-MRI volumes was implemented
based on deep reinforcement learning [154]. The method significantly reduces the inference time for
lesion detection compared to an exhaustive search, while retaining state-of-the-art accuracy. The authors
demonstrated their results on a dataset containing 117 DCE-MRI volumes, validating runtime and
accuracy of lesion detection [154,155].

Moreover, Tsekos et al. [155] implemented a robotic device with haptic, tactile, and ultrasound
capabilities, that can acquire and render the information of breast pathology remotely. In this work,
the device is designed to screen for breast cancer by examination for the patient in a remote area
without convenient access to medical personnel. The device was said to be more accurate than human
medical personnel [155]. Further, a robotic based device designed to assist medical personnel in placing
the instrument on the tumor location and automatically acquiring tumor images in real-time was
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implemented in [153,156]. This device has the potential to increase targeting accuracy while reducing
the level of skill required to perform minimally invasive breast interventional procedures.

4. Conclusions

Breast cancer has shown to be one of the leading causes of female mortality in the world. Recent
studies have shown that early diagnosis is the first step towards a successful treatment, which can help
save many lives. This review presented a brief overview of past and present conventional diagnostics
approaches as well as recent computational techniques that have contributed immensely to the diagnosis
of breast cancer. Articles on breast cancer classification published from 2006 to 2020 were extensively
reviewed. In total, 55 were carefully reviewed from different academic repositories. Several criteria
were used for the review, such as conventional diagnostics approaches, the computational technique
used, scope, evaluation results, and different types of datasets were used for these studies. We noticed
that researchers preferred publicly available datasets over exclusive ones. For example, WBC and
DDSM were seen to be popular among researchers. For computational approaches, we reviewed three
areas: Machine learning, deep learning, and robotics. Out of these approaches, the deep learning
techniques appear to be increasingly popular for most researchers. Among these techniques, we noticed
that CNN was a popular choice, used for classification. Currently, GANs have shown to be a promising
deep learning algorithm for breast cancer diagnosis due to its ability to give convincingly good
results. Performance metrics such as AUC, accuracy, sensitivity, specificity, and measure were used for
evaluating deep learning approaches.

Finally, this review provides a roadmap for future conversations about building better techniques
for early detection, which could help save millions of lives. We believe that this comprehensive review
will offer a better understanding of the breast cancer classification domain and provide valuable
insights to researchers in this field.
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