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Abstract: Rhodolith beds have not previously been recorded in South Africa. A multidisciplinary
research effort used remote sampling tools to survey the historically unexplored continental shelf off

the Eastern Cape coast of South Africa. A rhodolith bed, bearing both living and dead non-geniculate
coralline red algae, was discovered in the 30–65 m depth range off the Kei River mouth in the newly
proclaimed Amathole Offshore Marine Protected Area. Some of the rhodolith forming coralline
algal specimens were identified as belonging to at least three genera based on their morphology
and anatomy, namely, Lithophyllum, Lithothamnion and a non-descript genus. Rhodolith mean mass
and diameter were 44.85 g ± 34.22 g and 41.28 mm ± 10.67 mm (N = 13), respectively. Remotely
operated vehicle (ROV) imagery revealed a suite of epibenthic red macroalgae associated with the
rhodolith bed. Taxonomy, vertical structure and distribution of rhodoliths in South Africa require
further investigation.

Keywords: temperate mesophotic ecosystem; non-geniculate coralline algae; ROV

1. Introduction

Rhodoliths are live and dead aggregations of free-living non-geniculate coralline algae (Corallinales,
Hapalidiales, Sporolithales: Corallinophycidae) from the phylum Rhodophyta [1]. They are important
producers of calcium carbonate and are ecosystem engineers that support a high diversity of benthic
fauna and algal communities [1–5]. Rhodolith beds have been documented to occur from the intertidal
to 270 m depth [2,3] and constitute an important biogenic marine habitat worldwide. The community
structure of rhodolith beds has been extensively studied in shelf environments prone to current agitation
and sweeping, most notably in Brazil [6–9], but also in polar and subarctic seas [10,11], the Gulf of
Mexico [12,13], the Mediterranean Sea [14–16] and southern Australia [17]. Rhodoliths are well known
in the geological record and are useful indicators of palaeo-oceanographic conditions [18]. Rhodolith
beds form habitats that represent an important transition between largely featureless, soft substrates
and hard-cemented rocky reefs. Their three dimensional structure supports vast numbers of organisms
from several different phyla [5,19], including polychaetes [20], barnacles [21], macroalgae [5,22] and
molluscs [23]. Morphologically, rhodoliths are nodules consisting either of complete or fragmented
layers of a single or multiple coralline algal species/thalli, all superimposed one on top of the other.
“Boxwork” is the terminology for rhodoliths with a lattice structure and are made up of a nucleated
core of either sand, rock or shell fragments [2,15]. Although found in the shallow subtidal in many
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parts of the world, their vertical (across depth) structure is understudied [3]. Even more so, little is
known of the occurrence, community structure and ecology of rhodolith beds in South African waters,
although occasional beach-clast rhodolith nodules have been recorded (e.g., Algoa Bay [21]). Here, we
document the discovery of a mesophotic rhodolith bed off the South African coast in the 30–65 m depth
range. The discovery was facilitated using multibeam echo sounder mapping, remotely operated
vehicle (ROV) observations and dredge sampling. We also report on the identification of the rhodolith
specimens, the morphology and associated epibionts of this rhodolith bed.

2. Materials and Methods

The studied localities are situated off the Eastern Cape coast of South Africa, offshore of the Kei
River mouth in the newly proclaimed Amathole Offshore Marine protected Area (Figure 1). The
continental shelf in the area is relatively narrow (20 km) and tapers to the north. The Agulhas Current,
one of the strongest western-boundary currents in the world [24], flows along the shelf and together
with a highly energetic wave regime [25] dominates the oceanographic conditions in this region. This is
a warm temperate region which experiences the heaviest rainfall in January and February [26]. Fluvial
input from the Kei River influences the adjacent coastal waters by lowering salinity and increasing
turbidity [26].
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Figure 1. Speculated extent of rhodolith beds derived from seismic surveys (grey polygon), proposed 
extent of live rhodolith aggregations (light grey polygon) derived from remotely operated vehicle 
(ROV) surveys (red stars); dredge sampling (red circles) and multibeam bathymetry (greyscale relief) 
off the Kei River mouth, South Africa. Black stars and circles are ROV and dredge locations, 
respectively, which had no rhodoliths. The 50 m and 100 m isobaths are also depicted. 

Surveys were conducted in 2016 and 2017 as part of the multidisciplinary and multi 
institutional African Coelacanth Ecosystem Programme (ACEP): Imida Frontiers Project. A Reson 
7101 multibeam echo sounder, dredge sampler and remotely operated vehicle (ROV) were used to 
survey the continental shelf off the Kei River mouth. Multibeam bathymetry and backscatter data 
were collected in 2016 (see Green et al., submitted). Subsequently, dredge sampling and ROV 
surveys were used to ground truth the multibeam data and investigate the seafloor biology in 

Figure 1. Speculated extent of rhodolith beds derived from seismic surveys (grey polygon), proposed
extent of live rhodolith aggregations (light grey polygon) derived from remotely operated vehicle (ROV)
surveys (red stars); dredge sampling (red circles) and multibeam bathymetry (greyscale relief) off the
Kei River mouth, South Africa. Black stars and circles are ROV and dredge locations, respectively,
which had no rhodoliths. The 50 m and 100 m isobaths are also depicted.

Surveys were conducted in 2016 and 2017 as part of the multidisciplinary and multi institutional
African Coelacanth Ecosystem Programme (ACEP): Imida Frontiers Project. A Reson 7101 multibeam
echo sounder, dredge sampler and remotely operated vehicle (ROV) were used to survey the continental
shelf off the Kei River mouth. Multibeam bathymetry and backscatter data were collected in 2016
(see Green et al., submitted). Subsequently, dredge sampling and ROV surveys were used to ground
truth the multibeam data and investigate the seafloor biology in January and May 2017. These visual
surveys were conducted with the SAIAB SeaEye Falcon ROV aboard the RV Phakisa and performed at
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0.5 knots in the opposite direction of the current. Substratum type and epifauna were recorded for the
epifaunal community analysis. Dredge samples were sorted and stored at −80 °C. During the Imida
project 100 ROV visual surveys were performed and 30 dredge samples collected in the 30–220 m
and 25–214 m depth ranges respectively, between Kayser’s Beach (−33.207 S, 27.613 E) and the Kei
River mouth (−32.635 S, 28.429 E). Of these, only nine ROV visual surveys (30–65 m depth) and three
dredge samples (45–57 m depth) revealed live rhodolith beds off the Kei River mouth (Figures 1 and 2).
Rhodolith density was not measured because the seafloor area could not be accurately quantified.
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Figure 2. Remotely operated vehicle survey photographs collected during January/February 2017 of a
rhodolith bed between 30 and 65 m depth off the Kei River mouth, South Africa.

A total of 13 individual rhodolith specimens (five from one and four each from another two
dredge samples) were measured and classified for sphericity [27]. The degree of sphericity, estimated
by measuring three diameters (largest, intermediate and smallest diameter) of each specimen utilising
a digital calliper was graphically presented on a ternary plot for each of the three dredge sites. Largest
individual diameter and wet mass were measured to estimate average size. Size measurements are
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presented as mean ± standard deviation. A single rhodolith was also dated using the accelerator mass
spectrometer (AMS) C14 method, where the centre-most and outer-most samples were examined for
ages. Calibrated ages were calculated using the Southern Hemisphere atmospheric curve SHCal13 [28].
A reservoir correction (DeltaR) of 161 ± 30 was applied.

Epibiotic morphospecies obtained from ROV imagery were classified according to the CATAMI
classification scheme due to the inherent difficulty with accurate genus or species level identification
from underwater imagery (see Appendix A) [29]. Additionally, all epibionts found on the rhodolith
specimens from dredge samples were removed and stored in 90% ethanol and identified to
morphospecies or to the lowest operational taxonomic unit (OTU) using a dissection microscope.

Rhodolith specimens were prepared for light microscopy identification following
Maneveldt et al. [30]. The outer layer of non-geniculate coralline algal specimens were tentatively
identified to genus level based solely on their morphology and anatomy following the identification
keys of Maneveldt et al. [31]. It was not possible to identify specimens to species level since many
specimens were degraded and some had already fossilised, rendering identification through DNA
sequencing costly and likely improbable. Additionally, the handling and storage protocols for the few
remaining living specimens negated any successful molecular analyses.

3. Results

3.1. Rhodolith Morphology and Age

The average wet mass of the rhodoliths was 44.85 g ± 34.22 g. The average longest diameter of the
specimens was 41.28 mm ± 10.67 mm. The largest rhodolith specimen had a wet mass of 107.2 g and
a diameter of 63 mm. Spheroidal forms included compact, compact-bladed and compact elongated
(Figures 3 and 4). Cross-sections of several specimens revealed a “boxwork” structure (e.g., Figure 5).
AMS C14 analyses revealed that the rhodoliths started forming between 7406 and 7225 cal yr. BP. The
outer part of the rhodoliths dated to 150 cal yr. BP to post-bomb, indicating contemporary growth.
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Figure 5. Cross-section of a rhodolith displaying the “boxwork” structure.

3.2. Depositional Setting and Epibiotic Components

ROV and multibeam imagery revealed that the rhodolith bed occupied low relief areas on
course siliclastic and bioclastic sediment (Figure 6). Rhodolith beds were also observed in inter-reef
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spaces. Surge and current (in excess of 3 knots) were strong. Multibeam and backscatter imagery
also indicated current sweeping and wave agitation of the seafloor where rhodoliths occur (Figure 6).
Coast-parallel, bifurcating and symmetrical large wave-formed dunes (of 20 cm amplitude, 9–10 m
wavelength) co-occurred with rhodolith beds (Figure 6A) and were bordered along the coastal strike by
several coast-elongate gravel ribbons orientated with the Agulhas Current (Figure 6B). Sand streamers
and current-reworked wave-formed dunes characterised shallower (<36 m) rhodolith occurrences
(Figure 6C). Bleached (dead) rhodolith specimens were common throughout the observed depth range
which indicated natural mortalities, likely because of occasional sand burial due to disturbance caused
by wave action and strong currents. The close association of current-sweeping seafloor features with
living and bleached rhodoliths suggests that the current agitation causes frequent rolling/turnover
of individuals to reveal the dead underside. ROV imagery revealed a diversity of upright fleshy
macroalgae which was the most common morphospecies type observed besides the rhodolith forming
non-geniculate coralline algae. Although a diverse assemblage of fleshy macroalgae was observed in
the ROV imagery, only a single turf alga Dascoclonium palmatifidum was found attached to a single
rhodolith specimen. Microscopy of the associated epifauna revealed two cryptic sponges, a bristle
worm, two bryozoan colonies, a clamshell and polychaete tubes.
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Figure 6. Multibeam image of the mid-shelf offshore the Kei River mouth. Red stars denote rhodoliths
observed from ROV surveys. Note the association with low relief, inter reef areas. Insets depict select
areas of seafloor backscatter data (dark—high, light—low), with current direction denoted by white
arrows. A, Coast-parallel, wave-formed dunes. B, Coast-elongate, high backscatter ribbons denoting
gravel streamers formed by the Agulhas current. C, Top of inset shows wave-formed dunes, broken
down and reworked by coast-parallel flows. Bottom shows elongate, coast-parallel stripes of moderate
backscatter interpreted as sand streamers formed in the Agulhas current.
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3.3. Non-geniculate Coralline Algal Identifications

The non-geniculate coralline algae that comprised the outermost superimposed layer of the
rhodoliths included taxa from at least two of three known coralline algal orders (namely Corallinales
and Hapalidiales), including several specimens from the genera Lithophyllum and Lithothamnion and
one non-descript taxon from neither of these genera (Figure 7).
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Figure 7. (Left and right) Three different living species growing in a superimposed manner (Si–Siii) on
a single rhodolith (sample 15E). The outer crust (Si) belonging to the genus Lithophyllum had a dimerous
thallus construction (di) with a single basal layer (b) of non-palisade cells and with secondary pit
connections (white arrowheads) between cells of adjacent filaments. The middle crust (Sii) belonging
to the genus Lithothamnion with senescent multiporate conceptacles (not evident in these images) had
a monomerous thallus construction (mo), flared epithallial cells (black arrowheads) and cell fusions
(black arrows) between cells of adjacent filaments. The inner crust (Siii) was non-descript, although it
possessed a monomerous thallus construction, rounded epithallial cells and cell fusions between cells
of adjacent filaments. Scale bars: 100 µm (left); 20 µm (right).

4. Discussion

The persistence of this rhodolith bed may be attributed to the physical properties, the strength of
the Agulhas current and to some extent the strong wave climate that may impinge on the seafloor
at depths of <65 m. This is despite its occurrence offshore of the Kei River mouth, a source of high
sediment loads to the shelf (Green et al., submitted). The strength of the wave agitation, coupled with
the vigorous Agulhas current, may promote the persistent exposure and reworking of the rhodolith
bed by suppressing the settlement of fine sand and particulate organic matter that would otherwise
smother the rhodoliths and cause die-offs [32]. Sparse aggregations of dead rhodoliths, covered or
partially covered in particulate organic matter and silt, were found on the fringes of the bed, which
suggests that settlement of fluvial sediment from the Kei River influences the extent of the rhodolith
bed. Furthermore, we postulate that the extent of the bed is dynamic due to strong bed-traction
currents shifting sediments. Especially in the mid-shelf where sediment accumulation becomes more
prominent, mobile bedform fields can migrate over gravel or bedrock areas typically exposed at the
seafloor [33].

Fluvial influence from the Kei River may also limit the landward extent of the rhodolith bed.
Besides irradiance (which is a function of depth and turbidity) being the major control of depth
distribution [3,34], most species of coralline algae cannot tolerate extreme temperature and salinity
fluctuations [9,10], phenomena that are experienced off the Kei River mouth. During January to
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February of each year, this region experiences its highest rainfall [26], which increases freshwater
input that dramatically reduces salinity. Additionally, the coastline experiences localised upwelling
caused by a current-driven cyclonic eddy which in turn brings cold, subsurface, nutrient enriched deep
water onto the otherwise oligotrophic warm shelf [26]. This phenomenon, however, is not uncommon
and despite temperature and salinity fluctuations being a limiting factor to their distribution, several
species of non-geniculate coralline algae (notably from the genera Lithothamnion and Lithophyllum) are
known to tolerate extreme fluctuations in temperature and salinity levels, for example off the Amazon
River [9], in Norway [10], in Italy [16] and in northern Ireland [32]. The joint influence of these events
on the underlying Kei River mouth rhodolith community is not understood and further investigation
into the ecological controls is needed. Furthermore, identifying the species of rhodolith off the Kei
River could possibly bring to light the mechanisms, for example, low light adaptation, fluctuating
salinity and temperature tolerance by which this bed may have persisted in these volatile conditions.
In this regard, more directed sampling for molecular analyses should be attempted in future.

The average size of the rhodoliths was 41 mm, which is comparatively smaller than the global
average of 60 mm [2]. Assuming that the rhodolith with a diameter of 43 mm continuously
accumulated all its material over a roughly 7255 year period, the accumulation rate may be calculated
at 0.0059 mm.yr.−1. Compared to rhodoliths comprising Mesophyllum crassiusculum (as Lithothamnium
crassiusculum, 0.6 mm.yr.−1 [35]) from similar climatic zones, this rate is almost two orders of magnitude
slower. Branch growth rates of free living, branching coralline algae that form rhodoliths vary from
0.1 mm.yr.−1 in the northwest Spain, 1 mm.yr.−1 from western Ireland and 0.05 up to 1.0 mm.yr.−1

in Norway [36]. Thick (0.5–1 m) aggregate deposits of rhodoliths appear to accumulate slower [36],
and at rates comparable to the Eastern Cape rhodoliths, for example 0.5 m.ky−1 in Cornwall, 1.4
m.ky−1 from raised rhodolith deposits in Norway and the very slow 0.08 m.ky−1 from Orkney sounds
in Northern Scotland [36]. Like the thicker deposits, the Eastern Cape rhodoliths clearly comprise
aggregate features consisting of older cores around which more recent, opportunistic (most specimens
were thin and non-fertile, pers. obs.) living non-geniculate coralline algae have accumulated (see for
example Goldberg et al. [17]). According to Cooper et al. [37], sea level occupied a position 0.5 m
above present day mean sea level 7200 years ago. At this point, the shelf was drowned by the ocean,
and full current-sweeping between depths of 40 and 60 m probably took place. It is unclear where
the hiatus in accumulation occurs, however, the chipping and abrasion observed from contemporary
rhodolith specimens suggest that the entire accumulation process was a punctuated one, with multiple
hiatuses related to the high energy conditions. We thus postulate that on such a high energy, wave and
current dominated environment, overall rhodolith accumulation would be slow mainly due to the
highly energetic water column. The large rhodoliths observed in this study (63 mm diameter) probably
represent a threshold growth point for most species in this environment. Additionally, these larger
rhodoliths appeared to be the stratified accumulations of corallines and fine sediments (pers. obs.),
which have characteristically been seen in other locations prone to high sediment loading [38].

The spheroidal rhodolith shape found off the Kei River mouth concurs with rhodolith shapes found
elsewhere in high energy environments [7,16,37]. Surge and wave action were common at all rhodolith
sites and “white” (bleached, dead) rhodoliths were a common feature at all sites (pers. obs.). The
constant disturbance probably results in regular rolling and turnover of rhodoliths, which then promote
the spheroidal morphology [16,37]. Bioeroders are also known to influence the shape and structure
of rhodoliths [39]. Moreover, grazers (e.g., chitons and herbivorous fish) and bioeroders (sponges,
barnacles and polychaetes) also facilitate the growth of rhodoliths by preventing the settlement and
overgrowth of the rhodoliths by sessile epiphytes that compete for essential light, nutrients and
space [19,40]. Besides providing food and shelter for benthic grazers, rhodoliths, especially larger ones,
provide shelter and spawning substrates for fish [9,11].

Rhodoliths, hollow and nucleated, are known to increase habitat complexity and biodiversity by
offering increased surface area for the attachment of epibionts such as other forms of macroalgae [5],
as well as shelter and egg deposition sites for benthic fauna [39]. Interestingly, of the 13 dredge
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specimens collected, only four were hollow (i.e., not nucleated) or possessed cavities large enough
for small organisms (<1 cm in diameter) to persist whereas solid rhodoliths did not possess cavities.
Moreover, several rhodoliths possessed a network of polychaete burrows right down to the core.
Several studies [39,41,42] have suggested that boring bivalves are important bioeroders that facilitate
rhodolith hole production. A recent study recorded the burrowing barnacle Weltneria spinosa from
beach-cast rhodolith specimens 280 km south of this study area in Algoa Bay, South Africa [21]. These
beach-casts were comprised of at least two species of rhodolith forming non-geniculate coralline algae,
one of which incidentally also belonged to the genus Lithophyllum. This finding, along with the findings
from the current study, not only highlights the poor sampling coverage of the shallow subtidal benthic
environment along the Eastern Cape coast but also demonstrates how very little we know of their
identification, the distribution of rhodoliths or their depth range along this and other stretches of the
South African coastline.

5. Conclusions

Here we highlight the discovery, the geographical extent, rhodolith morphology and the associated
rhodolith epibionts of a rhodolith bed off the South African east coast. The persistence of rhodolith
fields on the Eastern Cape shelf appears to be related to dynamic bed shearing by currents and is
limited by fluvial sediment inundation in the inner shelf and cold-water upwelling along the shelf edge.
The rhodoliths mark the inception of the Agulhas Current’s sweeping of the shelf approximately 7200
years ago and has episodically accreted since. The slow growth rates are unlike those in most other
studies and point to the episodic high energy regime limiting the size and rate at which these rhodoliths
may grow to, likely due to alternating phases of abrasion and stasis. Their size and shape are also
strongly controlled by bioeroders, which in the South African context are still poorly understood. With
the recent increase in offshore visual surveys and increased accessibility to remote camera platforms
as research tools, we are likely to see more discoveries of rhodolith beds within the South African
Exclusive Economic Zone and more focussed research into the ecological, biological and geological
significance of these important marine habitats. Incidentally this study area falls within the newly
proclaimed Amathole Offshore Marine Protected Area, which ensures the protection of this feature. We
recommend a finer scale study of the taxonomy, morphology, ecology and geography of the rhodolith
bed off the Kei River mouth.
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Appendix A

Table A1. List of rhodolith associated epibionts found off the Kei River, South Africa, identified
according to the CATAMI classification scheme.

Morphospecies Code Morphospecies Name

ASS Solitary stalked ascidian
AUC Colonial unstalked ascidians
AUS Solitary unstalked ascidians
CB Black and Octocorals

CBBFA Fleshy arborescent octocorals
CBBFM Fleshy mushroom octocorals
CBFR 2D rigid fan octocorals
CBW Whip corals

CNHYD Hydroids
EF Feather stars

EOBSS Brittle stars
MAA Articulate calcareous macroalgae

MAAR Articulate calcareous red macroalgae
MAECR Erect course branching red macroalgae
MAEFR Erect fine branching red macroalgae
MAENR Encrusting red macroalgae

MAENRC Encrusting red calcareous macroalgae
MAENRNC Encrusting red non-calcareous macroalgae

MAF Filamentous macroalgae
MAFR Filamentous red macroalgae

MALAR Laminate red macroalgae
MASR Sheet-like red macroalgae
MAEN Encrusting macroalgae
MOB Bivalves
SPCE Creeping/ramose sponges
SPES Simple erect sponges
SPM Massive sponges
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