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Abstract: This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-
hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The
properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-
2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance
spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-
co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic
voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest
occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be
2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insuffi-
cient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices
were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for
P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies
were done on fabricated OSCs during this work using electrochemical methods. The studies revealed
that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the sur-
face of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak
current and increases the charge transfer resistance in comparison with a bare ITO. We also exam-
ined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO,
P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely
block electrons from active layer to reach the ITO electrode.

Keywords: donor polymer; organic solar cells; poly(3-hexylthiophene-2,5-diyl); 2,3,4,5-
tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl)

1. Introduction

Organic-based solar cells (OSCs) have attained considerable attention in the last
decades and have been greatly studied because of their advantageous properties such
as light weight, inexpensive, attractive colors and flexibility [1–4]. In comparison with
traditional inorganic-based solar cell devices, OSCs have attracted research interest due
to their constantly increasing power conversion efficiency (PCE) and solution process-
ability [5]. The continuous improvement of OSCs is because of better understanding of
the light conversion mechanism, development of novel materials and architectures of
these devices [6–8]. To date, the OSCs with better performance are constructed on bulk
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heterojunction active layer using conjugated polymers as the electron donor materials and
fullerenes as the electron acceptor materials [6,9,10]. The donor and acceptor material
interface delivers a pathway for photo-generated charges, transportation and separation.
Currently, the research in the OSCs field focuses on designing low energy band gap donor
polymers with engineered electrochemical energy levels for better charge separation which
lead to an increase in the performance of OSCs [11–13].

Organic donor materials play a crucial part on the overall performance of OSCs, and
can be easily modified chemically. Polythiophenes based polymers are mostly used as the
electron donor materials for OSCs because of their properties such as thermally stable,
environmentally friendly, easy to process and less expensive [14,15]. These polythiophenes
based polymers are widely reported [14–17]. Katsumata et al. [16] reported OSCs with
maximum PCE of 2.03% using poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-
b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) as organic donor material.
Kesters et al. [17] chemically modified PCPDTBT with 4,4-dialkyl-4H-cyclopenta[2,1-b;3,4-
b′]dithiophene derivative with ester and alcohol moieties to achieve PCE of 2.02% and
1.82% respectively. Whereas the unmodified PCPDTBT possessed PCE of 2.15% [17]. The
studies above showed that modification of organic donor materials has an effect on the
PCE of OSCs.

Poly(3-hexylthiophene-2,5-diyl (P3HT) is the most widely studied polythiophene-
based material as organic donor for solar cells [18–22] Studies revealed that P3HT properties
such as optoelectronic properties and crystallinity and its OSCs performance can be altered
by modification of its end groups [18–20]. Seibers et al. [21] reported P3HT functionalized
with porphyrin as an end group for use as OSC donor material. Their findings revealed that
porphyrin-functionalized P3HT have similar crystallinity, improved absorption properties
and better OSCs performance when compared to pristine P3HT. Lim et al. [22] investigated
morphological changes and OSCs performance of their synthesized hydrophobic end-
functionalized P3HT. Repulsive interactions between hydrophobic end-functionalized
P3HT and hydrophilic PCBM provided large continuous interfacial area. As a result,
improvement in OSCs performance was achieved because of sufficient electron/hole
dissociation. Hydrophobic end-functionalized P3HT maintained the crystallinity of P3HT.
Bromo end-functionalized P3HT has a wider optical band gap, different crystallinity and
lower OSCs performance as compared to P3HT. Bromo bonded to thiophene acted as
exciton quenching and charge trapping sites leading to lower OSCs performance [23].
Properties of P3HT are very sensitive to the presence of the end groups.

In this work, we synthesized a novel TTT-co-P3HT donor material using oxidation
polymerization. The performance of TTT-co-P3HT was compared with that of a commercial
P3HT. From the conventional device fabricated during this study, the performance of
P3HT based device was better than that of TTT-co-P3HT based device due to insufficient
electron/hole separation and charge transfer of TTT-co-P3HT material. In both OSCs,
PEDOT:PSS was used as an interlayer between ITO and active layer. The OSCs fabricated
during this work were further investigated using electrochemical methods.

2. Experimental Section
2.1. Materials

Chemicals and solvents used in this study were procured from commercial sources
and used without any further purification. Silica gel 60 Å (230–400 mesh, Merck (Pty) Ltd.,
Johannesburg, South Africa) was used for purification.

2.2. Synthesis of 2,3,4,5-Tetrathienylthiophene (TTT)

In a 100 mL round bottom flask, 2,3,4,5-tetrabromothiophene (1.00 g, 2.5 mmol, 99.0%,
Merck (Pty) Ltd.), 2-thienylboronoic acid (1.28 g, 10 mmol, ≥95.0%, Merck (Pty) Ltd.) and
potassium carbonate (K2CO3, 2.76 g, 20 mmol, 99.5%, Merck (Pty) Ltd.) were stirred for
30 min in 40 mL degassed tetrahydrofuran (THF, 99.0%, Merck (Pty) Ltd.):water solution
with a volume ratio of 4:1. In the solution above, palladium tetrakis(triphenylphosphine)
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(Pd(PPh3)4, 0.29 g, 0.20 mmol, 99.0%, Merck (Pty) Ltd.) was added. The mixture was
refluxed under nitrogen atmosphere for 24 h at 110 ◦C before being cooled to room tem-
perature. Afterwards, the resulting solution was poured in a separating funnel containing
50 mL of brine, followed by extraction 3 times with dichloromethane (DCM, 99.9%, Merck
(Pty) Ltd.) and 3 times with diethyl ether (≥99.0%, Merck (Pty) Ltd.). The extracts were
dried with magnesium sulphate (≥99.5%, Merck (Pty) Ltd.), filtered and rotary evaporator
(Buchi AG, Flawil, Switzerland) was used to remove the solvent. Column chromatography
was used to purify the residue with DCM and methanol (MeOH, 99.5%, Merck (Pty) Ltd.)
as an eluent (DCM:MeOH = 3:1, v/v) resulting to a yellow solid (0.76 g) with a yield of 74%.
1H-NMR (CDCl3, Merck (Pty) Ltd., 400 MHz): δH 6.89–6.91 (dd, 2H), 6.93–6.96 (m, 4H),
7.09–7.10 (dd, 2H), 7.19–7.21 (dd, 2H), 7.29–7.31 (dd, 2H); 13C-NMR (CDCl3, 400 MHz):
δC 126.36, 126.42, 126.84, 126.95, 127.15, 129.40, 132.42, 133.33, 135.37, 135.67.

2.3. Synthesis of TTT-co-P3HT

In a typical chemical polymerization, TTT (0.12 g, 0.28 mmol) and 3-hexylthiophene
(1.87 g, 11.12 mmol,≥99.0%, Merck (Pty) Ltd.) were added in 50 mL of chloroform (≥99.0%,
Merck (Pty) Ltd.). The solution was stirred for 30 min and followed by addition of iron
chloride (FeCl3, 1.8 g, 11.12 mmol, ≥99.99%, Merck (Pty) Ltd.). The mixture was refluxed at
60 ◦C for 24 h under nitrogen atmosphere, then polymerization was terminated by addition
of MeOH. After, the precipitates were collected by filtration and were washed with Soxhlet
extraction using acetone (99.3%, Merck (Pty) Ltd.) and MeOH as solvents for 24 h with
each. Finally, the product was extracted with DCM for another 24 h. The DCM solvent was
removed to obtain a dark brown solid (0.36 g).

2.4. Characterization Techniques

The UV-Vis spectra (Nicolet Evolution 100 from Thermo Electron Corporation, Al-
trincham, UK), photoluminescence spectra (NanoLog with FluorEssence™ V3 software
from Horiba Jobin Yvon, Edison, NJ, USA), size exclusion chromatogram (Agilent 1260
Infinity series HPLC instrument from Agilent Technologies, Waldbronn, Germany), nu-
clear magnetic resonance spectra (Bruker 400 MHz Avance III HD Nanobay spectrometer,
Karlsruhe, Germany) and attenuated total reflectance-FTIR spectra (Spectrum-100 FTIR
spectrometer from PerkinElmer (Pty) Ltd., Midrand, South Africa) were recorded with the
specified instruments. Device characteristics (current density–voltage) were measured with
Keithley 2420 Source Meter (Keithley Instruments B.V., Gorinchem, Netherlands) using an
illumination of AM 1.5G, 100 mW cm−2 supplied by a solar simulator (Sciencetech Inc.,
London, ON, Canada).

CV and electrochemical impedance spectroscopy (EIS) of the thin films were measured
in 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6,≥99.0%, Merck (Pty) Ltd.) in
acetonitrile (99.8%, Merck (Pty) Ltd.) as supporting electrolyte. Three electrodes cell system
consist of ITO (15–25 Ω/square resistance, Merck (Pty) Ltd.), platinum wire (Goodfellow
Cambridge Ltd., Huntingdon, UK) and silver/silver chloride (Ag/AgCl, from BASi® in
West Lafayette, IN, USA) as working electrode, counter electrode and reference electrode
respectively were used. Ferrocene (98%, Merck (Pty) Ltd.) was used as a redox probe
molecule. All the electrochemical measurements were conducted using a Bio-Logic VMP-
300 (Bio-Logic SAS, Seyssinet-Pariset, France). The zview software (Scribner Associates
Inc., Southern Pines, NC, USA) was used to fit EIS results.

2.5. Fabrication of OSCs

Devices fabrication and measurements were conducted in air. ITO (8 pixels, 20 Ω/square
resistance, Ossila Ltd., Sheffield, UK) substrates were sonicated in 1% (by volume) hell-
manex III (Merck (Pty) Ltd.) solution in hot water, followed by in acetone then 2-propylalcohol
for 5 min with each. After every sonication step, the substrate was rinsed with water. PE-
DOT:PSS (0.5–1.0 wt % in water, Merck (Pty) Ltd.) was sonicated for 3 h then filtered
with 0.45 µm filter. It (30 µL PEDOT:PSS) was spun coated on ITO substrate for 30 s at
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4000 rpm. The film was baked at 150 ◦C for 5 min. Active layer was prepared by blending
donor material polymer and PC71BM (mixture of isomers, 99%, Merck (Pty) Ltd.) with
a total of 25 mg/mL in chlorobenzene (99.9%, Merck (Pty) Ltd.) as a solvent at 60 ◦C
for overnight. The blend ratio of donor: acceptor used is 1:0.8. The solutions of 40 µL
were spun at 2000 rpm for 30 s in air. The films were annealed for 5 min at 100 ◦C. ZnO
solution (preparation method is given in supporting document) of 30 µL was spun coated
at 4000 rpm for 30 s and was annealed at 100 ◦C for 30 min. Lastly, aluminum metal
(Merck (Pty) Ltd.) was thermally evaporated at deposition pressure of about 10−5 mbar to
complete the device.

These fabrication conditions were used to prepare thin films for characterization.
The deposition of TTT-co-P3HT, TTT-co-P3HT:PCBM (1:0.8), P3HT (99.995%, Merck (Pty)
Ltd.) and P3HT:PCBM (1:0.8) on ITO substrates with/without PEDOT:PSS were done
outside glovebox.

3. Results and Discussion

As shown in Schemes 1 and 2, synthesis of TTT and TTT-co-P3HT were performed
by using Suzuki coupling and oxidation polymerization reaction methods, respectively.
Results of size exclusion chromatography are shown in Table ?? and the chromatogram of
TTT-co-P3HT is shown in Figure S1. The synthesized polymer, TT-co-P3HT, has a molecular
weight Mn of 15,131 gmol−1 and a polydispersity index of 3.6. The chemical structure of
TTT and TTT-co-P3HT were confirmed by NMR. The 1H-NMR of TTT in Figure 1A reveals
no presence of –OH protons from 2-thienylboronoic acid confirming successful synthesis.
The spectrum was designed at a chemical shift range between 6.74 and 7.38 ppm as an
insertion in Figure 1A. Number of protons obtained by integrating the signals corresponds
to the number of protons from the chemical structure of TTT. Figure 1B shows the 13C-
NMR spectra of TTT and due to structural symmetry, only 10 signals were observed. For
TTT-co-P3HT, only 1H-NMR analysis was performed (Figure 1C) and compared with the
1H-NMR spectrum of P3HT (Figure 1D). The 1H-NMR spectrum of TTT-co-P3HT showed
a new signal at 6.75 ppm which is absent on the 1H-NMR spectrum of P3HT. This signal
is due to the present of β-hydrogens from TTT. The signals from 1H-NMR spectrum of
TTT-co-P3HT are broader than those of P3HT. This is due to different P3HT chain lengths
attached to TTT.

Polymers 2020, 12, x FOR PEER REVIEW 4 of 15 

 

(Merck (Pty) Ltd.) solution in hot water, followed by in acetone then 2-propylalcohol for 5 min with 

each. After every sonication step, the substrate was rinsed with water. PEDOT:PSS (0.5–1.0 wt % in 

water, Merck (Pty) Ltd.) was sonicated for 3 h then filtered with 0.45 μm filter. It (30 μL PEDOT:PSS) 

was spun coated on ITO substrate for 30 s at 4000 rpm. The film was baked at 150 °C for 5 min. 

Active layer was prepared by blending donor material polymer and PC71BM (mixture of isomers, 

99%, Merck (Pty) Ltd.) with a total of 25 mg/mL in chlorobenzene (99.9%, Merck (Pty) Ltd.) as a 

solvent at 60 °C for overnight. The blend ratio of donor: acceptor used is 1:0.8. The solutions of 40 μL 

were spun at 2000 rpm for 30 s in air. The films were annealed for 5 min at 100 °C. ZnO solution 

(preparation method is given in supporting document) of 30 μL was spun coated at 4000 rpm for 30 s 

and was annealed at 100 °C for 30 min. Lastly, aluminum metal (Merck (Pty) Ltd.) was thermally 

evaporated at deposition pressure of about 10−5 mbar to complete the device. 

These fabrication conditions were used to prepare thin films for characterization. The 

deposition of TTT-co-P3HT, TTT-co-P3HT:PCBM (1:0.8), P3HT (99.995%, Merck (Pty) Ltd.) and 

P3HT:PCBM (1:0.8) on ITO substrates with/without PEDOT:PSS were done outside glovebox. 

3. Results and Discussion 

As shown in Scheme 1 and Scheme 2, synthesis of TTT and TTT-co-P3HT were performed by 

using Suzuki coupling and oxidation polymerization reaction methods, respectively. Results of size 

exclusion chromatography are shown in Table 1 and the chromatogram of TTT-co-P3HT is shown in 

Figure S1. The synthesized polymer, TT-co-P3HT, has a molecular weight Mn of 15,131 gmol−1 and a 

polydispersity index of 3.6. The chemical structure of TTT and TTT-co-P3HT were confirmed by 

NMR. The 1H-NMR of TTT in Figure 1A reveals no presence of –OH protons from 2-thienylboronoic 

acid confirming successful synthesis. The spectrum was designed at a chemical shift range between 

6.74 and 7.38 ppm as an insertion in Figure 1A. Number of protons obtained by integrating the 

signals corresponds to the number of protons from the chemical structure of TTT. Figure 1B shows 

the 13C-NMR spectra of TTT and due to structural symmetry, only 10 signals were observed. For 

TTT-co-P3HT, only 1H-NMR analysis was performed (Figure 1C) and compared with the 1H-NMR 

spectrum of P3HT (Figure 1D). The 1H-NMR spectrum of TTT-co-P3HT showed a new signal at 6.75 

ppm which is absent on the 1H-NMR spectrum of P3HT. This signal is due to the present of 

𝛽-hydrogens from TTT. The signals from 1H-NMR spectrum of TTT-co-P3HT are broader than those 

of P3HT. This is due to different P3HT chain lengths attached to TTT. 

 

Scheme 1. Synthetic route of 2,3,4,5-tetrathienylthiophene. (i) 10% Pd(PPh3)4, K2CO3, THF/water 

(4:1), 110 °C, 24 h. 

Scheme 1. Synthetic route of 2,3,4,5-tetrathienylthiophene. (i) 10% Pd(PPh3)4, K2CO3, THF/water (4:1), 110 ◦C, 24 h.



Polymers 2021, 13, 2 5 of 14

Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 

 

 

Scheme 2. Synthesis of TTT-co-P3HT. (i) FeCl3, 60 °C, 24 h. 

 

 

 

Scheme 2. Synthesis of TTT-co-P3HT. (i) FeCl3, 60 ◦C, 24 h.

Table 1. Size exclusion chromatography analysis of TTT-co-P3HT.

Polymer Mn
(g·mol−1)

Mw
(g·mol−1)

Mp
(g·mol−1)

Mz
(g·mol−1)

Polydispersity
Index Mz/Mw

TTT-co-P3HT 15,131 54,421 38,613 157,867 3.60 2.90

FTIR spectra of TTT, TTT-co-P3HT and P3HT were recorded from 4000 cm−1 to
400 cm−1. The spectra are shown in Figure 2. Unique vibrational bands can be observed
at the wavenumber of 696 cm−1, the range from 2934 to 2844 cm−1 and 3085 cm−1 on the
spectrum of TTT. The vibrational band at 696 cm−1 is due to the aromatic C–H out of phase
bending vibrations of thiophene [24–26], while the vibrational bands in the range from
2934 to 2844 cm−1 are due to the β-position C–H of the thiophene. The presence of the α-
position C–H is confirmed by the vibrational band at the wavenumber of 3085 cm−1 [26,27].
In comparison with the spectra of P3HT and TTT-co-P3HT, the vibrational bands in the
range from 2934 to 2844 cm−1 increases in intensity due to the presence of the hexyl group.
The vibrational bands at 696 cm−1 and 3085 cm−1 disappears due to the occurrence of
polymerization.

3.1. Optical and Electrochemical Characterization

UV-Vis spectra of TTT-co-P3HT and P3HT materials are presented in Figure 3A and
were obtained in chlorobenzene solvent and as thin films. The data obtained from Figure
3A is given in Table 2. As thin films, TTT-co-P3HT and P3HT materials have maximum
absorption at a longer wavelength as compared to the spectra obtained in chlorobenzene.
This is an indication that intermolecular π–π stacking is stronger in thin films. In both
chlorobenzene and thin films, TTT-co-P3HT showed maximum absorbance at shorter
wavelengths. This shows that TTT disturbs the interchain delocalization of π-electrons
of P3HT after functionalization [23]. The onset absorption wavelengths were used to
determine optical band-gaps of TTT-co-P3HT and P3HT. The optical band gaps for TTT-
co-P3HT were determined to be 2.32 eV and 1.98 eV in chlorobenzene and thin film,
respectively. As for P3HT, they were determined to be 2.21 eV in chlorobenzene and
1.91 eV in thin film. TTT-co-P3HT have broader band gaps indicating that lower number of
photons are absorbed. Therefore, decreased numbers of electron/hole pairs are generated
and TTT-co-P3HT OSCs is expected to have a decreased short circuit current-density (Jsc).
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Figure 1. (A) 1H-NMR of TTT in CDCl3 and the insertion is 1H-NMR of TTT in the chemical shift
range of 6.74 to 7.38 ppm. The signal at 1.5698 ppm is due to the present of water; (B) 13C-NMR of
TTT in CDCl3 and the insertion is 13C-NMR of TTT in the chemical shift range of 127 to 138 ppm;
(C) 1H-NMR of TTT-co-P3HT in CDCl3 and (D) 1H-NMR of P3HT CDCl3.
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Table 2. Optical and electrochemical responses of TTT-co-P3HT and P3HT.

Polymer
a λ (nm) c Eg

optical

(eV)

b λ (nm) c Eg
optical

(eV)

d EHomo
(eV)

d ELumo
(eV)

e Eg
CV

(eV)Max Onset Max Onset

TTT-co-
P3HT 386 534 2.32 492 626 1.98 −5.09 −2.90 2.19

P3HT 458 561 2.21 516 650 1.91 −4.90 −2.93 1.97
a In chlorobenzene solution. b In thin film. c Eg

opt = 1240/λonset eV in the thin film. d Obtained with CV method, ELUMO = −[(Eoxidation-onset

− EFerrocene) + 4.8] eV and EHOMO = −[(Ereduction-onset − EFerrocene) + 4.8]. e Eg
CV was estimated using the equation: Eg

CV = ELUMO −
EHOMO.

CV was used to investigate electrochemical response of TTT-co-P3HT and P3HT donor
polymers and the voltammograms are shown in Figure 3B. Table 2 displays the results of
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HOMO and LUMO energy levels obtained from Figure 3B. These energy levels offsets of
the donor and acceptor materials are important factors in understanding the electron/hole
pair separation dynamics. HOMO offset becomes of importance when the acceptor material
absorbs light significantly [28,29]. In this work, we focus only on the LUMO offset. The
LUMO offsets between donor and acceptor are determined from Figure 3C to be 0.96 eV
for TTT-co-P3HT:PC71BM and 0.97 eV for P3HT:PC71BM. The values obtained for LUMO
offsets are more than 3 times higher than the commonly known empirical threshold of
0.3 eV [30]. Gadisa et al. [31] studied the relationship between onset oxidation potentials
of polythiophene derivatives and open circuit voltage (Voc). Their studies revealed that
Voc decreases as onset oxidation potential increases. Gao et al. [32] reported donor and
acceptor materials with LUMO offset less than threshold. They achieved low energy loss
and high Voc. Therefore, TTT-co-P3HT:PC71BM and P3HT:PC71BM have high energy loss
and this will have an impact on the inVoc.

Photoluminescence spectroscopy has been widely used to study electron/hole pair sep-
aration at the interface of donor and acceptor materials using the quenching effect [33–36].
Figure 4 depicts the photoluminescence results of (A) TTT-co-P3HT and TTT-co-P3HT:PC71
BM and (B) P3HT and P3HT:PC71BM obtained using chlorobenzene as a solvent. Photolu-
minescence quenching was observed in both TTT-co-P3HT:PC71BM and P3HT:PC71BM
blends. This quenching can be attributed to charge transfer and electron/hole pair separa-
tion efficiency which corroborates other results in literature [34]. To determine the quench-
ing degree of TTT-co-P3HT:PC71BM and TTT-co-P3HT:PC71BM, the following Equation (1):

q(%) =
Idonor − Idonor:acceptor

Idonor
× 100 (1)

was used to calculate photoluminescence quenching parameter q, where Idonor is the inten-
sity of donor material and Idonor:acceptor is the intensity of donor:acceptor blend [33]. From
Equation (1), for an outstanding degree of electron/hole pair separation and charge transfer
without any recombination taking place, Idonor:acceptor must be equal to zero resulting to
q equal to 100%. John et al. [35] achieved q of 97.29% and 96.6% indicating excellent
electron/hole separation and charge transfer for their blends. The quenching parameter q
was found to be 36% in TTT-co-P3HT:PC71BM and 58% in P3HT:PC71BM. This reveals that
some of the created electron/hole pair recombine in TTT-co-P3HT and P3HT [36]. When
comparing two blends, the results show that electron/hole pair separation and charge
transfer is sufficient in P3HT:PC71BM than in TTT-co-P3HT:PC71BM.
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(B) P3HT and P3HT:PC71BM.

3.2. Photovoltaic Properties

OSCs were fabricated during this study with conventional configuration as follows:
ITO/PEDOT:PSS/TTT-co-P3HT:PC71BM/ZnO/Al and ITO/PEDOT:PSS/P3HT:PC71BM/
ZnO/Al. Figure 5 depicts the current-density (J) versus voltage (V) plots of (A) P3HT:PC71
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BM and (B) TTT-co-P3HT:PC71BM as active layers. The solar cells parameters obtained for
the devices are recorded in Table 3. The organic bulk heterojunction solar cell containing
TTT-co-P3HT produced smallest JSC (1.27 mA/cm2), VOC (0.41 V), fill factor, FF (26.78%)
and PCE (0.14%) in comparison with the device containing P3HT which produced the
largest JSC (7.91 mA/cm2), VOC (0.46 V), FF (31.64%) and PCE (1.15%). The improved
performance of the device fabricated using P3HT was ascribed to sufficient electron/hole
pair separation confirmed by photoluminescence and lower band-gap in comparison with
TTT-co-P3HT. Low Jsc and Voc in TTT-co-P3HT based OSC is attributed to the disruption
of the ordered lamellar stacking of P3HT by modification with TTT. This disruption results
to a decrease in absorption and low hole mobility in TTT-co-P3HT [37,38]. P3HT and
TTT-co-P3HT based OSCs were fabricated in air. Therefore, oxygen permeation does occur
and will oxidize low work function aluminum electrode. Oxidized aluminum electrode
will form a charge transport barrier. This induces S-shaped I–V curve and reduces the
performance of the OSCs [39]. Additionally, penetrative oxygen in the active layer lead to
different photo-oxidation reactions of an acceptor and donor materials [40,41]. Changes in
the structures of an acceptor and donor materials will change their charge carrier mobilities,
energy levels and photon absorption properties. The oxygen doping in the active layer will
increase the concentration of holes, which results in an increase in trapping of electrons
and a decrease in Voc and FF [42,43].
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Table 3. Response of the TTT-co-P3HT:PC71BM and P3HT:PC71BM devices.

Active Layer JSC

(mA/cm2)
VOC

(V)
FF
(%)

PCE
(%)

TTT-co-
P3HT:PC71BM 1.27 0.41 26.78 0.14

P3HT:PC71BM 7.91 0.46 31.64 1.15

3.3. Characterization of OSCs with Electrochemical Methods

In order to further investigate the OSCs fabricated during this work, electrochemical
techniques methods were used. ITO coated substrate was used as working electrode
during electrochemical studies. The layers on the ITO substrates were prepared using
OSCs fabrication conditions. Electrochemical techniques such as CV and EIS can be used
to quantitatively study the electron-blocking ability of PEDOT:PSS interlayer. Parameters
such as peak separation and peak current are very useful in evaluating electron-blocking
properties because these parameters depend strongly on the amount of electroactive species
from the electrolyte that are exposed to electroactive sites of the working electrode. Figure
6 depicts CV and Nyquist plots of ITO without/with PEDOT:PSS layer in 1 mM ferrocene
prepared using 0.1 M TBAPF6 in acetonitrile. CV (Figure 6A) obtained in the presence
of PEDOT:PSS layer show a decrease in the oxidation/reduction peak currents and an
increase in peak separations. The peak currents for a bare ITO is 0.27 mA for cathodic
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peak (Ipc) and for anodic peak (Ipa) is −0.18 mA, while for ITO/PEDOT:PSS are Ipc is 0.17
mA and Ipa is −0.07 mA. The extent to which the peak currents decreased after coating
PEDOT:PSS onto the ITO substrate were estimated using Equation (2):

Idecreased =
Iwithout − Iwith

Iwithout
(2)

where Idecreased is the amount of current decreased, Iwithout is the peak current of bare ITO
and Iwith is the peak current of ITO/PEDOT:PSS [44]. The values of Idecreased was found
to be 0.54 for cathodic peaks and 0.82 for anodic peaks. The peak separation for bare ITO
was determined to be 0.42 V and for ITO/PEDOT:PSS was determined to be 1.17 V. The
decrease in peak currents and an increase in peak separation for ITO/PEDOT:PSS suggest
a decrease in the ITO electrode activity. These observations indicate that the PEDOT:PSS
interlayer does not completely block electroactive species from ferrocene to reach ITO
surface since the value of Idecreased is not equal to 1. Therefore, PEDOT:PSS interlayer does
not completely block electrons when is used as hole transport interlayer in OSCs and this
might also be due to the presence of pinholes.
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Figure 6. (A) CV (measured at 100 mVs−1 scan rate) and (B) Nyquist plots of 1 mM
ferrocene obtained using bare ITO and ITO/(PEDOT:PSS as working electrodes in 0.1 M
TBAPF6/acetonitrile solution. The Nyquist plots were attained at bias potential of 0.45 V
vs Ag/Ag+. The equivalent circuit used for impedance data fitting is shown as an inset on
(B). ITO—indium tin oxide; PEDOT:PSS—poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate.

EIS is an important instrument that can be used to research charge transfer processes at
the interlayer [45–47] and evaluate the surface coverage at the electrode active area [44,48].
Figure 6B shows the Nyquist plots of bare ITO and ITO/PEDOT:PSS with the equivalent
circuit as an inset. In the circuit, Rs is an Ohmic resistance, Rct is a resistance of charge
transfer processes taking place at the interface and constant phase element (CPE) proposes
a non-ideal behavior of the capacitor. CPE is well-defined by two adjustable values (CPE-
T and CPE-P) and is mostly used as a capacitor-like element to compensate interfacial
inhomogeneity (surface states or defects). In the case where CPE-P is equal to 1, then
CPE and ideal capacitor are identical without defects [47,49,50]. The plots were fitted
with zview software and the results of parameters obtained are recorded in Table 4. The
value of Rct for bare ITO was found to be 655.10 Ω and for ITO/PEDOT:PSS was found
to be 2935.00 Ω. These results reveal that PEDOT:PSS block the diffusion of electroactive
species from ferrocene containing supporting electrolyte to the ITO surface. The electrode
surface coverage (θ) can be estimated from Rct of bare ITO and ITO/PEDOT:PSS using
Equation (3):

θ = 1− Rbare ITO
ct

RITO/PEDOT:PSS
ct

(3)
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where Rct
bare ITO and Rct

ITO/PEDOT:PSS are charge transfer resistances measured at bare ITO
and ITO/PEDOT:PSS, respectively [48]. If the surface is completely covered, the value
Rct

ITO/PEDOT:PSS must be too big in such a way that θ will close to 1 [44]. From the Rct
values attained by fitting the Nyquist plots, a value of θ = 0.78 was determined. Therefore,
this indicate the presence of pinholes.

Table 4. Results obtained from fitting electrochemical impedance data of bare ITO and
ITO/PEDOT:PSS.

Rs (Ω) Rct (Ω) CPE-T (µF) CPE-P (n)

ITO 75.57 ± 0.06 655.10 ± 4.05 19.33 ± 0.51 0.82 ± 0.01
ITO/PEDOT:PSS 85.31 ± 2.15 2935.00 ± 39.65 18.53 ±0.68 0.82 ± 0.01

Figure 7 depicts CV of active layers (TTT-co-P3HT:PC71BM and P3HT:PC71BM) and
active layers/ZnO coated onto a bare ITO and ITO/PEDOT:PSS electrodes. The results
show that the presence of PEDOT:PSS cause a decrease in the peak currents. Cathodic and
anodic peak currents are used to study the degree at which the peak current decreased
using Equation (2). The results obtained are shown in Table 5. The extent at which the
cathodic peak current is reduced because of PEDOT:PSS interlayer presence is 0.29 for
TTT-co-P3HT:PC71BM, 0.25 for TTT-co-P3HT:PC71BM/ZnO, 0.29 for P3HT:PC71BM and
0.52 for P3HT:PC71BM/ZnO. While amount at which an anodic peak current decreased
was determined to be 0.32 for TTT-co-P3HT:PC71BM, 0.25 for TTT-co-P3HT:PC71BM/ZnO,
0.22 for P3HT:PC71BM and 0.48 for P3HT:PC71BM/ZnO. According to Equation (2), if an
interlayer does completely block electroactive species from reaching the surface of the
electrode, the value of Idecreased must be equal to 1. These obtained values are low not only
because of poor electron blocking properties of PEDOT:PSS, but due to the presence of
pinholes on the PEDOT:PSS interlayer which allow active layer to be in direct contact with
ITO electrode.
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Table 5. Cathodic and anodic peak currents obtained from CV used to study the effect of PEDOT:PSS interlayer.

a Ipa (without)
mA

b Ipc (without)
mA

c Ipa (with)
mA

d Ipc (with)
mA

e Idecreased (pa)
f Idecreased (pc)

TTT-co-P3HT:PC71BM 0.28 −0.17 0.19 −0.12 0.32 0.29
TTT-co-P3HT:PC71BM/ZnO 0.20 −0.12 0.15 −0.09 0.25 0.25

P3HT:PC71BM 0.27 −0.21 0.21 −0.15 0.22 0.29
P3HT:PC71BM/ZnO 0.29 −0.23 0.15 −0.11 0.48 0.52

a Ipa (without) is an anodic peak current obtained without PEDOT:PSS interlayer, b Ipc (without) is cathodic peak current obtained without
PEDOT:PSS interlayer, c Ipa (with) is an anodic peak current obtained with PEDOT:PSS interlayer, d Ipc (with) is cathodic peak current obtained
with PEDOT:PSS interlayer, e Idecreased (pa) is the extent at which anodic peak current decreased and f Idecreased (pc) is an extent at which
cathodic peak current decreased.

4. Conclusions

In summary, we have successfully synthesized TTT-co-P3HT using chemical oxidation
polymerization for use as the donor material in OSCs. The properties of TTT-co-P3HT
were compared with those of pristine P3HT. The optical band gaps of TTT-co-P3HT and
P3HT in chlorobenzene were found to be 2.32 eV and 2.21 eV respectively. The LUMO
offsets of active layers TTT-co-P3HT:PC71BM and P3HT:PC71BM were determined to be
0.96 eV and 0.97 eV, respectively. The TTT-co-P3HT:PC71BM active layer has insufficient
electron/hole pair separation and charge transfer at the interface, which was confirmed
by photoluminescence quenching studies. The OSCs device of P3HT:PC71BM exhibited
a better performance with an efficiency of 1.15%, while TTT-co-P3HT:PC71BM exhibited
an efficiency of 0.14%. Poor performance of TTT-co-P3HT in OSC is because of its low
hole mobility and decreased photon absorbance due to the disturbance in ordered lamellar
stacking of P3HT after functionalization. To further understand the deviation in TTT-co-
P3HT:PC71BM and P3HT:PC71BM devices performance, we studied the layers of OSCs
fabricated during this work using electrochemical methods. The study revealed that
PEDOT:PSS interlayer does not completely block electrons from active layer to the ITO
substrate. From cyclic voltammetry results, the diffusion of electrons to the ITO substrate
was observed by a decrease in the current of the peaks. Therefore, this study gives an
opportunity to further optimize OSCs using cheap and reliable electrochemical methods
and also shows the importance of using electrochemical methods in study the interlayers
behavior for OSCs use.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/1/2/s1, Figure S1: Size exclusion chromatography analysis of TTT-co-P3HT in THF.
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