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Abstract: The mining of heavy metals from the environment leads to an increase in soil pollution,
leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells
often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants
with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for
improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms
which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement.
In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses)
and the impact of the metals on food safety and food security. Furthermore, we discuss some of the
key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell
wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting
advances that will shape the plant heavy metal signaling field in the near future.

Keywords: cell wall signaling; food safety; food security; glutathione; heavy metals; hydrogen sulfide;
reactive oxygen species signaling

1. Introduction

“Heavy metals” as a term has been widely debated and criticized. However, Duffus [1] reviewed
the concept, and proposed that the scientific world come up with a standard definition. Heavy metals
occur naturally in the Earth’s crust [2] and are extensively mined in various parts of the world.
This practice has hugely contributed to the uncontrollable anthropic inputs into the environment.
These heavy metals have a very long half-life, and therefore persist in the environment for extended
periods, because they cannot be degraded [3,4]. Therefore, they can accumulate and exert toxic effects
on microorganisms, plants, animals, and humans. Heavy metals have become a major environmental
issue, and if the current environmental contamination persists, then heavy metal pollution will also be
a great concern for the future [5].
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Heavy metals such as arsenic, cadmium, chromium, lead, and mercury rank among the most toxic
metals, with high public health significance. Toxicity in humans and animals often depends on several
factors, such as quantity, route of exposure, and chemical species. However, age, gender, genetics,
and nutritional status also play key roles in physiological responses to heavy metals. Humans and
animals can come into contact with heavy metals through rocks, soils, water, and the atmosphere [6].
Plants utilize all of the mentioned resources to survive, and due to a sessile nature cannot avoid
contaminated environments. Therefore, these plants take up the heavy metals and sequester the metals
in various tissues, maintaining heavy metal concentrations below toxicity levels [7]. Humans and
animals which consume heavy metal contaminated plants can accumulate them to toxic levels in
various organs [8]. Therefore, it is important to understand the pathways that control heavy metal
uptake in plants. This will assist in regulating tolerance to, and monitoring toxicity of, heavy metals in
order to limit the risk that results from consumption of plants contaminated with heavy metals.

Plants have evolved complex signaling mechanisms that regulate their responses to heavy
metal stress [9]. These mechanisms include the “universal” cascade, which consists of reception
(stimuli perception), transduction (intra and extracellular signal amplification), and response
(enzymatic or non-enzymatic) steps [10]. Therefore, in this review we focus on some of the key
events at each step of the plant signaling cascade under heavy metal stress. We discuss the importance
of the apoplastic space in the reception of heavy metals, especially the roles of the cell wall and
the plasma membrane (PM). We discuss the complexity of reactive oxygen species (ROS) signaling
in plants under heavy metal stress. We review and discuss the key importance of glutathione and
hydrogen sulfide, in heavy metal detoxification, as well as serving as possible heavy metal stress
signal amplification molecules. In addition, we also examine the latest US Environmental Protection
Agency [11] data about key heavy metals, in order to understand toxicity for food safety purposes by
analyzing the oral reference doses (RfDo) for the heavy metals (Table 1).

Table 1. Elements classified as heavy metals according to a density at room temperature of more than
5 g/cm3. The values for the limit in residential soils and oral reference dose were obtained from the U.S.
Environmental Protection Agency (USEPA) for June 2020 [11]. The density at room temperature values
was obtained from Shackelford et al. [12]. The abundance rank of the elements in the Earth’s crust was
extrapolated from Anderson [13].

Elements Limit in Residential
Soils (mg/kg)

Reference Dose
(RfDo) (µg/kg/day)

Density at Room
Temperature (g/cm3)

Abundance
Rank

Antimony (metallic) 31 0.40 6.70 62
Arsenic 0.77 0.30 5.73 55

Cadmium (Diet) 78 1 8.65 64
Chromium (VI) 0.31 3 7.19 21

Cobalt 23 0.30 8.90 31
Copper 3100 40 8.96 25

Iron 55,000 700 7.87 4
Lead 400 N/A 11.34 36

Manganese (Non-diet) 1900 24 7.47 12
Mercury (elemental) 11 N/A 13.53 66

Molybdenum 390 5 10.28 54
Nickel (soluble salts) 1600 20 8.91 23

Silver 390 5 10.49 65
Thallium (soluble salts) 0.78 0.01 11.85 60

Tin 47,000 600 7.31 48
Tungsten 63 0.80 19.25 53

Uranium (soluble salts) 16 0.20 19.05 50
Vanadium 390 5 6.11 19

Zinc 23,000 300 7.14 24
Zirconium 6.30 0.08 6.51 18

2. Heavy Metals in Crop Plants Contributes to Food Safety Risks

The food safety risks associated with consumption or exposure to heavy metals have been widely
reported and reviewed [14–16]. Mosby et al. [17] reported that there are approximately 35 toxic metals
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which are of concern to humans. Twenty (Table 1) out of the 35 metals are classified as “heavy” metals,
as extrapolated from [11]. The term “heavy metal” is widely debated, therefore we included only
metals with a density at room temperature of more than 5 gm/cm3. This group includes: antimony,
arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel,
silver, thallium, tin, tungsten, uranium, vanadium, zinc, and zirconium. Our analysis shows that
the top five metals (Table 1), ranked according to elemental abundance, are iron (4th), manganese
(12th), chromium (21st), zirconium (18th), and vanadium (19th). Furthermore, the top five heavy
metals, ranked according to the minimum limit in residential soils, are chromium, arsenic, thallium,
zirconium, and mercury (Table 1). Based on the two ranking systems, chromium and zirconium
are both abundant but also very poisonous to humans. The ranking based on RfDo, which is the
recommended minimum intake of the heavy metals per day (µg/kg human), is thallium, zirconium,
uranium, arsenic, and cobalt. Data shows that zirconium is an abundant (in the environment) and very
toxic heavy metal when consumed by humans. Very few studies include thallium and zirconium in
environmental and soil surveys, which is extremely worrying. Wierzbickae et al. [18] reported high
levels of thallium in a 100-year-old calamine waste heap in Olkusz (southern Poland). The authors
reported that the highest value of thallium in the soils was 78 mg/kg. The study also included a
screening of thallium in four plants which grew in the vicinity, and found that Plantago lanceolata
accumulated extremely high amounts of thallium in the roots (maximum of 321 mg/kg) and shoots
(maximum of 180 mg/kg). Animals such as sheep often feed on P. lanceolata [19], and therefore the
thallium could accumulate in the animals and subsequently be transferred to humans. P. lanceolata is
also included in herbal teas [20], and when prepared the thallium could be released from the tea into
the human digestive system. Queirolo et al. [21] conducted experiments to test the level of thallium in
potato, broad bean, and maize plants in the El Loa province of Chile. Inductively coupled plasma-mass
spectrometry (ICP-MS) data showed that potatoes accumulated the highest amounts of thallium
(1.8–4.1 mg/kg), which exceeds the RfDo value prescribed by the USEPA. This study highlights the
concern with the current school of thought that leafy vegetables should be classified as high risk for
heavy metal transfer to humans. Root vegetables are in direct contact with the heavy metals (in soils),
and therefore should also be consumed with extreme care, especially when obtained from a region
in close proximity to mines. Biata et al. [22] confirmed this notion when they conducted inductively
coupled plasma-optical emission spectroscopy (ICP-OES) studies on different vegetables consumed in
Johannesburg, South Africa. This study found more thallium in potatoes (1.04 mg/kg) than in spinach
(0.318–0.322 mg/kg).

Very few studies have included zirconium in soil surveys, and even fewer have focused on
zirconium levels in plants. This is a serious knowledge gap that requires urgent attention by the
scientific community, since zirconium is listed as the second most toxic heavy metal element by the
USEPA. Malandrino et al. [23] conducted a survey of heavy metals in northeast Piedmont (Italy),
and included zirconium in the study. The authors found up to 103 mg/kg of zirconium in the soils,
but did not include the metal in further pot experiments to screen plant responses. A few studies
have shown that zirconium accumulates more in roots than in the shoots. Shi et al. [24] showed that
Zirconium-95 (95Zr) accumulates more in the roots of Oryza sativa than in its shoots. This finding
is very important because the 95Zr isotope, which is released into the environment at the highest
amounts upon nuclear accidents, can be readily absorbed by plants [25]. Furthermore, Fodor et al. [26]
conducted a pot experiment to test the uptake of zirconium in wheat. When the plants were treated
with 550 µM of zirconium, they accumulated more zirconium in the roots (~1400 mg/kg) than in
the shoots (~200 mg/kg). An important study was done by Shi and Guo [27] on Brassica rapa subsp.
pekinensis treated with 95Zr. The authors conducted pot experiments which showed that zirconium
moved throughout the entire plant in 6 h. The study showed that zirconium accumulated more in
the roots than the leaves of the B. rapa subsp. pekinensis. The study by Shi and Guo [27] abolished the
notion that zirconium is not transported to the aerial parts of plants.
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Even though this section mainly focused on the top two most toxic heavy metals, thallium and
zirconium, the toxicity and risk to human health of the other heavy metals (in the top five) should
not be ignored. The toxicity of the other three metals (in the top five) was previously discussed by
Baumann et al. [28] and Gupta et al. [29] (uranium), Ha et al. [30] (arsenic), and Hu et al. [31] and
Kosiorek and Wyszkowski [32] (cobalt). According to the USEPA (Table 1), 0.8 µg of thallium per
day is allowed for an 80 kg person. Therefore, if an 80 kg person prepares a meal containing 100 g of
potato, which has accumulated approximately 100 µg of thallium [22], this meal would be 125 times
over the legal limit of the USEPA, and this person would be seriously poisoned. Due to the higher
RfDo values of the most studied heavy metals, the potential threat of heavy metal poisoning has often
been downplayed as only being dangerous after exposure over long periods of time [33]. However,
the potential risk of thallium and zirconium toxicity should escalate the importance of heavy metal
toxicity from crop consumption.

3. Heavy Metal Pollution Decreases Food Security

Food security as a term has various meanings, with various definitions [34]. However, a global
definition was agreed upon at the 2001 the Food and Agriculture Organization of the United Nations
(FAO) World Food Summit: “Food security exists when all people, at all times, have physical,
(social) and economic access to sufficient, safe and nutritious food which meets their dietary needs and
food preferences for an active and healthy life” [35]. Simón [36] highlighted four dimensions to food
security, namely food availability, food access, food utilization, and the stability of food availability,
access, and utilization. Heavy metal stress, which directly affects food crops, has detrimental impacts
on food access (amount of food) and food utilization (safety and nutrition). The impacts of heavy
metal stress on food safety enjoy much of the attention, but very little is reported on the impacts
of heavy metals on food access (crop yields from fields) and nutrition (impact on important dietary
nutrients). Fu et al. [37] reported that the collapse of the tailing dam of the Beishan lead–zinc
mine, which is located upstream of Huanjiang river (China), led to widespread contamination of the
surrounding farmlands. Some of the surrounding regions could no longer sustain crop production
because of very serious pollution, and the lesser affected regions could produce agricultural products,
but with poor quality [38]. The region surrounding the river had high concentrations of arsenic and
lead, which were all above the national permissible standards according to China’s Environmental
Quality Standard for Soils (GB15618-1995, Grade II) for farmland soil, but cadmium concentrations
were lower than this national standard [38]. In a previous report, Clemente et al. [39] showed that
the soil at this experimental site was highly contaminated by zinc, copper, and lead, with a wide
range of pH values. Clemente et al. [39] reported that a mine spill at Aznalcóllar (Seville, Spain)
caused serious contamination along the Guadiamar river, as well as in surrounding arable lands.
Further studies in the area by Grimalt et al. [40] showed that the soil contained high levels of zinc,
copper, and lead, with a wide range of pH values. Clemente et al. [41] conducted a study using the
area as an experimental station to evaluate the potential of Brassica juncea for phytoextraction of the
heavy metals. The authors reported that B. juncea did not grow homogeneously in the experimental
site, and that the first B. juncea crop, growing without fertilizer and manure treatments, produced very
low biomass. Meers et al. [42] conducted field experiments in the historically contaminated region of
Campine (along the Dutch–Belgian border) on six cultivars of maize. The contamination in the region
is due to non-ferro smelter activity, and high levels of cadmium, lead, and zinc have been reported
in surrounding soils. The area is mainly used for agriculture, even though crops produced in the
region often exceed European food and feed standards, mainly for cadmium and zinc. The authors
reported that the biomass (FW) of maize ranged between 36,000 and 52,000 kg/ha for the six cultivars,
which was 60%–74% lower than the normal biomass levels produced in uncontaminated soils [41].

Studies reporting on the impact of in-field heavy metal stress on crop yield are still very
limited, even though the studies reported here clearly show the impact of heavy metal pollution
on crop yield, and the predominant data comes from greenhouse pot experiments or hydroponic
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experiments. Some experiments used irrigation water from mining sources to treat plants for biomass
and yield analysis [43], and others used contaminated soils to grow plants for further analysis [44,45].
Hydroponic experiments, to test the impact of heavy metal stress on plant growth, have become
an attractive method [46,47], but the method using soils (contaminated or uncontaminated) with
heavy metal supplementation (spiking) remains the method of choice for crop biomass experiments.
Nevertheless, most of the greenhouse experiments conducted on plants have clearly shown that heavy
metal treatment (elevated levels) decreases crop yield [48–51]. Therefore, by studying the physiological
and biochemical responses of plants under heavy metal stress, researchers can increase the tolerance
of plants to heavy metals. In addition, by understanding the mechanisms used by plants to adapt
to heavy metals, researchers could fine-tune these mechanisms to make the plants safer for human
and animal consumption. These processes are regulated by signaling pathways, which consist of a
reception step, a transduction step, and finally a response step.

4. The Role of the Cell Wall in Heavy Metal Stress Signaling in Plants

Roots serve as the main point of entry through which metal elements enter the plant system [52].
The heavy metals in the soil enter the plant root by freely diffusing through the cell wall in an unregulated
manner [53]. Therefore, in the roots, this is the initial barrier for metal contact. Furthermore, the cell
wall is mainly composed of cellulose, hemicellulose, and pectins [54]. The cell wall has the ability
to bind heavy-metal ions in negatively charged sites (–COOH, –OH, and –SH), which results in
the alteration of cell wall composition [55]. These alterations cause damage to the cell membrane,
particularly to the PM. Consequently, the disruption of membrane integrity is believed to be a result of
complex interactions involving functional groups of the membranes and heavy metals [56]. This is the
primary site for signal perception, the downstream trigger of the defense response and the cell fate
decision under heavy metal stress [57,58]. Liu et al. [59] conducted a proteomic study on Elsholtzia
splendens cell walls under copper stress, and observed that ~40% of the differentially expressed cell
wall proteins (CWPs) showed higher abundance in response to copper stress. These proteins are
involved in antioxidant defense, cell wall polysaccharide remodeling, and other metabolic processes.
Furthermore, the study showed that ~60% of the CWPs were in low abundance in response to copper
stress, and that these proteins were involved in signaling, energy, and protein synthesis. The study
identified Hsp70, small G-protein, and RAS-related GTP-binding proteins, which were all responsive
to the copper stress, and which have essential roles in signal transduction. Even though the study by
Lui et al. [59] clearly showed the potential role of the cell wall in downstream signaling responses under
heavy metal stress, Parrotta et al. [60] stated that the intricate signaling mechanisms of the cell wall
in heavy-metal responses are not well understood. Parrotta et al. [60] then highlighted the potential
roles of aquaporins and wall associated kinases as two potential future targets for studying the cell
wall signaling component under heavy metal stress. Indeed, Przedpelska et al. [61] observed gating of
aquaporins within 10 min of heavy metal application to onion epidermal cells, irrespective of the metal
applied (zinc, lead, cadmium, and mercury). The importance of aquaporins in the signaling response
to heavy metals was also confirmed by Ariani et al. [62], who studied AQUA1 (a mercury-sensitive
aquaporin). The results showed that a high concentration of zinc down-regulates aqua1. The zinc
response caused the re-localization of aqua1 into newly formed pro-vacuoles through the regulation of
intracellular trafficking and post-translational modifications.

5. The Role of Vesicle Trafficking in Heavy Metal Stress Signaling

Secretory vesicles are the components that transport constituents required for the construction
of the cell wall. These vesicles congregate beneath the PM, and are subjected to fusion with the
PM [55]. In all plant cells, intracellular transport is vital for the distribution of membrane-bound
vesicles and organelles to their respective cellular destinations. Furthermore, vesicle trafficking is
important for the organization of endomembranes. A disturbance in the vesicular trafficking system
under heavy metal stress can lead to the disruption of cell wall construction, ultimately resulting in



Plants 2020, 9, 1781 6 of 26

inhibition of cell growth [52]. Hence, it is important to understand how plant vesicular trafficking
systems are influenced by heavy metal stress and how this regulation alters the cell wall signaling
component. Nonetheless, vesicle-bound molecular motors are the driving force of vesicle trafficking
within plant cells. These molecular motors interact with the cytoskeletal elements, microtubules,
and specifically, actin filaments (localized movement of vesicles). These cytoskeletal elements are
recognized as the tracks for vesicle transport. Fan et al. [55] used Arabidopsis thaliana to understand
the significance of the cytoplasmic calcium gradient alongside actin filaments (AFs) in the vesicular
trafficking system within root hairs. A. thaliana root hairs were subjected to cadmium treatment and
fluorescence labelling with FM4-64 dye to track the impact of cadmium on endocytosis potential and
membrane recycling (Figure 1). Fan et al. [55] showed that both endocytosis and vesicular trafficking
were disrupted. To understand what influenced this disruption, the authors proceeded with in vivo
labelling, along with laser scanning confocal microscopy, to examine the effect of cadmium on actin
organization. The authors observed that the usual longitudinal arrangement of the actin filaments was
altered towards a transverse arrangement, and that this alteration interrupted the vesicular trafficking
system. Perfus-Barbeoch et al. [63] observed that cadmium enters the root hairs via calcium-selective
channels, because cadmium has an identical charge and ionic radii to calcium. Zhang et al. [64] stated
that calcium concentrations are crucial in actin filament organization, as calcium binds to gelsolin-like
proteins (a calcium-dependent actin severing protein), thus activating the gelsolin, and promoting
the disruption of actin filaments. Consequently, as cadmium mimics calcium, the cadmium within
the cells binds to gelsolin to promote actin filament destabilization and depolymerization. Since the
study revealed that the introduction of cadmium (1) disrupted the calcium gradient within the cells,
(2) induced actin filament depolymerization, and (3) demonstrated a decline in vesicular trafficking,
Fan et al. [55] noted that vesicle trafficking in the A. thaliana root hairs, were to some extent dependent
on the calcium gradient and actin filament arrangement. Callose deposition at the cell wall is regarded
as a defense mechanism after plants sense cadmium stress [65], and the first deposits of callose in
plants were observed 5 min to several hours after contact with an inductor [66]. Therefore, because the
callose synthase (CESA) is assembled primarily at the Golgi apparatus [55], the depolymerization of
the AF changes the conformation of CESA and ultimately inhibits the deposition of callose in the cell
wall, rendering this defense mechanism inadequate. Thus, plants require a mechanism to limit this
effect of cadmium or other heavy metals on actin filaments to ensure proper callose deposition at the
cell wall.

A role for pectin in the cell wall signaling cascade via the receptor-like kinase, FERONIA,
was proposed by Yang et al. [67]. However, the mechanisms for pectin sensing and transducing of
wall signals under heavy metals remain undiscovered. Therefore, understanding the plant vesicular
trafficking events that modulate pectin at the cell wall could be a starting point to understand the
involvement of pectin in cell wall signaling under heavy metal stress. Krzeslowska et al. [68] studied
the mechanism of internalization of pectins in the tip of a growing apical cell protonemata of Funaria
hygrometrica under lead stress. The authors studied the pectin epitope JIM5 (JIM5-P) because lead has
a high affinity for this pectin epitope [69]. To study the internalization and vesicular trafficking of lead,
Krzeslowska et al. [68] employed FM4-64 dye, and observed that vesicular trafficking intensification
and common internalization of JIM5-P from the cell wall was as a consequence of lead accumulation.
Furthermore, by employing the immunogold labelling method for JIM5-P identification in transmission
electron microscopy, the authors observed that in the control plants JIM5-P occurred mainly within
the cell wall. However, under lead stress the JIM5-P was internalized and mainly detected within
PM invaginations and in different sizes of vesicles [67]. This pectin–vesicle trafficking signaling
response was also observed in other plants, which could suggest that this response is a universal
lead stress response [70]. The immobilization of heavy metals to cell walls via vesicle trafficking
could be an important downstream plant cell tolerance reaction to stress responses. Furthermore,
the internalization of these vesicles can also be internalized into endocytic invaginations of the PM,
and could be transported via the endocytic or secretion pathway within plant protoplasts.
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Figure 1. Schematic image showing the severing of the actin filaments by gelsolin under cadmium stress in Arabidopsis thaliana (extrapolated from Fan et al. [55]). The
vesicles move (black arrow) between the endoplasmic reticulum (ER), Golgi network, vacuole, and the plasma membrane (PM). Cadmium stress triggers a callose
response which are sorted and packaged in vesicles for unloading at the PM. The vesicles attaches to the molecular motors (ˆ) which facilitate the movement on the
actin filaments. However, cadmium also activates gelsolin, which cleaves the actin filaments, and therefore the vesicles cannot reach the PM and unload the callose.
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6. Heavy Metal Stress Signaling Events at the Plasma Membrane

After the uncontrollable movement of heavy metals through bulk flow (with water) into the root
apoplastic space, the movement of the metals can go two ways: (1) The metals can move through
the apoplastic space, but will be hindered by the casparian strip; or (2) the metals can move through
the PM into the symplastic space. At the PM, the metals will either diffuse very slowly through the
membrane, or through specific or non-specific transporters imbedded into the PM [71]. Due to the lack
of transporters and receptors in the cell wall, the PM is the most likely candidate for heavy metal signal
reception and downstream transduction. The PM hosts intrinsic and extrinsic membrane proteins
which have diverse roles in plants. These proteins consist of a number of families of carriers and pumps
responsible for metal influx and efflux. In addition, these proteins play key roles in cell adhesion,
cell secretions, and cell to cell signaling events [72]. For cell only or cell to cell perception and signaling
under heavy metal stress, a PM receptor is required. However, such a specific heavy metal receptor in
plants remains elusive. This might be due to the different and diverse chemistry and characteristics
of heavy metals, and therefore plants could not develop one-specific heavy metal receptor that can
recognize all heavy metals. Moreover, ionic ligands exist, and can be transported in plants [73],
but very little is known about the non-ionic ligands that can bind to metals in plants. The non-ionic
ligand–metal complexes could dock into receptors, as observed in molecular modelling studies by
Ananthanarayanan et al. [74], but this idea needs further investigation in plants. Nonetheless, receptors
in plants have been well studied for other stresses [75–77].

Sensing of metals at the PM is required by the plant to mount an appropriate defense strategy.
However, similarly to heavy metal receptors, which are not well explained, the sensors for heavy
metals are a grey area. Nonetheless, the sensors for some of the plant nutrients are known.
In A. thaliana the calcium sensors (CAS) are known calcium sensing receptors which are localized
on the chloroplast PM [78]. The potassium transporters have been proposed as potassium PM
sensors in A. thaliana [79]. These transporter–receptor systems are now commonly referred to as
“transceptors” [80,81]. In A. thaliana, AtNRT1.1 is classified as a nitrate transceptor, with key roles
in nitrogen sensing [82]. In addition, SULTR1;2 has been proposed to be a transceptor of sulfur in
plants [83], even though the idea is still underdeveloped. Similarly, the idea of classifying IRT1 as an iron
transceptor is also premature [81]. IRT1 belongs to the ZIP (Zrt/Irt-like protein) family of transporters,
which are also controversially classified as potential zinc transceptors in plants [84]. Due to the fact
that toxic heavy metals share similar radii with essential macro and micro nutrients, these potential
transceptors could be important for sensing the heavy metals at the PM. For example, Mao et al. [85]
showed that NRT1.1 may regulate the uptake of cadmium in A. thaliana. Furthermore, it has been
well documented that cadmium uptake is regulated by IRT1, due to the similar radii of iron and
cadmium [86]. A direct link between cadmium and SULTR1;2 was established by Yamaguchi et al. [87],
which highlights the possible cross-talk of cadmium and sulfur. In addition, cadmium also shares
similarities with zinc and calcium, therefore the possibility of sensing of cadmium by CAS and ZIPs
remains to be tested.

7. The Role of Other Wall-Associated Proteins in Heavy Metal Signaling Events

There are proteins at the PM that are not classified as receptors, sensors, or transceptors, and which
play key functional roles in heavy metal signaling. Calcium-dependent protein kinases (CDPKs) perform
key roles in multiple stress responses by transducing calcium signals into downstream phosphorylation
events [88,89]. In addition to a PM location, these proteins are also localized at different subcellular
locations, such as the cytosol, endoplasmic reticulum, peroxisomes, the nucleus, and chloroplasts [90].
When CDPKs are activated by calcium under heavy metal stress, downstream proteins are activated,
such as membrane channels, NADPH oxidase, and transcription factors, which all perform important
functions individually [91]. Therefore, it is very important for plants to maintain proper CDPK
levels under heavy metal stress. Xu et al. [92] conducted a proteomic study on Raphanus sativus
seedlings under cadmium stress (10 µM and 50 µM), and observed that one CDPK (Unigene24993)
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was significantly down-regulated under 50 µM of cadmium treatment. The authors highlighted
that the calcium signaling pathway might be repressed under high cadmium stress. Contrastingly,
the upregulation of CDPK gene expression has been reported in Cucurbita pepo (zucchini) leaves under
nickel [93], and in Setaria italica seedlings under chromium stress [94]. Furthermore, Yeh et al. [95]
showed that CDPKs are important for mitogen-activated protein kinase (MAPK) activation under
cadmium stress (up to 400 µM) and copper stress (up to 100 µM), which pointed to a link between
CDPKs and MAPKs for downstream signaling under heavy metal stress.

The role of MAPKs in heavy metal stress has been well reviewed [76,96,97]. MAPKs can be
found in various locations (for example, in the cytosol, the nucleus, the cell plate, microtubules,
and the PM) in plant cells, depending on the isoform in question [98]. In the final step in the three
tier cascade, MAPK signaling mediates the transmission of heavy metal stress signals directly to the
nucleus. Guan et al. [99] overexpressed a MAPK from Lycium chinense in Nicotiana tabacum plants,
and observed enhanced tolerance to cadmium stress. Furthermore, Zhao et al. [100] observed that
MAPKs regulate root growth by influencing auxin signaling, and cell cycle-related gene expression
in O. sativa exposed to cadmium stress. In another study, Xu et al. [101] used real-time quantitative
polymerase chain reaction (RT-qPCR) analysis to study the responses of MAPK transcript to cadmium
stress in Broussonetia papyrifera roots over time. The authors observed that the MAPK transcript was
down-regulated at 3 h, but upregulated at 6 h, after cadmium exposure. This study highlighted the
importance of MAPK recovery for downstream signaling events under cadmium stress. A longer
inhibition of MAPK could be detrimental to any plant after heavy metal exposure. Nonetheless,
studies have shown that membrane bound MAPK activity is often induced by reactive oxygen species
(ROS), especially superoxide [76]. In turn, MAPK can also regulate ROS production in plants, often via
NADPH oxidase [102]. Furthermore, after the NADPH oxidase ROS burst, MAPK could also activate
downstream antioxidant enzymes under copper stress, which highlights a key role for MAPK in ROS
signal amplification via antioxidant enzymes [103].

NADPH oxidase, which is localized on the PM, is a fundamental protein for ROS production
in plants [104,105]. It utilizes NADPH as an electron donor and catalyzes the production of
apoplastic superoxide radicals (O2

−) after a calcium activation step [106]. The superoxide produced
by NADPH oxidases regulates a wide range of biological functions and signaling cascades in plants.
Plant NADPH oxidases are classified as respiratory burst oxidase homologs (RBOHs), and are homologs
of mammalian phagocyte gp91phox [107]. In addition to MAPK interplay, Dubiella et al. [108] showed
that CDPK acts upstream of NADPH oxidases in plants. Therefore, after heavy metal sensing,
CDPK could phosphorylate NADPH oxidase under optimal calcium levels, which could increase
apoplastic superoxide, and which then activates MAPK for direct signaling to the nucleus (Figure 2).
This hypothesis was partly supported by Chmielowska et al. [109] when the authors reviewed cadmium
sensing in plants. Furthermore, Chmielowska et al. [110] showed that NADPH oxidase activity only
occurred after the periods of 6 and 24 h after cadmium stress. In the same study the authors showed
that a MAPK cascade gene was activated after 3 h. This could point to MAPK isoform specific
activation by superoxide, or that the activation of MAPK can occur independently of superoxide,
as well as a time-dependent activation of MAPK by superoxide. The NADPH oxidase cascade under
cadmium stress is often described as complex when studies focus on time-courses. Indeed, the NADPH
oxidase-dependent ROS burst was detected within 4 min of cadmium exposure in suspension-cultured
N. tabacum cells [111]. Therefore, studies have pointed to two “ROS waves” under cadmium stress in
plants [112,113]. Whether two “ROS waves” are activated under all heavy metal stresses remains to
be tested.
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Figure 2. Scheme showing a putative heavy metal (HM) stress signaling cascade in plants. HMs move
from outside the root through the cell wall (CW) into the apoplast by passive diffusion (red arrow).
Some of the HMs are trapped (*) at the CW, but the apoplastic HMs can trigger the response of an
unknown receptor, or actively move into the symplast via HM transporters (green arrow) located at the
PM. HMs can also move through the PM via passive diffusion (red arrow). The unknown receptor
signals responses to activate MAPK and CDPK, respectively, which can trigger a nuclear response.
CDPK through calcium (Ca) activation phosphorylates NADPH oxidase (RBOH) in the presence of Ca,
which induce a superoxide (O2

−) burst in the apoplast. Superoxide dismutase (SOD) converts the O2
−

into hydrogen peroxide (H2O2), which moves through the aquaporins into the symplast. The H2O2

can trigger a nuclear response through an unknown mechanism (?) or activate MAPK, which triggers a
nuclear response under HM stress.

8. The Role of Reactive Oxygen Species in Heavy Metal Stress Signaling

Reactive oxygen species (ROS) are not only harmful radicals, which are produced during stress
events in plants, but these molecules also have the ability to play a signaling role at low levels [114,115].
The ROS molecules have signaling and regulatory effects on a variety of processes, such as metabolism,
growth, and development in plants [116,117]. ROS have the ability to move across the PM, and can
directly modulate or activate receptors or signal transducing enzymes in the cytoplasm [118]. Some ROS
have a relatively short half-life, and include superoxide (2 to 4 µs), singlet oxygen (~3 µs), and hydroxyl
radical (~1 µs), as well as some with a longer half-life, such as hydrogen peroxide (1 ms), which can
all trigger individually or through their breakdown products [119,120]. Singlet oxygen is often
referred to as an atypical ROS. The type of signaling which occurs is dependent on the type, site,
and concentration of ROS present [121,122]. Furthermore, the cell surface or cell membranes of plants
are often the first organelles to encounter heavy metal stress [123]. Upon the onset of cadmium stress,
the pectin component of the cell wall was modified [54]. Once plants encounter heavy metal stress
they require a “fast” signaling network to communicate to the rest of the organelles, in order to mount
an appropriate response. These signaling networks include, but are not limited to, calcium flux,
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phytohormones, antioxidants, and the MAPK pathway, as well as the retrograde signaling pathway
caused by ROS [124–126]. Furthermore, three important role players were identified as ROS signaling
events, namely electric signals [127], the “calcium wave” [128,129], and the propagation of the
“ROS wave” [130]. However, it should be noted that these systems do not work in isolation from one
another, but actually work as part of a dynamic system.

Khare et al. [131] investigated the role of ROS signaling (response) under cadmium stress through
a GeBP-LIKE 4 transcription factor (GPL4). The authors concluded that GPL4-mediates root avoidance
under cadmium stress, and that this response is regulated through ROS signaling at the root tip.
This study showed that ROS can directly or indirectly control transcription factors under heavy
metal stress. Dang et al. [132] observed a feedback loop between a transcription factor CaWRKY41
and hydrogen peroxide in Capsicum annuum under cadmium stress. The authors concluded that
cadmium toxicity induces hydrogen peroxide, which in turn inhibits the activity of ROS-scavenging
enzymes, leading to overaccumulation of hydrogen peroxide and ultimately upregulation of CaWRKY41.
Many studies have analyzed the responses of genes or transcription factors on antioxidant enzyme
regulation and the suppression of ROS [133–135].

9. Antioxidant Enzyme Response as a Downstream ROS Signaling Amplification Event

When trying to understand ROS signaling in heavy metal stress, the downstream modulation of
antioxidant enzymes cannot be ignored. ROS signaling events upregulate the downstream antioxidant
enzymes in order to ensure efficient ROS scavenging under heavy metal stress. Since superoxide is a
very short lived ROS molecule in the ROS signaling event, hydrogen peroxide has often been labelled
as the ROS signal amplifier in plants under heavy metal stress. For example, Liu et al. [103] performed
an experiment where they exposed maize plants to copper stress and observed the results over a period
of 24 h. The hydrogen peroxide concentration steadily increased from 1 h to 24 h. The same study also
observed that over the same time period the activity of antioxidant enzymes (superoxide dismutase,
ascorbate peroxidase, and catalase) increased gradually. The authors hypothesized that the increase in
the antioxidant activity was prompted by the increase in copper concentrations and the subsequent
increase in ROS concentrations. Furthermore, Ortega-Villasante et al. [136] observed hydrogen peroxide
accumulation after 1 to 3 h after exposing Medicago sativa root cells to high cadmium and mercury
concentrations. These studies support the notion that the antioxidant responses in plants are not always
linear events. Factors such as species and genotypes play a major role in the antioxidant response to
ROS production under heavy metal stress.

A study by Imtiaz et al. [137] observed an increase in hydrogen peroxide content in Cicer arietinum
with an increase in vanadium concentration. The increase in ROS content at elevated vanadium
concentrations was perceived by the C. arietinum plants, and resulted in the response of the plants
increasing their antioxidant capacity (peroxidase and catalase). Contrastingly, a study conducted in
our laboratory showed that Brassica napus responded differently to vanadium stress [138]. This study
showed an increase in superoxide content in the plants, but a decrease in superoxide dismutase activity.
The increase in superoxide content was hypothesized to increase cellular damage (manifested as
increased lipid peroxidation and cell death). A study by Nawaz et al. [139] observed similar findings
in Citrullus lanatus plants exposed to high vanadium levels, where an increase in hydrogen peroxide
occurred coupled with a decrease in both catalase and superoxide dismutase activities. The differences
in antioxidant responses for the different plants under vanadium stress could be as a result of the
sensitivity of the antioxidant enzymes to vanadium. The second hypothesis could be that the elevated
ROS levels induce a negative feedback signal, resulting in down regulation of the antioxidant enzymes
in certain plants species.

A study by Imtiaz et al. [140] observed the antioxidant responses of different genotypes of
C. arietinum when exposed to high vanadium. During the experiment the authors exposed the
different genotypes to two vanadium sources (ammonium metavanadate and sodium orthovanadate),
as the redox state of the metal leads to different degrees of stress and response [140,141]. The study
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observed that the different C. arietinum genotypes displayed varying degrees of antioxidant enzyme
(superoxide dismutase, catalase, and peroxidase) and non-enzymatic (glutathione) antioxidant activities,
even though the genotypes were exposed to the same concentration of vanadium [140]. The findings
showed that one of the genotypes (Noor-2009) far exceeded the antioxidant capabilities of the other
genotypes, which led to increased cell viability and growth under vanadium stress. Similar observations
were made in a study by Nogueirol et al. [142], which observed the effect of aluminum in two
Solanum lycopersicum genotypes. This study observed that the genotype CNPH 0082 displayed lower
concentrations of hydrogen peroxide than calabash rouge, and this was correlated with higher root
and shoot catalase activity and root ascorbate peroxidase activity in CNPH 0082, which resulted in
lower lipid peroxidation [142].

10. Amplification of the ROS Signal by Glutathione Could Improve Heavy Metal Stress Tolerance

Glutathione is a small non-enzymatic antioxidant with a half-life of ~20 min in biological fluids [143].
In plants, glutathione is synthesized by two enzymatic steps (both ATP-dependent), which involve
glutamate–cysteine ligase and glutathione synthetase [144]. In the first step, the glutamate–cysteine
ligase catalyzes the formation of a peptide bond between the glutamate and cysteine, and in
the second step; glutathione synthase catalyzes the addition of glycine to γ-glutamylcysteine to
produce γ-glutamyl-cysteinyl-glycine. Glutathione can be found in various plant organelles, such as
the mitochondria, nucleus, and the cytosol. Glutathione is important in redox buffering at low
concentrations, and therefore plays an important role in abiotic stresses, such as heavy metal
toxicity [145]. It has also been shown to act as a disulfide reducing agent, and to assist in the
protection of the thiol (–SH) group of many enzymes during signaling events under abiotic stress.
Additionally, glutathione also serves as a substrate for glutathione-dependent enzymes, such as
glutathione peroxidase and glutathione S-transferase, which play essential roles in the detoxification
of ROS and xenobiotic compounds [146]. The concept of including glutathione as a stand-alone
signaling molecule is widely debated [147], but more studies have concluded that glutathione functions
downstream of ROS (i.e., hydrogen peroxide) to modulate the amplitude and duration of the upstream
signals [148,149]. Indeed, Mhamdi et al. [150] and König et al. [149] both showed clear interplay
between hydrogen peroxide and glutathione in the first 10 min of the hydrogen peroxide signal.
Furthermore, under cadmium stress, Schützendübel et al. [151] observed that cadmium uptake was
dependent on glutathione responses. The authors observed an increase in glutathione at 5µM cadmium,
and a complete depletion of glutathione at 50 µM, after 6 h. In general, glutathione has a higher affinity
for heavy metals. Due to the presence of the sulfur groups in the cysteine, glutathione transports and
stores reduced forms of sulfur. These reduced sulfurs bind directly to heavy metals or have an indirect
action through the induction of phytochelatin synthesis [152,153]. Phytochelatins are polypeptides that
are synthesized non-ribosomally from glutathione by phytochelatin synthases. These phytochelatins
play important roles in plant heavy metal tolerance, as they have a high affinity for heavy metals,
and can form complexes and then transport the metals to the vacuole. As a consequence, phytochelatins
lowers the concentration of heavy metals in the cytoplasmic space, thus minimizing the harmful
effects caused by these heavy metals [154]. It is evident that glutathione invokes multiple strategies to
improve tolerance to heavy metals in plants, which include: (1) the protection of enzymes or proteins
by directly scavenging ROS; (2) alleviating oxidative stress by ROS through the antioxidant enzymes
glutathione S-transferase and glutathione peroxidase; and (3) synthesis of phytochelatins to minimize
heavy metal uptake. Another role of glutathione was demonstrated by Talukdar [155], who concluded
that an interplay exists between glutathione and hydrogen sulfide by regulation of thiol cascades
during arsenate exposure in Phaseolus vulgaris. The glutathione and hydrogen sulfide interplay was
also observed in A. thaliana under cadmium stress. Jia et al. [156] observed an increase in glutathione
after hydrogen sulfide treatment under cadmium stress, when compared to a cadmium-only treatment.
The authors also observed that hydrogen sulfide inhibited the ROS burst by inducing alternative
respiration capacity and antioxidant activity. The same observations were made by Mostofa et al. [157]
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in Oryza sativa plants treated with hydrogen sulfide and cadmium. This interplay between glutathione
and hydrogen sulfide points to a universal importance for the regulation of plant tolerance to heavy
metal stress. This notion was proved by Kushwaha and Singh [158] who showed that in S. lycopersicum,
Pisum sativum, and Solanum melongena seedlings that the interplay between glutathione and hydrogen
sulfide regulates the mitigation of chromium toxicity. Even though studies have highlighted a link
between glutathione and hydrogen sulfide in plants under heavy metal stress, these studies only
focused on applying exogenous hydrogen sulfide. Therefore, the role of exogenous glutathione on
endogenous hydrogen sulfide levels in plants under heavy metal stress has not been investigated.

11. Hydrogen Sulfide, a Multi-Signaling Molecule in Heavy Metal Stress Responses

Hydrogen sulfide is a gaseous molecule which plays an important role in many physiological
processes [159]. The half-life of hydrogen sulfide in various solutions ranges from 12 to 37 h [160].
In plants, hydrogen sulfide is synthesized from various substrates in different locations. In the
cytoplasm, nucleus, and mitochondria, L-cysteine is metabolized by L-cysteine desulfhydrases to
produce pyruvate, ammonia (NH3), and hydrogen sulfide. Furthermore, if D-cysteine is present as a
substrate in the mitochondrion, D-cysteine desulfhydrases will metabolise D-cysteine to hydrogen
sulfide. Furthermore, in the mitochondrion, β-cyanoalanine synthase (β-CAS) catalyzes the conversion
of cysteine and cyanide to β-cyanoalanine and hydrogen sulfide [161]. In the chloroplast, sulfite ions
are reduced by sulfite reductase to produce hydrogen sulfide and ferredoxin. These synthesized
hydrogen sulfide molecules can then be converted back to cysteine though cysteine synthase [162].
It has been suggested that hydrogen sulfide mostly signals through the persulfidation of the thiol
groups of cysteine, modifying –SH to –SSH. These modifications influence protein structure, function,
and activity [163]. In addition, Aroca et al. [164] showed that at least 5% of the arabidopsis proteome
undergoes persulfidation. Furthermore, these persulfidated cysteines are involved in vital biological
processes, such as plant growth and development, and carbon metabolism, as well as abiotic and biotic
stress responses. Li et al. [165] showed that hydrogen sulfide acts downstream of hydrogen peroxide
signaling in Trifolium repens, which points to roles in ROS amplification events. Furthermore, roles
in heavy metal stress responses in plants have been elucidated for hydrogen sulfide. Liu et al. [166],
showed that hydrogen sulfide alleviated zinc toxicity in Solanum nigrum by: (1) lowering zinc
accumulation through down-regulating genes related to zinc uptake and homeostasis; (2) enhancing
the expression of metallothioneins to chelate the additional zinc; and (3) altering the expression of
genes related to antioxidant enzymes, to minimize oxidative stress. In a study by Ali et al. [167],
exogenous hydrogen sulfide alleviated chromium toxicity in barley. Furthermore, two other studies
observed similar results, where exogenous hydrogen sulfide alleviated the toxic effects of lead stress in
cotton [168], nickel stress in O. sativa [169], and aluminum stress in wheat [170]. These studies supported
the notion that hydrogen sulfide is a molecule which can confer heavy metal tolerance in plants to
multiple heavy metals. Therefore, this could provide the basis for research to investigate: (1) how
endogenous concentrations of hydrogen sulfide vary in crop plant species; (2) whether variations
in endogenous hydrogen sulfide account for variations in heavy metal accumulation, and therefore
improved metal tolerance in different plant species. Ultimately, these questions could provide insight
as to which crops would be safer to plant in heavy metal polluted soils for improving both food security
and food safety.

12. Conclusions

Heavy metals enter plant apoplastic spaces through movement via the primary cell wall. The heavy
metals can then enter the human and animal food chain by consumption of contaminated plants.
These plants can be root vegetables, in which the heavy metals will concentrate after entering the
root system. In addition, the heavy metals can be transported throughout the plant system from
the roots into stems, leaves, flowers, and seeds, and these parts can then be consumed by humans
and animals. Hence, these metals, if consumed will have severe food safety risks, and can lead to
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mortality. The problem of heavy metals as a food safety risk is often overlooked because of the notions
that: (1) the metal concentration in the food crops are often below safety standards; and (2) that some
metals must first over-accumulate over long periods of time in human and animal systems, in order to
be detrimental to health. However, in this review we extrapolated from USEPA data that thallium
and zirconium pose far greater risks to humans due to very low prescribed RfDo values (Table 1).
We acknowledge the fact that RfDo values are not provided for lead and mercury. Nevertheless,
we propose that thallium and zirconium should always be added when performing environmental
and crop heavy metal assessments. In addition to food safety concerns, heavy metals also pose food
security risks. Crop yields are widely affected by heavy metals in the soil, and therefore it is of
utmost importance to understand plant responses to heavy metals. However, the impact of all the
heavy metals on plants has not been well studied, and most studies have focused on cadmium and
arsenic. Nevertheless, for root vegetables, heavy metal avoidance and heavy metal excretion (or efflux)
by plants should be strategies to study. Furthermore, for leafy and seed food crops, heavy metal
avoidance, heavy metal excretion, heavy metal chelation, and heavy metal sequestration should be
areas for study. Plant signaling cascades are the key fundamental processes which regulate plant
responses to heavy metal stress. Therefore, in this review we highlighted the key signaling events
which will modulate the responses of plants to heavy metals, ultimately for the benefit of better
food safety and security. From the literature it is clear that the cell wall and the apoplastic space
play key roles in the initial signaling responses under heavy metal stresses. Therefore, remodeling
of the cell wall is regulated by key vesicle trafficking events (from the symplastic region) that will
need careful experimental investigation in the future. For example, the trafficking of pectin to the
PM space can play key roles in heavy metal uptake and immobilization events. After this initial cell
wall signaling event, the apoplastic side of the PM seems to be a key area for heavy metal signaling
responses. We highlighted the role of plant unidentified receptors, transceptors, CDPKs, MAPKs,
and NADPH oxidases in “kick-starting” the signaling cascades in response to heavy metal stress.
We observed that very little is known about the signal reception step in plants under heavy metal
stress, because the receptors for heavy metals are unknown. Furthermore, more data is being obtained
for metal transceptors, but this field is also very young, especially with regards to heavy metals in
general. We observed that more data has been released on the transduction step of the pathway where
CDPKs, MAPKs, and NADPH oxidases play key roles in relaying downstream signals to trigger proper
responses. We acknowledged the role of calcium in regulating all three proteins under heavy metal
stress, but noted that it was widely reviewed [76,171–173]. Nevertheless, NADPH oxidase generates
superoxide which starts the “ROS wave” under heavy metal stress. Superoxide dismutases will
scavenge the superoxide and convert it into hydrogen peroxide, which we identified as a key role player
in the signal transduction step. The hydrogen peroxide could enter the symplastic space potentially via
aquaporins, and therefore could trigger transcription responses. In addition, the hydrogen peroxide
signals could be amplified by glutathione and hydrogen sulfide, due to interaction with these two
longer half-life molecules (hydrogen peroxide acts upstream of both glutathione and hydrogen sulfide)
(Figure 3). This amplification cycle could include the antioxidant system, which is complex but can be
regulated by hydrogen peroxide, glutathione, and hydrogen sulfide to mount the proper response,
which is the last step in the signaling cascade.
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from L-cysteine. In addition, the products glutamate–cysteine ligase and glutathione synthase can produce glutathione (GSH). H2S can also trigger an increase in
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transported HM can bind to symplastic PC, forming a less toxic HM–PC complex.
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13. Future Perspectives

The fourth industrial revolution (4IR) started in Germany in 2011 [174] and has continued to
spread rapidly to other parts of the world. Already, the increased improvement in robotics and
artificial intelligence has contributed heavily to eliminating the separation of the physical world
from the virtual world. Therefore, the combination of phenotyping technologies and the 4IR could
increase our understanding of in-field plant responses to heavy metal stress. In order to make large
scale accurate observations of heavy metal concentrations in plants grown close to contamination
areas, nanotechnology sensors [175] could be used in combination with phenotyping-4IR. This would
provide a large scale rapid safety assessment of heavy metal contaminated crops, and could contribute
massively to providing safer foods for humans and animals. For improving plant crops to increase yield
and production under heavy metal stress, a rapid understanding of the complex signaling mechanisms
that govern the plant responses to the heavy metal stress is essential. Therefore, cutting-edge and
high-throughput “omics” technologies, coupled with the 4IR, will be fundamental to understand the
signaling processes that occur in plants under heavy metals at a definite time, and at cell-specific
resolution. The high-throughput data obtained from these studies should be used in systems
biology [176] to obtain the desired systems-level understanding of how plant signaling cascades
govern heavy metal stress tolerance. The systems biology data could then guide bioinformatic analysis
in order to increase the accuracy power of plant genetics. Therefore, CRISPR/Cas technology will
be very important for dramatically accelerating the breeding of crops with improved heavy metal
stress tolerance. For this purpose, the genome-wide precision and specificity of the CRISPR/Cas
system should undergo massive improvements, as per the study by Tan et al. [177] on the rationally
engineered SaCas9 variant (SaCas9-HF). For example, Yu et al. [178] made CRISPR/Cas mutants in
S. lycopersicum plants by targeting the SlMAPK3 gene, and observed improved tolerance to heat stress.
MAPK genes are important regulators of heavy metal stress responses in plants, and therefore could
be an immediate target for CRISPR/Cas studies. The genetic experiments could also include the use
and transfer of minichromosomes [179], which carry the desired genes from heavy metal tolerant
cultivars into heavy metal sensitive cultivars. One such gene target could be gelsolin, which increases
the severing of actin filaments under heavy metal (cadmium) stress (Figure 1). Even though very
little is known about the gelsolin related signaling events in plants, one future approach could be
through polyphosphoinositides (PPI) induction, which inhibits actin filament severing [180]. PPI binds
to the actin monomer binding site of gelsolin, and therefore gelsolin would not be able to bind to
the actin filaments in plants under heavy metal stress (Figure 4). From the literature it is clear that
the single-gene editing and engineering approach is still viewed as the gold standard for making
plants tolerant to heavy metals. However, the dynamic environment, as well as multi-heavy metal
contaminated fields, will continue to be the main problems or bottlenecks for the single-gene approach,
as well as for the proposed, multi-gene approach. Therefore, the progress in the synthetic biology field
towards whole-genome (de novo) assembly, editing, and transfers into plants cells (genome deplete)
remains an exciting prospect for the future (see review by Liu and Stewart [181]).
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Figure 4. Representation of a future experiment, where gelsolin is inhibited by polyphosphoinositides (PPI) in Arabidopsis thaliana under cadmium stress. The vesicles
move (black arrow) between the endoplasmic reticulum (ER), Golgi network, vacuole, and the PM. Cadmium stress triggers a callose response, which is sorted and
packaged in vesicles for unloading at the PM. The vesicles attaches to the molecular motors (ˆ), which facilitates the movement on the actin filaments. The induced PPI
inhibits gelsolin, which subsequently cannot cut the actin filaments, and therefore the vesicles can reach the PM unhindered.
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Guiance-Varela, C.; Deckert, J. NADPH oxidase is involved in regulation of gene expression and ROS
overproduction in soybean (Glycine max L.) seedlings exposed to cadmium. Acta Soc. Bot. Acta Soc.
Bot. Pol. 2017. [CrossRef]

111. Olmos, E.; Martínez-Solano, J.R.; Piqueras, A.; Hellín, E. Early steps in the oxidative burst induced by
cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 2003, 54, 291–301. [CrossRef] [PubMed]

112. Pérez-Chaca, M.V.; Rodríguez-Serrano, M.; Molina, A.S.; Pedranzani, H.E.; Zirulnik, F.; Sandalio, L.M.;
Romero-Puertas, M.C. Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots.
Plant Cell Environ. 2014, 37, 1672–1687. [CrossRef]
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