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ABSTRACT
Following on our purpose of developing a unified pipeline for large-scale structure data
analysis with angular power spectra, we now include the weak lensing effect of magnification
bias on galaxy clustering in a publicly available, modular parameter estimation code. We thus
forecast constraints on the parameters of the concordance cosmological model, dark energy,
and modified gravity theories from galaxy clustering tomographic angular power spectra. We
find that a correct modelling of magnification is crucial not to bias the parameter estimation,
especially in the case of deep galaxy surveys. Our case study adopts specifications of the
Evolutionary Map of the Universe, which is a full-sky, deep radio-continuum survey, expected
to probe the Universe up to redshift z ∼ 6. We assume the Limber approximation, and include
magnification bias on top of density fluctuations and redshift-space distortions. By restricting
our analysis to the regime where the Limber approximation holds true, we significantly
minimize the computational time needed, compared to that of the exact calculation. We also
show that there is a trend for more biased parameter estimates from neglecting magnification
when the redshift bins are very wide. We conclude that this result implies a strong dependence
on the lensing contribution, which is an integrated effect and becomes dominant when wide
redshift bins are considered. Finally, we note that instead of being considered a contaminant,
magnification bias encodes important cosmological information, and its inclusion leads to an
alleviation of its degeneracy between the galaxy bias and the amplitude normalization of the
matter fluctuations.

Key words: cosmological parameters – cosmology: observations – cosmology: theory –
large-scale structure of Universe..

1 IN T RO D U C T I O N

Our current understanding of the Universe’s properties, evolution,
and present-day composition has reached a degree of maturity
unthinkable of only 50 yr ago. This concordance picture tells us of an
accelerating cosmic expansion at recent times – well accommodated
by a cosmological constant, � – and of a large-scale structure (LSS)
formed through accretion of inhomogeneities in the distribution
of matter – mainly constituted by cold dark matter. This is the
widely known �CDM model, which has proven itself successful in
describing the majority of the observations.

Undoubtedly, the cosmic microwave background (CMB) has
hitherto been cosmology’s treasure cove, and the Planck satellite

� E-mail: tanidis@to.infn.it

final data release provided us with the tightest constraints on
cosmological parameters (Planck Collaboration VI 2018). However,
most of the available information has been extracted by now –
albeit the future of CMB studies is still bright, with the prospects
of taming uncertainties on polarisation measurements down to the
cosmic variance limit (see e.g. Abazajian et al. 2016; Ade et al.
2019; Hazumi et al. 2019). Hence, there is nowadays a high level of
expectations for LSS observational campaigns. Indeed, the LSS is
potentially even more informative that the CMB because of its 3D
nature (compared to the thin redshift slice around the last-scattering
surface), and the study of the cosmic web can teach us about the
non-linear behaviour of gravity as well.

One of the main probes of the LSS is the clustering of galaxies,
as it has been convincingly demonstrated in many an instance (e.g.
Beutler et al. 2012; Parkinson et al. 2012; Howlett et al. 2015; Alam
et al. 2017; Pezzotta et al. 2017). This field of research is nowadays
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entering a new era with the construction of a series of futuristic ex-
periments. The forthcoming galaxy surveys will be game-changing
probes of the LSS, observing from millions to billions of sources
at different wavelengths and exploiting various techniques. A few
examples of LSS experiments that will take data in the near future
are the European Space Agency’s satellite Euclid (Laureijs et al.
2011; Amendola et al. 2013, 2018), the Large Synoptic Survey
Telescope (LSST Dark Energy Science Collaboration 2012), or the
Dark Energy Survey Instrument (Aghamousa et al. 2016), in the
optican/near-infrared (IR) band; and the Square Kilometre Array
(SKA; Abdalla et al. 2015; Maartens et al. 2015; Bacon et al. 2018)
and its precursors, at radio frequencies.

For the aforementioned reasons, in a companion paper (Tanidis &
Camera 2019; hereafter, Paper I) we set forth on a path to develop
a unified pipeline for LSS data analysis with power spectra in
harmonic space. We deem this a worthwhile purpose, urged by
the consideration that the range of scales and redshifts probed by
forthcoming surveys likely calls for a change of paradigm in the
treatment of the data and the theoretical modelling. In the present
paper, we focus on one of the SKA precursors, the Evolutionary
Map of the Universe (EMU, Norris et al. 2011) radio-continuum
survey on the Australian SKA Pathfinder (ASKAP) telescope.
Unlike the photometric (optical/near-IR) and the spectroscopic
(optical/near-IR or H I-line galaxy survey in the radio) experiments,
radio continuum surveys like EMU have the advantage of being
able to scan very quickly large areas of the sky by averaging
over all frequencies, thus increasing the signal-to-noise ratio of
each source. Despite the fact that the deep and fast scanning in
redshift space can detect a large number of galaxies, including
also very faint sources, their redshift estimation is quite poor.
Given the insufficient redshift information, the angular tomographic
clustering is usually adopted to analyse radio continuum galaxy
catalogues, instead of the more usual 3D Fourier-space power
spectrum.

In this paper, we move past the Fisher matrix approach hitherto
employed, to a full likelihood-based analysis. We particularly turn
our interest to the investigation of the cosmological information
encoded in the weak lensing effect of magnification bias on the
density fluctuations of the galaxy field (see Bartelmann & Schneider
2001, for a seminal review on gravitational lensing). This effect is
widely known and is due to the weak lensing contribution caused
by the underlying matter field. It induces a modulation in the
clustering signal across redshift bins, inducing a correlation between
background and foreground sources.

The paper is outlined as follows. In Section 2, we introduce
the harmonic-space angular power spectrum C

g
� (zi, zj ) with and

without the magnification bias correction, and implement it in the
publicly availableCosmoSIS code (Zuntz et al. 2015). In Section 3,
we present the EMU survey specifications and simulation results
used to construct the tomographic redshift bins that will be later
applied in the analysis. In Section 5.1, we perform a comparison
test between our Limber approximated CosmoSIS code version
and the full solution obtained with CLASS (Lesgourgues 2011;
Blas, Lesgourgues & Tram 2011; Di Dio et al. 2013). In Section 4,
we present the theoretical models considered, while the likelihood
for the forecast is presented in Section 5. In Section 6, we examine
in detail the Bayesian analysis of an idealistic and two realistic
scenarios for the cosmological models considered, and we also
show that the redshift-space distortions (RSDs) correction to the
density field has negligible effect in our case. Finally, in Section 7,
we present our concluding remarks.

2 G A L A X Y C L U S T E R I N G IN H A R M O N I C
SPAC E

Here, we describe how to construct the galaxy clustering (tomo-
graphic) angular power spectrum, C

g
� (zi, zj ), including contribu-

tions from density fluctuations, RSDs, and magnification bias. To
ensure the robustness of our cosmological results, we use only linear
scales (see Jalilvand et al. 2019, for a study on non-linearities in
angular spectra) in a region where the Limber approximation holds
true (Limber 1953; Kaiser 1992). In the following analysis, we
implement this framework in a modified version of the CosmoSIS
package. The treatment in our analysis follows closely that of Paper
I, to which we refer the reader for any clarification.

Let us start from the linear Fourier-space matter power spectrum:

Plin(k, z) = 8π2

25
H−4

0 �−2
m g−2

∞ D2(z)T 2(k)Pζ (k)k, (1)

where �m is the total matter fraction in the Universe, and H0

the Hubble constant at present. Furthermore, we take advantage
of the fact that scale and redshift dependence can be consid-
ered separately when the anisotropic stress is not present, as
in general relativity after radiation domination. Thus, a scale-
dependent transfer function T(k) and a redshift-dependent growth
factor D(z) can be defined, while g∞ = limz → ∞(1 + z)D(z) �
1.27. (Normalizations require D(z) = 1 at z = 0 and T(k) = 1
for k → 0.) The term Pζ (k) = As(k/k0)ns−1 is the dimensionless
primordial curvature power spectrum, with As being the ampli-
tude and ns the spectral index. Hereafter, we shall often use
the shorthand notation Plin(k) ≡ D−2(z)Plin(k, z) = T 2(k)Pζ (k),
which represents linear matter power spectrum at present; we also
define T (k) = (4/5)πH−2

0 �−1
m g−1

∞ T (k)k1/2.

2.1 Galaxy number counts and magnification bias

It is well known that light ray paths experience deflections by the
intervening matter distribution lying on the line-of-sight direction.
This induces distortions in the images of distant objects; such
distortions, in the weak lensing limit, are usually decomposed into a
‘convergence’ κ and a ‘shear’ γ . The former – a surface mass density
integrated along the line of sight – is responsible for changing
the apparent size of a distant galaxy’s image, whilst the latter – a
complex, spin-2 quantity – stretches an observed galaxy’s shape
in different directions, making for instance ellipses out of circles
(see Clarkson 2016, for some beautiful and intuitive illustrations
of lensing distortions). In turn, convergence and shear are jointly
responsible for the magnification:

μ = ∣∣(1 − κ)2 − |γ |2∣∣−1
. (2)

Cosmic magnification has been first measured by cross-
correlating high-redshift quasars with the low-redshift galaxies
observed by the Sloan Digital Sky Survey (Scranton et al. 2005),
and later with galaxy–dust and galaxy–mass correlations by Ménard
et al. (2010). The same effect was detected with normal galaxy
samples using the Canada–France–Hawaii-Telescope Legacy Sur-
vey measurements (Hildebrandt, van Waerbeke & Erben 2009).
Furthermore, the magnification bias has been proposed as a probe
for the investigation of the primordial magnetic fields (Camera,
Fedeli & Moscardini 2014).

Besides being a lensing observable per se (e.g. Van Waerbeke
2010), magnification contributes to the observed correlation
of galaxy number counts (Yoo 2010; Bonvin & Durrer 2011;
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Challinor & Lewis 2011). The effect of magnification on the
observed clustering is due to foreground galaxies effectively acting
as lenses for sources in the background. On the one hand, images of
a fixed set of sources are distributed over a larger solid angle, thus
reducing the number density by a factor μ−1. On the other hand,
the magnification allows for the observation of fainter sources, as
the flux threshold is likewise lowered by the μ−1 factor. Now, if
Ng is the comoving number density of galaxies above a certain flux
threshold F∗ (or, equivalently, below some magnitude threshold
m∗), we can define

Q = − ∂ ln Ng

∂ ln F

∣∣∣∣
F ∗

= 5

2

∂ log10 Ng

∂m

∣∣∣∣
m∗

. (3)

Hence, in the weak lensing regime where μ ≈ 1 + 2κ , it can be
seen that the fluctuations in galaxy number counts, δg, get a further
contribution from lensing. This is modulated by Q, for which
reason is called ‘magnification bias’.1 Specifically,

δg = b δ + (ni∂i)2

H V + 2(1 − Q)κ, (4)

where b is the linear galaxy bias, δ is the matter density contrast
(expressed in the comoving-synchronous gauge), H is the
conformal Hubble factor, V is the velocity potential, ni denotes a
galaxy’s line-of-sight direction, and the calculation is performed in
the longitudinal gauge. The first term in equation (4) is the usual
Newtonian density fluctuations, the second term is RSDs, and the
last is the magnification contribution.

The inclusion of the lensing magnification in cross-correlation
and autocorrelation of galaxy clustering and cosmic shear has
been studied with Fisher analysis (Duncan et al. 2013; Villa, Di
Dio & Lepori 2018; Thiele, Duncan & Alonso 2019; Vanessa
Böhm & Castorina 2019), where it has already been suggested that
the ignorance of the magnification bias may induce a bias in the
cosmological parameter estimation. Here, we test this hypothesis
by performing a full likelihood mock data analysis.

2.2 The observed galaxy number count angular power
spectrum

The galaxy number count angular spectrum on linear scales can be
written as

C
g
� (zi, zj ) = 4π

∫
d ln kPζ (k)Wg

� (k; zi)Wg
� (k; zj ), (5)

with the redshift-integrated kernels given by

Wg
� (k; zi) = T (k)

∫
dχ D(χ )

{
b(χ )ni(χ )j�(kχ )

−f (χ )ni(χ )j ′′
� (kχ ) + 2 [Q(χ ) − 1] w

κ,i
� (k, χ )j�(kχ )

}
, (6)

where χ is the comoving distance to redshift z, j� the �th-order
spherical Bessel function, f ≡ −(1 + z)dln D/dz is the growth rate,

w
κ,i
� (k, χ ) = 3�mH 2

0

2k2
[1 + z(χ )] �(� + 1)ñi(χ ) (7)

1An alternative notation is also known in the literature, with s = 2Q/5.

is the lensing weight for the galaxy redshift distribution in the ith
redshift bin, ni(χ ), and we have defined

ñi(χ ) =
∫ ∞

χ

dχ ′ χ ′ − χ

χ ′χ
ni(χ ′). (8)

Note that, unless otherwise stated,
∫

dz ni(z) = 1 and ni(χ )dχ =
ni(z)dz hold true.

If we compare equations (6) and (4), the effect of projecting in
harmonic space becomes clear:

(i) Each different contribution to the fluctuations in the galaxy
number density, δg, is modulated by a peculiar quantity – the bias
for the matter density contrast, the growth rate for the RSDs, and
the magnification bias for the lensing convergence.

(ii) Each contribution is weighted by the galaxy distribution
in the redshift bin considered – note that lensing convergence
is an integrated effect, weighted by a geometric factor, so that
the source redshift distribution does not enter explicitly the third
term of equation (6), but is integrated along the line of sight via
equation (7).2

(iii) Each contribution is projected according to its specific
spherical Bessel function – e.g. for RSDs it is derived twice because
it is a projected radial derivative.

If we are interested in constraining standard cosmological
parameters, the lowest multipoles, corresponding to ultralarge
scales, are of little interest (Camera, Maartens & Santos 2015b;
Lorenz, Alonso & Ferreira 2018). This allows us to resort to the
Limber approximation, thus getting rid of the integration of the
spherical Bessel functions, which is computationally expensive
and highly oscillating, thus inducing numerical instabilities. It is
worth noting, however, that there are nowadays publicly available
routines implementing fast Fourier transforms, such as AngPow
(Campagne, Neveu & Plaszczynski 2017), which can be applied for
the computation of tomographic power spectra beyond the Limber
approximation in the case one was interested to the largest scales or
wanted to reduce the multipole cuts for cross-bin correlations, (see
also Chisari et al. 2019).

The Limber approximation works well for � � 1, and the
spherical Bessel functions are replaced by a Dirac Delta, viz.

j�(kχ ) −→
��1

√
π

2� + 1
δD

(
� + 1

2
− kχ

)
. (9)

By implementing this into equation (5), we get

C
g,den+mag
��1 (zi, zj )

=
∫

dχ
Wi

g(χ )Wj
g (χ )

χ2
Plin

(
k = � + 1/2

χ

)
, (10)

with

Wi
g(χ ) = Wi

g,den(χ ) + Wi
g,RSD(χ ) + Wi

g,mag(χ ). (11)

Here, we have split the contributions into three separate window
functions: the standard one, for density fluctuations,

Wi
g,den(χ ) = ni(χ )b(χ )D(χ ); (12)

2In fact, the convergence is the Laplacian of the gravitational potential on the
image plane, which accounts for the terms in front of ñi (χ ) in equation (7):
the first two are due to the Poisson equation to go from the potential to the
density, and the third one is the Laplacian in harmonic space.
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the one for RSDs, found in Paper I to be

Wi
g,RSD(χ ) = 2�2 + 2� − 1

(2� − 1)(2� + 3)

[
nif D

]
(χ )

− (� − 1)�

(2� − 1)
√

(2� − 3)(2� + 1)

[
nif D

] (
2� − 3

2� + 1
χ

)

− (� + 1)(� + 2)

(2� + 3)
√

(2� + 1)(2� + 5)

[
nif D

] (
2� + 5

2� + 1
χ

)
;

(13)

and that of magnification bias,3

Wi
g,mag(χ ) = 3�(� + 1)

(� + 1/2)2
�mH 2

0 [1 + z(χ )]

×χ2ñi(χ ) [Q(χ ) − 1] D(χ ). (14)

3 SURVEY SP ECIFICATIONS

As mentioned in Section 1, we decide to focus on radio continuum
surveys because they are an ideal test case for magnification,
thanks to their unrivalled depth. The NRAO VLA Sky Survey
(Condon et al. 1998) has been the primary source of data for
previous cosmological analyses based on radio continuum galaxies
(e.g. Boughn & Crittenden 2001; Overzier et al. 2003; Boughn &
Crittenden 2004; Nolta et al. 2004; Smith, Zahn & Doré 2007;
Afshordi & Tolley 2008; Ho et al. 2008; Raccanelli et al. 2008;
Xia et al. 2011; Rubart & Schwarz 2013; Giannantonio et al.
2014; Nusser & Tiwari 2015; Planck Collaboration XXI 2016). The
potentiality of oncoming radio continuum surveys for cosmology
has also been extensively studied in recent years (Bertacca et al.
2011; Camera et al. 2012; Raccanelli et al. 2012; Ferramacho et al.
2014; Jarvis et al. 2015; Raccanelli et al. 2015; Camera, Santos &
Maartens 2015a; Ballardini et al. 2018; Karagiannis et al. 2018;
Scelfo et al. 2018; Bernal et al. 2019).

For the present analysis, we adopt the specifications of the
Evolutionary Map of the Universe (EMU). EMU is a deep radio-
continuum full-sky survey (Norris et al. 2011) at ASKAP (Johnston
et al. 2007, 2008), whose goal is to detect extragalactic objects
in the continuum across the entire southern sky, up to δ = +30◦.
Even though ASKAP was designed as a precursor to the SKA,
the large field of view, accurate pointing and angular resolution,
and sensitive phased-array feeds will render it the foremost radio
survey instrument in the frequency range around 1 GHz during the
next decade. The EMU survey, covering such a wide area, and going
much deeper than previous large-area radio continuum surveys, will
be able to map the large-scale distribution of matter over a larger
volume than has previously been possible, and so will be ideal to
investigate extensions of the �CDM model (Camera et al. 2012;
Raccanelli et al. 2012; Bernal et al. 2019).

EMU will cover an area of 30, 000 deg2 with a sensitivity
of 10μJy per beam rms, and a resolution of ∼ 10 arcsec, over
the frequency range of 800–1400 MHz. To estimate the redshift
distribution n(z) of active galactic nuclei and star-forming galaxies,
a 10σ detection limit of 100μJy is assumed, and galaxies are
sampled from the mock catalogues generated by the SKA Simulated
Skies (S-cubed)4 simulations down to that limit. The distribution of

3Note that the multipole factors in equation (14) are usually omitted in the
literature when describing magnification in the Limber approximation, as
easy to see that they cancel each other out in the limit � � 1.
4http://s-cubed.physics.ox.ac.uk/downloads/S3Tools.pdf

Table 1. Estimated number densities, galaxy bias, and magnification bias
for EMU sources grouped in two redshift bins.

Bin zmin zmax # of gal. (× 106) Bias Mag. bias

1 0.0 1.0 10.68 0.833 1.050
2 1.0 6.0 11.58 2.270 1.298

Table 2. Same as Table 1, but for EMU sources grouped in five redshift
bins.

Bin zmin zmax # of gal. (× 106) Bias Mag. bias

1 0.0 0.5 5.55 1.000 0.953
2 0.5 1.0 5.13 1.124 1.273
3 1.0 1.5 4.43 1.920 1.569
4 1.5 2.0 2.70 3.250 1.176
5 2.0 6.0 4.05 4.046 0.964

redshifts and magnitudes from these mocks is used to estimate the
overall n(z), and also the magnification bias, Q(z).

Under the assumption that additional external data will be
available for the redshifts of part of EMU galaxies (e.g. cross-
identifications, McAlpine et al. 2012; Bayesian hierarchical models,
Harrison, Lochner & Brown 2017; or so-called clustering redshifts,
Ménard et al. 2013), we here scrutinize two binning scenarios. The
former, in which we assume we can differentiate only between low-
and high-redshift galaxies (divide set at z = 1), is more conservative;
the latter sees five redshift bins, four of which of width �z = 1 below
z = 2, and the fifth collecting all the galaxies above. The expected
numbers for these settings are given in Tables 1 and 2.

We discussed above that radio continuum surveys lack informa-
tion in redshift and therefore the most realistic representation of the
galaxy sampling in redshift space is that of residing in Gaussian
bins. However, we decide to consider the case of sharp top-hat bins
that are not correlated in redshift. We apply this mostly for the sake
of fully exploring the potential of magnification. The magnification
bias is expected to induce a correlation even between uncorrelated
redshift bins, in a sense that the lower z bins are the ‘lenses’
and the high-z bins the ‘sources’. Thus, it is worth investigating
magnification in this case, too, implemented at least at the �CDM
scenario.

Given that dN is the number of galaxies inside a bin of width dz,
the redshift distribution of sources is N(z) = dN/dz.5 Then, the N(z)
points are fitted with a seventh order polynomial, n(z), by which
we denote the total number counts of sources with redshift. The
distribution of sources residing in the ith bin thus is ni(z), and the
angular number counts of galaxies reads

n̄i =
∫

dz ni(z). (15)

Therefore, the total number counts of galaxies is simply n̄ = ∑
i n̄i .6

The final, fitted redshift distributions, convolved with the bins, are
shown in Fig. 1.

5The number of sources has also been calculated in very narrow 32 redshift
bins, which are not shown here for clarity.
6Note again that ni(z) is normalized to unity in the equations of the previous
section, like equations (6), (12), (13), and (14), meaning that it has to be
read as ni (z)/n̄i .
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Figure 1. The EMU galaxy redshift distribution for top-hat (left-hand panels) and Gaussian (right-hand panels) binning. The top and bottom panels present
the TWO and the five bins, respectively.

Top-hat bins (left-hand panels of Fig. 1) have been modelled as

ni(z) = 1

2

{
1 − tanh

[ |z − z̄i | − σ

rσ

]}
, (16)

where z̄i is the centre of the ith bin, σ the half top-hat width, and r
the smoothing edge, which we fix to 0.03. The smearing ensures the
numerical stability in the integration over the bin. Instead, to model
Gaussian bins, we consider the ranges zmin and zmax of Tables 1 and
2, and defined

ni(z) = 1

2
n(z)

[
erfc

(
zi

min − z√
2σ (zi

min)

)
− erfc

(
zi

max − z√
2σ (zi

max)

)]
. (17)

Note that, in this latter case, we introduce a redshift dependence of
the scatter of the distribution, σ (z). Specifically, we adopt a quite
large uncertainty, σ (z) = 0.1(1 + z). The Gaussian bins are shown
in the right-hand panels of Fig. 1.

4 C O S M O L O G I C A L M O D E L S

In this work, we will investigate the vanilla �CDM model and
two of its most popular extensions: the case of a dynamical dark
energy (DE) component and a phenomenological modified gravity
(MG) model. All the model parameters are summarized in Table 3.
For �CDM, we present the constraints for the parameter set
{�m, h, σ8} alone, whilst the other parameters are fixed to their
fiducial values.

4.1 Dark energy

The first extension to the �CDM model is a dynamical DE model
where the DE equation of state is not constant throughout the cosmic
history, but it is rather allowed to evolve with time. According to
Chevallier & Polarski (2001) and Linder (2003) (hereafter CPL),
by Taylor expanding an evolving DE equation of state and keeping
only the first-order term we have

wDE(z) = w0 + wa

z

1 + z
. (18)

Therefore, we add to the �CDM model the parameter set both w0

and wa.

4.2 Modified gravity

An alternative explanation for the late-time accelerated cosmic
expansion is offered by MG. This approach sees the effects we
ascribe to DE (and even dark matter) are in fact due to our wrong
interpretation of the data in a regime where general relativity no
longer holds (Clifton et al. 2012). For the purpose of our paper, we
assume a popular phenomenological parametrization accounting
for the peculiar effect of MG on structure formation (Amendola,
Kunz & Sapone 2008; Zhao et al. 2010; Dossett et al. 2015).
Specifically, we can assume a modified Poisson equation

∇2� = 4πGQa2ρ̄δ, (19)
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Table 3. Prior ranges and fiducial values on the nuisance and cosmological parameters (�CDM best fit of Ade et al. 2016). Some parameters are purposely
allowed to have wider or narrower prior ranges due to the difference in the constraining power of the results depending on the number of the bins considered.
(When two sets of values are present, values in parentheses refer to the five-bin case, as opposite to those outside that are relative to the two-bin case.).

Parameter description Parameter symbol Fiducial value Prior type Prior range

Present-day fractional matter density �m 0.3089 Flat [0.1, 0.6]
Dimensionless Hubble parameter h 0.6774 Flat for two (five) bins [0.3, 1.0]([0.5, 1.0])
Amplitude of clusteringa σ 8 0.8159 Flat for two (five) bins [0.4, 1.4]([0.5, 1.2])

Present-day fractional baryon density �b 0.0486 – –
Slope of the primordial curvature power spectrum ns 0.9667 – –
Amplitude of the primordial curvature power spectruma ln (1010As) 3.064 – –
Optical depth to reionization τ re 0.066 – –

Bias amplitude parameter for the whole redshift rangeb αEMU 1.0 Flat [0.4, 1.6]

Free bias amplitude in each redshift binc bi i = 1. . . 2(5) See Table 1(Table 2) Flat for two (five) bins [0.1, 3.5]([0.1, 9.0])

Present-day dark energy equation of state w0 −1.0 Flat [ − 3.0, 2.0]
Dark energy evolution parameter wa 0.0 Flat [ − 6.0, 4.0]

Modified gravity parameter Q0 1.0 Flat [0.0, 8.0]
Modified gravity parameter R0 1.0 Flat [ − 1.0, 8.0]

aInstead of setting the prior on the parameter As accounting for the matter perturbations amplitude, we opt for σ 8, following the convention in LSS.
bThe prior range reported on the parameter is applied in the ‘realistic’ scenario alone (notation mirrors Paper I).
cThe prior range reported on the parameter is applied in the ‘conservative’ scenario alone.

where Q is in principle a function of space and time, and acts as an
effective gravitational constant. Moreover, the two metric potentials
can be different, and the function R describes the ratio of the two,
viz.

R = �

�
. (20)

Thus, we add as free parameters the two present values of these
quantities, Q0 and R0. In fact, given that they are degenerate, it is
very convenient to define the derived parameter �0 = Q0(1 + R0)/2,
and therefore use the parameter set {Q0, �0} instead, along with
the parameters of the �CDM model.

5 ME T H O D O L O G Y

To forecast constraints on cosmological parameters, we follow
a likelihood-based approach. The first step is to estimate the
covariance matrix, ���′ , for our observable, namely the galaxy
clustering power spectrum in harmonic space given in equation (10).
We use the analytical form of the Gaussian covariance matrix, as
already implemented in CosmoSIS, with the following entries:

�
ij,kl

��′ = δ��′
K

2���fsky
[C̃g

� (zi, zk)C̃g
� (zj , zl) + C̃

g
� (zi, zl)C̃

g
� (zj , zk)],

(21)

where fsky the fraction of the sky covered by the survey, �� the
multipole range, δK the Kronecker symbol, and

C̃
g
� = C

g
� + δ

ij

K

n̄i
, (22)

is the observed signal – namely, signal plus shot noise, with n̄i

defined in equation (15).7 We employ N� = 20 multipole bins (see
Section 5.1 for the range adopted), and for all redshift and multipole

7In the denominator of equation (21), we use the notation of Joachimi &
Bridle (2010) and keep 2� instead of (2� + 1). This makes no difference for
our results since we are at the Limber limit allowing scales � � 1. Also,
the analysis is based on the effect of neglecting the magnification bias and

bin values we construct the full data vector d� = [Cg
�], as well as

the theory vector t�(θ ), which is a function of the parameter set, θ .
With all the above one can construct the χ2 as

χ2 =
�max∑

�,�′=�min

[d� − t�(θ )]T(���′ )−1[d� − t�(θ )], (23)

which is to be minimized for some specific values of the parameters.
Matrix transposition and inversion are denoted by ‘T’ and ‘−1’,
respectively.

5.1 Multipole cuts

Since Limber approximation is valid only at � � 1, we have
derived the �min below which we can trust no longer the angular
power spectra values computed via equation (10). To do so, we
compare results computed by our modified CosmoSIS code with
the full solution of the CLASS Boltzmann solver and keep only the
multipoles where the relative error between the two codes is below
5 per cent (see Paper I). We make this choice since this percentage
offset is within the standard deviation of the signal measurement.

Additionally, we apply an upper cut at �max = χ (z̄i)kmax, since
we ignore the non-linear scales in our analysis. Here, z̄i is the centre
of the ith redshift bin, whilst the maximum wavenumber is chosen
to be kmax = π /(2Rmin), where Rmin is the radius of a sphere inside
which the overdensity fluctuations at z = 0 have a value

σ 2(R) = 1

2π2

∫
dk k2Plin(k) |W (kR)|2 , (24)

with the spherical top-hat function being W(x) = 3j1(x)/x. The matter
density variance is chosen to be σ 2(Rmin) = 1, yielding kmax =
0.25 h Mpc−1.

The �min and �max cuts are applied to each bin pair according to the
all the configurations of the EMU distribution (see again Fig. 1),
and are shown in Table 4, where RSDs do not appear explicitly

therefore such a choice can be accepted safely at the cost of no loss of
generality.
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Table 4. The �min and �max values for all the EMU bin configurations. The former is specified as the point where the relative
error between CosmoSIS and CLASS angular power spectra measurements is below 5 per cent, while the latter in the limit where
�max = kmaxχ (z̄i ) with z̄i the centre of the ith bin.

Two redshift bins Five redshift bins
�min �max �min �max

Top-hat Gaussian Top-hat Gaussian
w/o mag w/ mag w/o mag w/ mag w/o mag w/ mag w/o mag w/ mag

3 2 2 2 480 2 2 2 2 257
10 12 10 10 1718 6 6 8 8 673
− − − − − 17 18 11 11 982
− − − − − 24 25 10 10 1215
− − − − − 24 25 9 9 1813

because we found that their inclusion does not affect the value of
�min. (On the other hand, �max does not depend on the terms included
in equation 10, as it is only a function of kmax and the central redshift
of the bin.)

6 R ESULTS A N D DISCUSSION

Let us summarize again here the cosmological parameter sets for
the three different cosmological models, θ� CDM = {�m, h, σ8},
θDE = θ� CDM ∪ {w0, wa}, and θMG = θ� CDM ∪ {Q0, �0}. In our
forecasting analysis, we use the Bayesian sampler Multinest
(Feroz, Hobson & Bridges 2009).

We forecast cosmological parameter constraints using both the
incomplete C

g,den
��1 and the correct Cg,den+mag

��1 spectra for the different
binning configurations of EMU, fitting the mock data using a
likelihood of the form described in Section 5. Note that for the
moment we neglect RSDs in the modelling of the synthetic data.
The reason for this will be come clear afterwards, and we discuss
the issue in Section 6.6. The mock-data vector d� is thus constructed
assuming the density perturbations and the magnification bias
described in Section 2, according to the fiducial cosmology given
in Table 3.

Additionally, we need to add a number of extra nuisance parame-
ters to our analysis, which will be marginalized over, in addition to
the cosmological parameters of interest. These nuisance parameters
model our ignorance on some underlying quantity such as the
galaxy bias, and depend also upon the binning strategy adopted.
We introduce three cases:

(i) An idealistic scenario, where the galaxy bias is perfectly
known, keeping its fiducial values as in Tables 1 and 2;

(ii) A realistic scenario, with an single bias amplitude parameter
spanning the whole redshift range, which is taken as a free
parameter;

(iii) A realistic, yet conservative scenario, allowing for a free
galaxy bias parameter per each redshift bin.

Let us finally remark that the magnification bias for each redshift
bin keeps its fiducial value as in Tables 1 and 2, and it remains fixed
throughout the analysis and for all the scenarios. Moreover, we
choose to take the means of the posterior distribution instead of the
best-fitting values to allow for safer conclusions in the case of highly
non-Gaussian posterior distributions (see Paper I). The results are
presented and discussed thoroughly in the next subsections where
we uniformly opt to show the constraints on the derived parameter:

S8 = σ8

√
�m

0.3
, (25)

which is better constrained than σ 8, and is not correlated with �m.
In all plots, the means of the posterior along with the 68 per cent
marginal errors for each parameter are shown.

6.1 Constraints on �CDM

In Fig. 2, we present the 68 per cent marginal confidence intervals
and the means on {S8, h} for two and five Gaussian bins – a binning
scenario closer to reality. As a general remark, we shall see that
whether we consider the realistic or the conservative scenarios,
the constraining power that we get from the correct model (i.e.
den + mag) is comparable. This is true for both binning configu-
rations, and as we will see in the following sections, this feature
remains the same in the cases of extensions of the �CDM model.

Results for top-hat bins are very similar to those obtained with
more realistic Gaussian bins, so we report the corresponding figure
and tables in section A, limiting ourselves to point out that the main
difference between Gaussian and top-hat binning is that the latter
sees mildly biased estimates for h even in the five-bin, one-nuisance
parameter case. This is mainly due to the slightly tighter constraints
obtained with top-hat bins in this configuration, meaning that the
observable is more sensitive to the Hubble constant because of the
better redshift resolution. Besides this, on a general ground, we see
no further, major difference between top-hat and Gaussian bins.
This has to be attributed to the fact that the bins considered for
the EMU distribution are quite wide regardless of the top-hat or
Gaussian bin choice.

None the less, the offsets in the parameter estimates obtained
with Gaussian bins are always a bit more pronounced compared to
top-hat bins. That is, Gaussian bins, given the poor redshift estimate,
are wider than the sharp top hats, and so have more sources with a
significantly different dynamical time, along the line of sight in the
same redshift bin. As a result, the wider the bin is, the larger the
magnification bias is, inducing a larger offset in the results when
excluded.

6.2 Two Gaussian bins

In the case where the galaxy bias is perfectly known – the idealistic
scenario, marked by ‘zero-nuisance parameters’ on abscissas of
Fig. 2 – it is evident that when we fit the mock data with the complete
model (the blue error bar), the input reference values are well within
the 68 per cent error interval calculated on both parameter, S8 and
h. On the other hand, when we assume the incomplete model (the
cyan error bar), namely ignoring the magnification contribution in
the theory vector, the estimates of {S8, h} are clearly biased with
respect to the input reference.
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Figure 2. EMU mean and 68 per cent confidence intervals on the derived S8 (left) and h (right) cosmological parameter for Gaussian binning as a function of
the number of nuisance parameters for the �CDM model. Note the different colours accounting for the number of bins and the combination of density and
magnification in the theory vector.

Table 5. Means and corresponding 68 per cent marginal error intervals on cosmological parameters for the EMU radio continuum
galaxy survey applying two Gaussian bins with the �CDM model.

Two Gaussian bins (�CDM)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.962 ± 0.045 0.830 ± 0.044 1.04 ± 0.34 0.82 ± 0.12 0.88 ± 0.25 0.81 ± 0.12
h 0.502 ± 0.059 0.686 ± 0.096 0.481 ± 0.066 0.69 ± 0.12 0.68 ± 0.14 0.68 ± 0.14

Then, in the realistic scenario we introduce a free galaxy bias
parameter αEMU for the whole redshift range (‘one-nuisance param-
eters’ mark on the x-axis). The results presented on the cosmological
set {S8, h} are then obtained after marginalizing over this nuisance
parameter. Interestingly, now the results on S8 are different. That is,
even with the incorrect model S8 becomes totally unconstrained (the
cyan error bar). The reason for this is that the galaxy density field is
highly sensitive to the galaxy bias. As a result, there is a degeneracy
between the galaxy bias and the amplitude of matter fluctuations,
S8. None the less, when we consider magnification, too (the blue
error bar), we lift this degeneracy considerably, and the error bar
shrinks.

Now, we examine the conservative scenario, where we allow
for a nuisance bias parameter for each redshift bin, bi, in the
range [0.1, 3.5] to be marginalized over (‘two-nuisance parameters’
tick). Constraints on S8 is quite similar to those of the realistic
scenario, with the incomplete model yielding a degenerate S8 (the
cyan error bar) estimate, in turn mitigated by the incorporation of
the magnification bias (the blue error bar) for the same reasons
mentioned above. On the contrary, we see no deviance in the h for
the wrong model (the cyan error bar). This is probably due to the
fact that we use a larger number of nuisance parameters, leading to
an overall broadening of the confidence intervals.

The findings for the case of two Gaussian bins are quantitatively
summarized in Table 5.

6.3 Five Gaussian bins

Let us now turn to the results obtained with five bins. Starting
from the idealistic case, where the galaxy bias is known exactly,
it is clear that there is no bias on any cosmological parameter

of interest when using the wrong model (the yellow error bar).
After marginalizing over the normalization bias parameter for the
whole redshift range (realistic scenario), a degeneracy between this
αEMU and S8 appears (the yellow error bar), in a similar fashion
to the two bin analysis with density only. In agreement with the
previous results, the correction of the magnification effect yields
more stringent constraints (the red error bar). Also, h estimated with
the incomplete model (the yellow error bar) stays consistent with the
fiducial cosmology for both the realistic and the conservative case.

It is worth noting that the picture changes in the conservative case
[now allowing this prior range (0.1, 9.0)] concerning the estimate
on S8 with the wrong model (the yellow error bar). In detail, this
estimate is biased for more than 68 per cent below the reference
value. However, the inclusion of magnification corrects for this bias
completely (the red error bar). The last result on S8 may seem a bit
unexpected, as it is evident from the analysis with the two bins that
both the realistic and the conservative scenarios yield comparable
results on S8 that are quite degenerate, yet not biased, with the
density-only model.8

To understand this, let us draw the reader’s attention to the galaxy
bias fiducial values of Table 2, chosen for the reference cosmology
to produce the mock data, it is evident that these values are quite
large. This is normal since the EMU survey as a radio continuum
experiment probes very high redshifts, where the galaxy bias is
expected to be rather large. In addition to this, we have already
proved that an incomplete model chosen to fit the correct data can

8It is worth mentioning that this degeneracy is also shown on σ 8 for the
cases of photometric and H I-galaxy surveys (see Paper I), when one tries
to fit mock data simulated assuming both density and RSDs, against spectra
including density fluctuations only.
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Table 6. Same as Table 5, but for the case of five Gaussian bins.

Five Gaussian bins (�CDM)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.826 ± 0.027 0.827 ± 0.026 0.83 ± 0.20 0.818 ± 0.099 0.62 ± 0.11 0.75 ± 0.11
h 0.699 ± 0.059 0.684 ± 0.057 0.698 ± 0.057 0.680 ± 0.055 0.683 ± 0.075 0.669 ± 0.072

sometimes be insufficient to describe it successfully, leading to a
misplaced/biased peak of the posterior. This, along with the fact
that the galaxy bias extends to high values, leads the incomplete
model to make erroneous overestimates of the galaxy bias nuisance
parameters, which are counterbalanced by a rather low and therefore
biased measurement on σ 8, which is of course imprinted on S8 as
well.

Despite this peculiar result for the incomplete model in the
conservative scenario for the five bins, generally the biased esti-
mates with the wrong model are those in the analysis with two
very wide bins described in the previous subsection. This leads
to the conclusion that the magnification contributing to the galaxy
clustering is very significant, and it may not be neglected when
wide redshift bins are chosen. This makes sense, too, since the
magnification bias of equation (14) is an integrated effect, implying
that the wider the redshift range of the sources who are inside the
bin, the more enhanced the effect of the magnification will be,
leading to important biases when it is not considered.

By comparing the results with the two-bin case, one can easily
appreciate that the constraints obtained with the five narrower bins
are tighter, especially on h. This can be attributed to the fact that the
parameter’s effect on the power spectrum can be determined through
an accurate determination of its redshift dependence, which is more
precise with narrower redshift bins.

The findings for the case of five Gaussian bins are quantitatively
summarized in Table 6.

6.4 Constraints on dark energy

Let us know move to the first extension to �CDM consid-
ered, namely dynamical DE as in Section 4.1. The 68 per cent
marginal confidence intervals and means on the cosmological set
{S8, h, w0, wa} are presented in Fig. 3, Tables 7 and 8.

Generally speaking, we find the same behaviour of constraints
on S8 and h as for �CDM, but there are a couple of points that none
the less differ from the �CDM results. The former is that in this
parametrization, the density-alone model for the five bins yields
a slightly biased result on h in the realistic scenario. The latter
concerns that, in particular, the idealistic case constraints are a bit
weaker than the �CDM ones. This, of course, is due to the addition
of the parameter set {w0, wa}, resulting in a larger statistical
uncertainty in the posterior, keeping even the constraints for the
wrong model and the two wide bins, consistent within 1σ from the
reference cosmology. Apart from that, regardless of the binning, a
correct modelling yields comparable results for the realist and the
conservative case, within 68 per cent from the fiducial values.

If we now focus on {w0, wa}, which constitutes one of the main
points of our paper. It is evident that for any binning applied
in the density-only model, since the reconstructed results are
always biased on both parameters whether we introduce nuisance
parameters to be marginalized over or not. In detail, we see that
the picture of the analysis with the two bins is independent of the
status of knowledge of the galaxy bias. The same is true for the

five bins, apart from the conservative case where we get weakened
results. It is worth noticing again that from the two configurations,
the five-bin choice yields better constraints. Indeed, after having a
look at the mean values estimated by the incomplete model, we can
really appreciate that the bias is more pronounced with the wider
bins (the cyan error bars compared to the yellow ones). Generally,
it is obvious that the correct model (blue in the two-bin and red in
the five-bin case) always accepts the fiducial values w0 = −1 and
wa = 0 within the 68 per cent marginal error.

Given these results, we infer that fitting the mock data with
the complete model containing the same full information (density
fluctuations and magnification) does not point to a spurious DE
extension of the �CDM model, which would not otherwise be the
case if we ignored the magnification. This demonstrates the fact that
the inclusion of the magnification bias on the galaxy density field is
indispensable, in order to avoid misinterpretation of the results on
the cosmological parameter estimation.

6.5 Constraints on modified gravity

Finally, Fig. 4, Tables 9 and 10 present the parameter constraints on
the MG model parameters {S8, h, Q0, �0}.

We see that for the two bins and for both the wrong (the cyan
error bar) and the correct (the blue error bar) model, the results on
{S8, h} are always within 68 per cent from the fiducial values, and
once again the same pattern follows, with the degeneracy on S8 and
its alleviation after magnification is added in the realistic and the
conservative case, which again give comparable results. When it
comes to the narrower five bins, we have a similar behaviour with
the exception that the constraints are more stringent, and there is
a biased underestimation of the S8 with the incomplete model (the
yellow error bar) in the conservative case. Also, the constraining
power here for both binning scenarios on the set {S8, h} is similar
to the case of dark energy.

Concerning the MG parameters {Q0, �0}, if any of these two
parameters deviates from unity, this would indicate that the �CDM
model possibly needs to be replaced by a modified theory of gravity.
None the less, we can see for both binning configurations and both
models that the results are comparable, while all the estimates are
unbiased with respect to the fiducial input value. In addition, the
narrower five redshift bins yield slightly tighter constraints than the
two-bin case.

Overall, we can conclude that even after ignoring the magnifica-
tion correction in galaxy clustering, we are not able to see a biased
result on the {Q0, �0} that would, incorrectly of course, imply that
the vanilla �CDM model is not the complete theory to describe the
mock data.

6.6 Including redshift-space distortions

At last, we examine the impact of RSDs in the analysis. In Paper
I, we have already presented results that show, for optical/near-IR
and radio H I-line galaxy surveys, that if one neglects RSDs when
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Figure 3. Same as Fig. 2, but for the dark energy parameter set.

Table 7. Same as Table 5, but for dark energy.

Two Gaussian bins (DE)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.78 ± 0.10 0.883 ± 0.083 0.92 ± 0.30 0.84 ± 0.10 0.77 ± 0.25 0.82 ± 0.10
h 0.68 ± 0.16 0.61 ± 0.13 0.66 ± 0.13 0.58 ± 0.13 0.74 ± 0.15 0.66 ± 0.12
w0 0.10 ± 0.66 − 0.96 ± 0.63 0.02 ± 0.67 − 1.22 ± 0.66 0.48 ± 0.55 − 0.84 ± 0.78
wa − TWO.8 ± 1.5 − 0.8 ± 1.8 − TWO.2 ± 1.4 − 0.6 ± 1.4 − 2.4 ± 1.1 − 1.2 ± 1.6

Table 8. Same as Table 6, but for dark energy.

Five Gaussian bins (DE)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.840 ± 0.035 0.839 ± 0.037 0.87 ± 0.22 0.812 ± 0.098 0.593 ± 0.085 0.73 ± 0.13
h 0.610 ± 0.068 0.666 ± 0.080 0.605 ± 0.060 0.663 ± 0.086 0.716 ± 0.087 0.632 ± 0.072
w0 − 0.35 ± 0.26 − 0.97 ± 0.25 − 0.33 ± 0.24 − 0.94 ± 0.26 0.02 ± 0.67 − 0.64 ± 0.44
wa − 1.64 ± 0.70 − 0.14 ± 0.68 − 1.68 ± 0.66 − 0.22 ± 0.74 − 2.2 ± 1.5 − 1.6 ± 1.6

fitting against the data, one can induce biases in the cosmological
parameter estimation.

In this case, we create the mock data including all terms in
equation (11). We focus on the idealistic scenario, where the

galaxy bias is perfectly known, as if no deviation from the results
described above is found in this case, we even less expect to
see any for the realistic and conservative cases. We constrain
the parameter set {�m, h, σ8} with four different constructions
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Figure 4. Same as Fig. 2, but for the modified gravity parameter set.

Table 9. Same as Table 5, but for modified gravity.

Two Gaussian bins (MG)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.897 ± 0.080 0.842 ± 0.062 0.97 ± 0.30 0.83 ± 0.11 0.84 ± 0.22 0.82 ± 0.11
h 0.60 ± 0.12 0.69 ± 0.12 0.59 ± 0.16 0.70 ± 0.13 0.70 ± 0.13 0.70 ± 0.13
Q0 0.85 ± 0.23 0.77 ± 0.30 0.88 ± 0.23 0.80 ± 0.29 0.74 ± 0.32 0.73 ± 0.38
�0 0.89 ± 0.12 0.89 ± 0.15 0.91 ± 0.12 0.91 ± 0.15 0.90 ± 0.15 0.91 ± 0.19

Table 10. Same as Table 6, but for modified gravity.

Five Gaussian bins (MG)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.829 ± 0.043 0.828 ± 0.037 0.82 ± 0.20 0.83 ± 0.095 0.591 ± 0.085 0.75 ± 0.10
h 0.711 ± 0.088 0.700 ± 0.077 0.712 ± 0.086 0.705 ± 0.080 0.713 ± 0.087 0.700 ± 0.086
Q0 0.83 ± 0.23 0.83 ± 0.23 0.83 ± 0.23 0.84 ± 0.22 0.75 ± 0.32 0.78 ± 0.33
�0 0.93 ± 0.12 0.92 ± 0.12 0.92 ± 0.12 0.92 ± 0.11 0.90 ± 0.15 0.92 ± 0.16

of the theory vector: (i) density only; (ii) density and magnifica-
tion (these two corresponding to what discussed in the previous
subsections); (iii) density and RSDs; and (iv) density, RSDs, and
magnification.

Fig. 5 presents the results for the four different models considered.
The left-hand panels show the constraints on the set {S8, h} for
the two-bin case. It is clear that there are biased estimates when
the theory model includes the density fluctuations alone or the
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Figure 5. EMU mean and 68 per cent constraints on the derived S8 (top) and h (bottom), cosmological parameter for two (left) and five (right) Gaussian bins
in a �CDM model where the galaxy bias is known exactly. Note that the data to be fitted are constructed incorporating both RSDs and the magnification bias
correction on the galaxy density field in a �CDM fiducial cosmology (the vertical dashed line).

density along with the RSDs correction, neglecting in both cases the
magnification bias. On the contrary, the theory model that contains
the full information (density, RSDs, and magnification) as the mock
data is well within 68 per cent from the reference fiducial values,
and so does the model that considers the density field and the
magnification flux, but ignoring now RSDs. As for the results of
the five-bin case shown in the right-hand panels, it is obvious that
the constraints are better on both S8 and h, while there are no
biased estimates at all with any of the three incomplete models
tested.

The above results, lead to the conclusion that the inclusion or
the ignorance of the RSDs correcting term on the galaxy number
counts, cannot affect our analysis at any extend, and can be safely
ignored in our study. The reason behind this is the very large width
of the redshift bins. Even when subdividing the redshift galaxy
distribution into five bins, they are still quite wide in the redshift
space, thus leading to a washing out of the RSD effect. Oppositely,
narrower bins call for the inclusion of RSDs (see Paper I). On the
other hand, this test provides a further confirmation that in the case
of radio continuum surveys like EMU, the magnification bias ought

to be included in the modelling, in order to avoid potential biases in
the cosmological parameter estimation.

7 C O N C L U S I O N S

In this work, we have aimed to assess the effect of correctly
including the weak lensing effect of magnification bias in galaxy
number counts in a fully likelihood-based parameter estimation
analysis. We have not only investigate standard �CDM param-
eters, as well compelling extensions such as dynamical DE and
a phenomenological parametrization to MG. To maximize the
impact of magnification – which, being lensing, is an integrated
effect – we have focused the analysis on the specifications of
deep radio continuum surveys using the Evolutionary Map of
the Universe as a reference, for which we chose both two (very
wide) and five (narrower yet broad) redshift bins. Moreover, we
have restricted the harmonic-space angular power spectrum to the
Limber approximation and the linear scales, and according to that,
applied cuts on the multipole range. Then, we have created mock
data including the magnification in the galaxy clustering and fit
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it with two theory vector constructions: one correctly including
magnification bias, and another neglecting lensing.

In addition to that, we introduced a number of scenarios regarding
the knowledge we have on the galaxy bias:

(i) An idealistic scenario where the galaxy bias is perfectly
known;

(ii) A pessimistic scenario where a free normalization galaxy
bias parameter is introduced at the whole redshift range;

(iii) A conservative scenario that allows for a nuisance galaxy
bias parameter for each bin.

Considering all these cases, we summarize here the most impor-
tant results obtained with the different cosmological models:

� CDM – Here, the results we obtained with both binning
configurations (Gaussian and top-hat) are comparable since the bins
are always wide enough. In detail, we saw that there are biased
estimates for the parameters {S8, h} when the galaxy bias is know
exactly and if we neglect the magnification effect. This bias is not
seen when we include nuisance parameters, but it is evident that
the wrong theoretical model yields unconstrained results on the
normalization of the power spectrum σ 8 that is degenerate with
galaxy bias. We lift this bias when we consider the magnification
flux that is independent of the galaxy bias. Another point is that when
the narrower binning is chosen, the parameters are more constrained
due to the better redshift precision on the power spectrum. In
addition to that, we appreciate in this case that there is a biased
measurement in the conservative case with the incomplete model on
S8 owing to the overestimate of the nuisance galaxy bias parameters.
This is also true for the following cosmological models that we
examined. The results from now on were obtained adopting the
more realistic case for the Gaussian redshift bins.

DE – Regarding the constraints on this CPL DE model, the
biased estimates are not seen when we include the wrong theory
vector in the two-bin case, except the biased result on h in the
pessimistic scenario with the five bins. Overall, as in the �CDM
model, there are better constraints with the narrow binning over
the wide one, and also degeneracy on S8 that is alleviated with the
magnification flux in the pessimistic and the conservative scenarios.
As for the results on {w0, wa}, in the all the cases and the scenarios
considered, the estimates with the incomplete model are biased.
In the wide binning, the bias is slightly more enhanced since the
magnification flux as a lensing effect becomes more important.

MG – When we examine the MG model, the results on {S8, h}
are similar to those of the CPL, but with the only bias now seen only
for the five-bin conservative case on S8. There are no biases on any
parameter out of the set {Q0, �0}, probably due to the multipole cut
applied on the very large scales which are not included and could
provide valuable information on extensions to general relativity.

In the final test we considered, we proved that the inclusion of the
RSD correction in the galaxy clustering is not important in the case
of radio continuum surveys like EMU, since the very poor redshift
knowledge leads to the dilution of the effect.

All the above results stress the importance that for the radio
continuum surveys, the incorporation of the magnification flux
is necessary on the one hand, to avoid biases on the estimated
parameters, and on the other hand, to break the degenerate relation
between σ 8 and the galaxy bias. Also, these biased estimates tend
to increase when very wide bins are considered, a results that

demonstrates the fact that the magnification effect becomes more
important with time.
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APPENDI X A : TOP-HAT BI NS

Here, we present in Fig. A1, Table A1, and Table A2 the means and
their corresponding 1σ confidence levels on the cosmological set
{S8, h} in the case of two wide and five narrower top-hat bins for
the ideal, the pessimistic, and the conservative scenario.
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Figure A1. EMU mean and 68 per cent constraints on the derived S8 (left) and h (right) cosmological parameter in top-hat (top) and Gaussian (bottom) bins
as a function of the number of nuisance parameters for the �CDM model. Note the different colours accounting for the number of bins and the density w/o
magnification spectra fitting.
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Table A1. Means and corresponding 68 per cent marginal error intervals on cosmological parameters for the EMU radio continuum galaxy survey applying
two top-hat bins with the �CDM model.

Two top-hat bins (�CDM)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.9415 ± 0.0560 0.8298 ± 0.0422 0.9960 ± 0.3248 0.8245 ± 0.1185 0.8379 ± 0.2269 0.8031 ± 0.1101
h 0.5244 ± 0.0763 0.6847 ± 0.0915 0.5281 ± 0.07530 0.7008 ± 0.1161 0.6857 ± 0.1296 0.6883 ± 0.1296

Table A2. Means and corresponding 68 per cent marginal error intervals on cosmological parameters for the EMU radio continuum galaxy survey applying
five top-hat bins with the �CDM model.

Five top-hat bins (�CDM)
Ideal scenario Realistic scenario Conservative scenario

den den + mag den den + mag den den + mag

S8 0.8119 ± 0.0205 0.8191 ± 0.0195 0.7996 ± 0.1921 0.8150 ± 0.1216 0.6204 ± 0.1003 0.7570 ± 0.0950
h 0.7191 ± 0.0435 0.6969 ± 0.0419 0.7199 ± 0.0436 0.6976 ± 0.0408 0.7003 ± 0.0547 0.6867 ± 0.0491

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 491, 4869–4883 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/4/4869/5652206 by U
niversity of the W

estern C
ape user on 12 February 2021


