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Abstract
Dividend paying European stock options are modeled using a time-fractional
Black–Scholes (tfBS) partial differential equation (PDE). The underlying fractional
stochastic dynamics explored in this work are appropriate for capturing market
fluctuations in which random fractional white noise has the potential to accurately
estimate European put option premiums while providing a good numerical
convergence. The aim of this paper is two fold: firstly, to construct a time-fractional
(tfBS) PDE for pricing European options on continuous dividend paying stocks, and,
secondly, to propose an implicit finite difference method for solving the constructed
tfBS PDE. Through rigorous mathematical analysis it is established that the implicit
finite difference scheme is unconditionally stable. To support these theoretical
observations, two numerical examples are presented under the proposed fractional
framework. Results indicate that the tfBS and its proposed numerical method are very
effective mathematical tools for pricing European options.
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1 Introduction
Since the discovery of the most celebrated Black–Scholes–Merton asset pricing formula in
the early 1970s, the application of Black–Scholes (BS) partial differential equations (PDEs)
in valuation of derivative instruments has become very popular. The popularity of the
approach is attributed to the extensively established evidence that it provides an effective
asset valuation tool.

In derivative markets, once the price evolution process for a particular asset is specified,
it is possible to address the question of how to price derivative contracts on this particular
asset. One of the most common derivative instruments in the markets is called an option.
It is a financial contract that gives the holder the right, but not obligation, to buy or sell
a specified quantity of an underlying asset, e.g., a stock, at a fixed price, called the strike
price, before or on the expiration date. Since it is a right and not an obligation, the holder
of the contract can decide not to exercise the option and let it expire worthless.

1The research herein was conducted while the first author was a PhD student at the University of the Western Cape.
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There are two main types of options, standard and nonstandard. Standard options are
further categorized as European or American type. The European options can only be
exercised at the expiration date, whereas the American options are more flexible and can
be exercised anytime at or before the expiration date. These options can further be divided
into two categories, call options (which give their holders the right to buy) and put options
(which give their holders the right to sell).

The study of stock markets dynamics via the classical approach is based on the well-
known efficient market hypothesis, i.e., martingale property of price movements. One of
the consequences of using classical asset pricing models is that it is almost impossible to
infer any information from historical price movements to predict the future. It is there-
fore imperative that, for one to better predict the future asset price movements, there is a
need to pay attention to the repeated patterns and trends observed in financial data. The
repeated patterns and trends in financial markets are mainly attributed to the following
facts: (i) the markets discount everything, (ii) price moves in trends depict investors psy-
chology (among other things), and (iii) history would mostly always repeat itself. There is
empirical evidence to this effect, see, for example [17, 33, 40] and references therein.

The design of option valuation models is centered around the assumption that the mar-
ket consists of a risky asset, for example, a stock, and a riskless asset, say a bond or a
bank deposit. Emanating from its assumptions, the classical BS approach suffers from
a few drawbacks, namely, (i) constant rates of return, (ii) constant volatility, and (iii) no
dividends, taxes, or transactional costs. However, in real life, interest rates are bound to
market forces and as such cannot remain static over a longer period of time. Based on
empirical evidence, most traded assets’ returns exhibit memory structures, see, for exam-
ple, [17, 33, 40] and references therein, regimes of uneven fluctuations [6, 25, 37], volatil-
ity smiles and clustering [5, 29, 37]. Weakening some of assumptions of the classical BS
approach, researchers suggested a few improved models, such as stochastic interest rate
models [12, 16], jump-diffusion models [14, 25, 26, 30, 46], stochastic volatility models
[6, 36, 37, 39], models with transactional costs [13, 19, 44, 45], as well as those with divi-
dend payments [4, 29, 36, 37].

Bielecki et al. [5] extended the no-arbitrage pricing theory to dividend-paying securi-
ties in discrete-time markets with transaction costs. They proved that when there are no
transaction costs on the dividends paid by the asset, the no-arbitrage condition under the
efficient friction assumption is proved to be equivalent to the existence of a consistent
pricing system. In the general case, when there are transaction costs on the dividends, the
no-arbitrage condition is open. This is so because, if an asset pays dividends, the asset price
falls by the amount of the dividend. No arbitrage opportunity arises because investors are
compensated with the same amount of price depreciation back in cash through dividends.

Recent pool of models with dividend payments includes, but is not limited to, [4, 29, 37]
and some references therein. Martin-Vaquero et al. [29] derived a stabilized explicit
Runge–Kutta method for computing the value of an American option on multiassets with
dividends. Rana and Ahmad [37] used the Glosten–Jagannathan–Runkle Generalized Au-
toregressive Conditional Heteroscedasticity (GJR-GARCH) forecasted volatility in pricing
European call options on dividend paying stocks. Ballerster et al. [4] derived a robust nu-
merical method for pricing vanilla options with discrete dividend payments.

Another notable setback of the classical BS approach and many of the revised versions
discussed above is that their PDEs involve integer order derivatives. According to Panas
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[33], integer order derivatives only capture localized information (change) around a point.
However, with changing market conditions which led to the evolution of a number of un-
usual structures in financial systems, such as repeated patterns and trends, heavy tailed-
ness in the distributions of asset returns, volatility smiles and clustering, present chal-
lenges to the use of models involving local derivatives. The need for better approaches is
thus very imperative.

The issue of memory in financial data has long been observed in a number of financial
systems, such as stock prices, gross domestic products (GDPs), interest rates, foreign ex-
change rates, equity prices, etc., see [17, 33, 40–42] and references therein. Garzareli et al.
[17] proved the existence of memory effects in the stock price series using a conditional
probability approach. Conventionally, the memory effect was measured by autocorrelation
functions, and this trend continued until recently when the fractal structures of financial
systems were discovered. The Hurst parameter and fractional derivative operators in mod-
els driven by fractal processes are increasingly becoming some of the most effective tools
for capturing the effects of memory in financial systems. To capture memory effects under
a classical BS setup, some researchers (see, for example, [21, 27, 28]) suggested replacing
the standard Brownian motion in the stock dynamic equation with a fractional Brownian
motion with Hurst parameter H ∈ [0, 1].

There has been a widespread application of fractional Brownian motions based mod-
els in finance. Edeki et al. [15], Jena et al. [20], Jumarie [21], Liang et al. [27], Mandel-
brot and Cioczek-Georges [28], and Wei-Gou et al. [40], just to mention a few, are some
of the authors who applied fractional calculus based models in pricing equities, wallets,
options, and to general portfolio optimizations problems. Fractional Brownian motions
based models have two very important properties, namely, self-similarity and long-range
dependence (heredity properties), see [33, 40] and references therein. These properties
allows for the capture and representation of the effects of extreme asset price movements.
They also help in explaining the effects of repeated patterns and trends observed in asset
price movements. Jumarie [24] pointed out that stock price volatility can be well captured
by a fractional Brownian motion which presents some random-like features suitable in
explaining the effects of uneven fluctuations in stock price movements.

It is important to note that memory effects come in two forms, the noise memory ef-
fects and trend memory effects. Incorporating a fractional Brownian motion as the un-
derlying process for the pricing dynamics only captures the noise memory effects [33].
Based on collective arguments in [7, 32, 34], fractional derivative based models are very
good mathematical tools for explaining dynamics of complex processes, irregular incre-
ments, and trend memory effects which are exhibited by a number of financial instru-
ments. To describe the trend memory effects, one replaces the integer order derivatives
with their corresponding (nonlocal) derivatives of fractional orders. The resultant PDEs
are often referred to as fractional partial differential equations (FPDEs). In the Black–
Scholes setup, there are three main classes of FPDEs, namely, the time-fractional Black–
Scholes (tfBS) PDEs, the space-fractional Black–Scholes (sfBS) PDEs, and the time–space-
fractional Black–Scholes (tsfBS) PDEs. With the tfBS-PDEs, the time derivative is replaced
by a corresponding fractional derivative of order α (0 < α ≤ 1), whereas in the case of sfBS-
PDEs the space derivatives are replaced by their corresponding fractional derivatives of
order α and β (1 < β ≤ 2). In the case of tsfBS-PDEs, one has a combination of the two.
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Assuming the stock price dynamics are driven by a non-Gaussian fractional dynamic
process, Jumarie [23] derived two sets of fractional BS equations, the time-fractional
(tfBS) and the time–space-fractional (tsfBS) PDE. Jumarie’s approach has been adapted
by a number of researchers, some designed numerical schemes for solving the FPDEs
and others applied the PDEs to pricing of different kind of options, see, for example,
[1, 2, 27, 29, 31].

Chen et al. [10] followed an approach almost similar to that of Jumarie [23], but in-
stead assumed that the stock price dynamics follows a standard Brownian motion as in
the classical BS setup, while analogously replacing the integer derivatives with their cor-
responding fractional-order derivatives. Chen et al. [10] demonstrated that, using either
their approach or that of Jumarie [23], one obtains similar results.

Recently, Edeki et al. [15] and Jena [20] proposed an analytical and a semianalytical so-
lution to fractional option pricing models. In [15] an analytic solution to a time–space-
fractional Black–Scholes model is proposed using the Jumarie fractional derivative opera-
tor. The approach has been proven to be consistent with actual integer and fractional data
when compared with the classical Black–Scholes model. In [20] a novel semianalytical
technique for solving a Schrödinger-type option pricing time-fractional model governed
by a controlled Brownian motion was proposed. Their results are well in agreement with
other already established numerical, analytical, and semianalytical results.

Other recent developments in fractional calculus and its applications beyond finance
have been documented. Das and Samanta in [11] proposed a delayed fractional-order
prey–predator system with fear (felt by prey) effect of predator on prey population in-
corporating prey refuge. The authors also established theoretical results on the existence,
uniqueness, nonnegativity, and boundedness of the solutions to the proposed system. By
drawing an analogy to the spread dynamics of an infectious disease, Graefa et al. in [18] de-
rived a fractional-order susceptible–infected–removed (SIR) model to examine the user
adoption and abandonment of online social networks, where the adoption is analogous
to infection, and abandonment is analogous to recovery. Their results indicate that the
fractional model has a unique user-prevailing equilibrium that is globally asymptotically
stable. Their stability results also show that the infectious abandonment dynamics do not
contribute to the stability of the user-free and user-prevailing equilibria, and that it only
affects the location of the user-prevailing equilibrium. Another notable application of frac-
tional calculus can be found in [38], in which memory effects in infectious diseases are
modeled using a fractional susceptible–exposed–infectious–removed (SEIR) model, with
the fractional derivatives defined in the Caputo sense. Their results indicate that the frac-
tional model perform 35% better than the classical one.

Therefore, taking into account the results established in the reviewed literature, the aim
of this paper is two fold: firstly, the paper provides a detailed derivation of a case-specific
one-dimensional tfBS-PDE for pricing options where the underlying is governed by a frac-
tal stochastic process. To the best of our knowledge, this approach has not yet been fully
explored and still remains a subject of active research. Secondly, a robust unconditionally
stable numerical method for solving the derived tfBS-PDE is proposed.

The rest of this paper is organized as follow: Sect. 2 presents some mathematical pre-
liminaries on fractional differentiation. Specific focus is on the three common definitions
of derivatives of fractional orders. Simultaneously, this section provides a brief account of
work on the derivation of the tfBS-PDE for pricing options on dividend paying stocks. In
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Sect. 3, the derivation of an implicit finite difference scheme for solving the tfBS-PDE of
Sect. 2 is presented. The theoretical analysis and discussion of the stability and conver-
gence properties of the numerical scheme are discussed in Sect. 4. To substantiate and
validate the theoretical claims regarding the proposed numerical method, extensive nu-
merical experiments are presented in Sect. 5. Finally, some concluding remarks and scope
for further research directions are indicated in Sect. 6.

2 Time-fractional Black–Scholes (BS) equation
This section first presents some fundamental fractional derivative definitions, namely, the
Riemann–Liouville, Caputo, and Jumarie fractional derivatives. Secondly, a derivation of
the time-fractional Black–Scholes PDE for pricing options on stocks that pay continuous
dividends is presented.

2.1 Mathematical preliminaries on fractional differential operators
In most recent literature, derivatives of fractional orders are defined in the Caputo [9],
Riemann-Liouville [43], as well as in the Jumarie (modified Riemann–Liouville) [24] sense.
For a detailed treatment on different types of fractional derivatives, advantages and disad-
vantages of their usage, see [3] and references therein. Some other good discussions can
be found in [21–24]. The following fractional derivative definitions can also be found in
[9, 21–23, 43] among other literature.

Definition 2.1 (Caputo fractional derivative) Let f : R→R be a continuous, but not nec-
essarily differentiable function. The Caputo fractional derivative of order α is defined as
follows:

Dα
t f (t) =

1
�(η – α)

∫ t

0

dηf (τ )
dtη

1
(t – τ )α–η+1 dτ , η – 1 < α ≤ η;η ∈N. (2.1)

One of the main advantages of the Caputo fractional derivative is that it allows classical
initial and boundary conditions to be included in the formulation of the problem [8, 35].

Definition 2.2 (Riemann–Liouville fractional derivative) Let f : R → R be a continuous,
but not necessarily differentiable function. Then, the Riemann–Liouville fractional deriva-
tive of order α is given by

Dα
t f (t) =

1
�(η – α)

dη

dtη

∫ t

0

f (τ )
(t – τ )α–η+1 dτ , η – 1 < α ≤ η;η ∈N. (2.2)

The Riemann–Liouville derivative has certain disadvantages when trying to model
real-world phenomena with fractional differential equations, for example, the Riemann–
Liouville derivative of a constant is not zero. In addition, if an arbitrary function is a con-
stant at the origin, its fractional derivative has a singularity at the origin, for example, the
exponential and Mittag-Leffler functions. These disadvantages reduce the field of applica-
tion of the Riemann–Liouville fractional derivative [3]. Some of these disadvantages can
be circumvented by modifying the Riemann–Liouville definition, for example, as done by
Jumarie in [22] where he derived some interesting modifications of the Riemann–Liouville
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definition with the aid of fractional differencing theory coupled with his theory of Jumarie-
fractional (generalized) Taylor series. The definition by Jumarie takes into account the ex-
istence of a fractional derivative at t = 0, which is undefined in the definitions of Caputo
and Riemann–Liouville derivatives.

Definition 2.3 (Jumarie (modified Riemann–Liouville) derivative) Let f : R → R be a
continuous, but not necessarily differentiable function, and suppose f (t) is

(i) a constant K, then its Jumarie fractional derivative of order α is defined by

Dα
t f (t) =

⎧⎨
⎩

K
�(η–α) t–α+1–η, α ≤ η – 1,

0, α > η – 1,
(2.3)

(ii) not a constant, then

Dα
t f (t) =

1
�(η – α)

dη

dtη

∫ t

0

{f (τ ) – f (0)}
(t – τ )α

dτ , η – 1 < α ≤ η, (2.4)

where η ∈N.

Definition 2.4 (Fractional Taylor series) Let f : R →R be a continuous function that has
a derivative of order αζ , ζ being any positive integer, and 0 < α ≤ 1, then

f (t + κ) =

⎧⎨
⎩

∑∞
ζ=0

καζ

�(1+αζ ) f (αζ )(t), η – 1 < α ≤ η,

f (t) + κf ′(t) +
∑∞

ζ=1
κζ β̃+1

�(ζ β̃+2) f (ζ β̃+1)(t), β̃ = α – η,
(2.5)

where η ∈N.

2.2 Derivation of the time-fractional BS-PDE
In deriving the time-fractional BS-PDE, let us first assume that the stock price dynamics
follows the following fractional stochastic equation:

dS = rS dt + σω(t)(dt)α/2, 0 < α ≤ 1, (2.6)

where S and σ are respectively the price and volatility of the stock, r is the risk-free in-
terest rate, and ω(t) denotes the standard Wiener process. In the presence of continuous
dividends, denoted by δ, the above equation changes to

dS = (r – δ)S dt + σω(t)(dt)α/2, 0 < α ≤ 1. (2.7)

Let us also consider the following important identities, which, according to Jumarie [24],
are well consistent with the Jumarie fractional (generalized) Taylor series in (2.5):

dαt =
1

�(2 – α)
t1–α(dt)α , 0 < α ≤ 1, (2.8)

dαS = �(1 + α) dS, 0 < α ≤ 1, (2.9)
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and

dαS
(dS)α

=
1

�(2 – α)
S1–α , 0 < α ≤ 1. (2.10)

Combining (2.9) and (2.10) yields a formula which allows for the conversion of integer
derivatives to fractional derivatives, and vice versa:

dS =
S(1–α)

�(1 + α)�(2 – α)
(dS)α , 0 < α ≤ 1. (2.11)

Suppose V = V (S, t) represents the value of a European put option, and suppose that
V (S, t) satisfies the assumption

Assumption 2.5 The function V (S, t) is sufficiently smooth with respect to S and its α

derivative with respect to time exists for some α (0 < α ≤ 1).

Consider the risk-free investment interest rate dynamic equation

dV = rV dt. (2.12)

Multiplying both sides of (2.12) with �(1 – α) yields

�(1 – α) dV = �(1 – α)rV dt. (2.13)

Now, combining (2.13) with (2.9) yields the following variational fractional increment pro-
cess:

dαV = �(1 + α)rV dt. (2.14)

Equation (2.14), along with (2.11), yields the following fractional interest rate dynamic
equation:

dαV =
rV

�(2 – α)
t1–α(dt)α . (2.15)

Since V (S, t) is sufficiently smooth with respect to S and its α-derivative (0 < α ≤ 1) with
respect to t exists, applying the fractional Taylor series (2.5) of order α on V (S, t) up to
remaining error term yields

dV =
1

�(1 + α)
∂αV
∂tα

(dt)α +
∂V
∂S

dS +
1
2

∂2V
∂S2 (dS)2. (2.16)

Combining this with Itô’s lemma and equation (2.7) results in

dV =
1

�(1 + α)
∂αV
∂tα

(dt)α + (r – δ)S
∂V
∂S

dt +
1
2
σ 2S2 ∂2V

∂S2 (dt)α . (2.17)

Using the conversion formula (2.11) but in terms of t, dt in (2.17) is replaced with

dt =
t1–α(dt)α

�(1 + α)�(2 – α)
, (2.18)
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to obtain

dV =
1

�(1 + α)
∂αV
∂tα

(dt)α +
(r – δ)

�(1 + α)�(2 – α)
St1–α ∂V

∂S
(dt)α +

1
2
σ 2S2 ∂2V

∂S2 (dt)α . (2.19)

Multiplying both sides of (2.19) with �(1 + α) yields

�(1 + α) dV =
(

∂αV
∂tα

+
(r – δ)

�(2 – α)
St1–α ∂V

∂S
+

�(1 + α)
2

σ 2S2 ∂2V
∂S2

)
(dt)α . (2.20)

Using (2.15), the left-hand side of (2.20) can be rewritten as

�(1 + α) dV = dαV

=
rV

�(2 – α)
t1–α(dt)α . (2.21)

Using (2.21), along with (2.20), yields

rV
�(2 – α)

t1–α =
∂αV
∂tα

+
(r – δ)

�(2 – α)
St1–α ∂V

∂S
+

�(1 + α)
2

σ 2S2 ∂2V
∂S2 . (2.22)

Equation (2.22) can further be simplified into the following tfBS-PDE:

∂αV
∂tα

=
(

rV – qS
∂V
∂S

)
t1–α

�(2 – α)
–

�(1 + α)
2

σ 2S2 ∂2V
∂S2 , q = r – δ; 0 < α ≤ 1. (2.23)

A robust numerical scheme for solving the tfBS-PDE in (2.23) coupled with the following
boundary and terminal conditions is developed in the next section:

⎧⎪⎪⎨
⎪⎪⎩

V (S, 0) = max(K – S, 0),

V (0, t) = Ke–r(T–t),

limS→∞ V (S, t) = 0,

(2.24)

where K is the strike price of the European put option and T is the maturity time.

3 Numerical method
In this section, an implicit numerical method for solving (2.23) along with (2.24) is pre-
sented. To begin, let L and N be positive integers and define h = 1/L and k = 1/N as the
space and time step-sizes, respectively. Define Sl = lh; l = 0, 1, 2, . . . , L and tn = nk; n =
0, 1, 2, . . . , N , such that Sl ∈ [Smin, Smax] and tn ∈ [0, T]. Furthermore, define V n

l = V (Sl, tn)
as the solution at the grid point (Sl, tn) = (lh, nk).

Using the definition of Caputo fractional derivative given in (2.1) for η = 1, the time-
derivative in (2.23) can be approximated by

∂αV (Sl, tn)
∂tα

=
1

�(1 – α)

∫ tn

0

∂V (Sl, τ )
∂t

(tn – τ )–α dτ

=
1

�(1 – α)

n∑
j=1

∫ jk

(j–1)k

(
V j

l – V j–1
l

k
+ O(k)

)
(nk – τ )–α dτ
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=
1

�(1 – α)

n∑
j=1

(
V j

l – V j–1
l

k
+ O(k)

)(
(nk – (j – 1)k)1–α – (nk – jk)1–α

1 – α

)

=
1

�(1 – α)
1

1 – α

n∑
j=1

(
V j

l – V j–1
l

k
+ O(k)

)[
(n – j + 1)1–α – (n – j)1–α

]
k1–α

=
1

�(2 – α)
1

kα

n∑
j=1

[
V j

l – V j–1
l

][
(n – j + 1)1–α – (n – j)1–α

]

+
1

�(2 – α)

n∑
j=1

[
(n – j + 1)1–α – (n – j)1–α

]
O(k)k1–α

=
1

�(2 – α)
1

kα

n∑
j=1

(
V j

l – V j–1
l

)[
(n – j + 1)1–α – (n – j)1–α

]

+
1

�(2 – α)

n∑
j=1

[
(n – j + 1)1–α – (n – j)1–α

]
O

(
k2–α

)
. (3.1)

Shifting the indices in (3.1) yields

∂αV (Sl, tn)
∂tα

=
1

�(2 – α)
1

kα

n∑
j=1

(
V n–j+1

l – V n–j
l

)[
j1–α – (j – 1)1–α

]

+
1

�(2 – α)

n∑
j=1

[
j1–α – (j – 1)1–α

]
O

(
k2–α

)
. (3.2)

Let

ρα :=
1

�(2 – α)
1

kα
(3.3)

and

βj := j1–α – (j – 1)1–α ; j = 1, 2, . . . , n, (3.4)

such that 1 = β1 > β2 > · · · > βn → 0. Substituting ρα and βj into (3.2) yields

∂αV (Sl, tn)
∂tα

= ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
+

1
�(2 – α)

n∑
j=1

βjO
(
k2–α

)

= ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
+

1
�(2 – α)

n1–αO
(
k2–α

)

= ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
+

1
�(2 – α)

(
tn

k

)1–α

O
(
k2–α

)

= ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
+

t1–α
n

�(2 – α)
k. (3.5)



Nuugulu et al. Advances in Difference Equations        (2021) 2021:123 Page 10 of 25

The time derivative in (2.23) is therefore approximated by

∂αV (Sl, tn)
∂tα

= ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
+ O(k). (3.6)

One can clearly see that, for j = 1 and α = 1, the fractional difference formula (3.6) re-
duces to the classical finite difference formula

∂V (Sl, tn)
∂t

=
V n

l – V n–1
l

k
+ O(k).

Now, the first and second spatial derivatives in (2.23) are discretized using the usual
forward and central finite difference approximations, respectively, i.e.,

∂V (Sl, tn)
∂S

=
V n

l+1 – V n
l

h
+ O(h) (3.7)

and

∂2V (Sl, tn)
∂S2 =

V n
l+1 – 2V n

l + V n
l–1

h2 + O
(
h2). (3.8)

Substituting (3.6), (3.7), and (3.8) into (2.23) yields the following full scheme:

ρα

n∑
j=1

βj
(
V n–j+1

l – V n–j
l

)
=

(
rV n

l – (r – δ)l
(
V n

l+1 – V n
l
)) (nk)1–α

�(2 – α)

–
�(1 + α)σ 2l2

2
(
V n

l+1 – 2V n
l + V n

l–1
)
. (3.9)

Now (3.9) can be further simplified into

anlV n
l–1 + bnlV n

l + cnlV n
l+1 = (1 – β2)V n–1

l +
n–1∑
j=2

ϕjV
n–j
l + βnV 0

l , (3.10)

where

ϕj := βj – βj+1; j = 1, 2, . . . , n, (3.11)

and

anl = ρ–1
α

(
�(1 + α)σ 2l2

2

)
,

bnl = 1 – ρ–1
α

(
�(1 + α)σ 2l2 +

(r + (r – δ)l)(nk)1–α

�(2 – α)

)
,

cnl = ρ–1
α

(
�(1 + α)σ 2l2

2
+

(r – δ)l(nk)1–α

�(2 – α)

)
; l = 1, 2, . . . , L.

The matrix representation of the above scheme is given by

AnUn = ϕ1Un–1 + ϕ2Un–2 + · · · + ϕn–1U1 + βnU0, (3.12)
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which can further be written as

AnUn = bn, (3.13)

where

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1n b1n c1n 0 · · · · · · 0

0 a2n b2n c2n
...

...
. . . . . . . . .

...
... al–1n bl–1n cl–1n 0
0 · · · · · · 0 aLn bLn cLn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Un =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V n
0

V n
1
...

V n
L–1

V n
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

bn =
n–1∑
j=1

ϕjUn–j + βnU0.

Remark 3.1 The following observations can easily be verified:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 = β1 > β2 > · · ·βn → 0,

ϕ1 = 1 – β2,∑n–1
j=1 ϕj = 1 – βn,∑∞
j=1 ϕj = 1 > 1 – (21–α – (2 – 1)1–α) = 2 – 21–α = ϕ1 > ϕ2 > · · · → 0.

(3.14)

In the following section, theoretical analysis of the numerical scheme (3.9) is presented.

4 Analysis of the numerical method
In this section, theoretical results on the stability and convergence properties of the nu-
merical scheme (3.9) are presented.

4.1 Stability analysis
Let Ṽ n

l ; l = 0, 1, 2, . . . , L, n = 0, 1, 2, . . . , N , be an approximate solution obtained by using
(3.9).

Define the truncation error as follows:

εn
l = V n

l – Ṽ n
l , (4.1)

such that εn
0 = εn

L = 0 for all n.
Now setting n = 1 in (3.9) and simplifying further results in

ρ–1
α

(
�(1 + α)σ 2l2

2

)
V 1

l–1 +
(

1 – ρ–1
α

(
�(1 + α)σ 2l2 +

(r + (r – δ)l)(nk)1–α

�(2 – α)

))
V 1

l

+ ρ–1
α

(
�(1 + α)σ 2l2

2
+

(r – δ)l(nk)1–α

�(2 – α)

)
V 1

l+1 = V 0
l , (4.2)

which can be represented as

a1lV 1
l–1 + b1lV 1

l + c1lV 1
l+1 = V 0

l , (4.3)
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with

a1l = ρ–1
α

(
�(1 + α)σ 2l2

2

)
,

b1l = 1 – ρ–1
α

(
�(1 + α)σ 2l2 +

(r + (r – δ)l)(nk)1–α

�(2 – α)

)
,

c1l = ρ–1
α

(
�(1 + α)σ 2l2

2
+

(r – δ)l(nk)1–α

�(2 – α)

)
, l = 1, 2, . . . , L.

Using the error equation (4.1), along with (4.3), yields

a1lε
1
l–1 + b1lε

1
l + c1lε

1
l+1 = ε0

l , n = 1, (4.4)

and for n ≥ 2 the following error equation is obtained:

anlε
n
l–1 + bnlε

n
l + cnlε

n
l+1 =

n–1∑
j=1

ϕjε
n–j
l + βnε

0
l , n ≥ 2. (4.5)

In matrix notation, (4.4) and (4.5) can be written as

⎧⎨
⎩

A1En = E0, n = 1,

AnEn = ϕ1En–1 + ϕ2En–2 + · · · + ϕn–1E1 + βnE0, n ≥ 2,
(4.6)

where

En =

⎛
⎜⎜⎜⎜⎝

εn
1

εn
2
...

εn
L–1

⎞
⎟⎟⎟⎟⎠ . (4.7)

With the above notations and settings, the following theorem holds.

Theorem 4.1 The implicit finite difference scheme (3.9) is unconditionally stable and its
global error satisfies

‖En‖∞ ≤ ‖E0‖∞, for n = 1, 2, 3, . . . , N .

Proof Suppose n = 1 and let

∣∣ε1
m
∣∣ = max

1≤l≤L–1

∣∣ε1
l
∣∣. (4.8)

Then, using (4.4) results in

‖E1‖∞ =
∣∣ε1

m
∣∣

≤ ∣∣a1mε1
m–1 + bmlε

1
m + c1mε1

m+1
∣∣
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=
∣∣ε0

l
∣∣

≤ ‖E0‖∞, (4.9)

which implies that

‖E1‖∞ ≤ ‖E0‖∞.

Now suppose n ≥ 2, then

‖En–1‖∞ ≤ ‖E0‖∞.

Define

∣∣εn
m
∣∣ = max

1≤l≤L–1

∣∣εn
l
∣∣. (4.10)

Hence

‖En‖∞ =
∣∣εn

m
∣∣

≤ ∣∣anmεn
m–1 + bnmεn

m + cnmεn
m+1

∣∣
= |ϕ1En–1 + ϕ2En–2 + · · · + ϕn–1E1 + βnE0|
≤ ϕ1|En–1| + ϕ2|En–2| + · · · + ϕn–1|E1| + βn|E0|
≤ ϕ1‖En–1‖∞ + ϕ2‖En–2‖∞ + · · · + ϕn–1‖E1‖∞ + βn‖E0‖∞

≤ ϕ1‖E0‖∞ + ϕ2‖E0‖∞ + · · · + ϕn–1‖E0‖∞ + βn‖E0‖∞

= (ϕ1 + ϕ2 + · · · + ϕn–1 + βn)‖E0‖∞

=

( n–1∑
j=1

ϕj + βn

)
‖E0‖∞

= (1 – βn + βn)‖E0‖∞

= ‖E0‖∞. (4.11)
�

Therefore

‖En‖∞ ≤ ‖E0‖∞ for all n = 1, 2, . . . , N ,

which completes the proof of the theorem.

4.2 Convergence analysis
Let Un

l be the exact solution of (2.23) with condition (2.24) at the grid point (Sl, tn) and
define

en
l = Un

l – V n
l , (4.12)

such that en = (en
1, en

2, . . . , en
L–1)T and e0 = 0.
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Now since the errors en
l satisfy (3.10) and (4.3), the following is true for n ≥ 2:

anlen
l–1 + bnlen

l + cnlen
l+1 =

n–1∑
j=1

ϕje
n–j
l + Rn

l , (4.13)

and for n = 1,

a1le1
l–1 + b1le1

l + c1le1
l+1 = R1

l . (4.14)

In the above, the remainder term Rn
l is obtained from (3.9) by multiplying both sides of

the equation by kα�(2 – α). This gives

Rn
l =

n∑
j=1

βj
[
V (Sl, tn+1–j) – V (Sl, tn–j)

]
– μkαV (Sl, tn) – ωkα

[
V (Sl+1, tn) – V (Sl, tn

]

+ βkα�(2 – α)
[
V (Sl+1, tn) – 2V (Sl, tn) + V (Sl–1, tn)

]
, (4.15)

where

μ = rt1–α , ω = (r – δ)lt1–α , and β =
l2σ 2�(1 + α)

2
.

Define

Lα
k V (Sl, tn) :=

k–α

�(2 – α)

n∑
j=1

βj
[
V (Sl, tn+1–j) – V (Sl, tn–j)

]
, (4.16)

then

∣∣∣∣∂
αV (Sl, tn)

∂tα
– Lα

k V (Sl, tn)
∣∣∣∣

≤ 1
�(1 – α)

n∑
j=1

∫ jk

(j–1)k

∣∣∣∣∂V (Sl, τ )
∂τ

–
(V (Sl, tn+1–j) – V (Sl, tn–j))

k

∣∣∣∣ dτ

(tn – τ )α

≤ 1
�(1 – α)

k
n∑

j=1

∫ jk

(j–1)k

dτ

(tn – τ )α

≤ C
�(1 – α)

k
∫ jk

0

dτ

(tn – τ )α

≤ C1k, (4.17)

where C and C1 are constants independent of h and k. Therefore,

Lα
k V (Sl, tn) =

k–α

�(2 – α)

n∑
j=1

βj
[
V (Sl, tn+1–j) – V (Sl, tn–j)

]

=
∂αV (Sl, tn)

∂tα
+ C1k. (4.18)
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Further note that

V (Sl+1, tn) – V (Sl, tn)
h

=
∂V (Sl, tn)

∂S
+ C2h (4.19)

and

V (Sl+1, tn) – 2V (Sl, tn) + V (Sl–1, tn)
h2 =

∂2V (Sl, tn)
∂S2 + C3h2. (4.20)

Substituting (4.18)–(4.20) into (4.15) and simplifying yields

Rn
l = kα�(2 – α)

[
∂αV (Sl, tn)

∂tα
–

μ

�(2 – α)
V (Sl, tn)

–
ω

�(2 – α)
∂V (Sl, tn)

∂S
+ β

∂2V (Sl, tn)
∂S2

]

+C1k1+α + C2kαh + C3kαh2, (4.21)

where C2 and C3 are constants independent of h and k.
The following results follow directly from (4.21):

∣∣Rn
l
∣∣ ≤ Ĉ

(
k1+α + kα

(
h + h2))

≤ Ĉ
(
k1+α + kαh

)(
h2 ≤ h

)
, (4.22)

where Ĉ is a generic constant.
Therefore, the following theorem holds:

Theorem 4.2 Let V n
l be an approximation of the exact solution Un

l obtained via the im-
plicit scheme (3.9). Then, there exist a generic constant C̃ such that

max
n,l

∥∥V n
l – Un

l
∥∥ ≤ C̃(k + h), for l = 1, 2, . . . , L – 1 and n = 1, 2, . . . , N .

Proof To proceed, let

∥∥en∥∥∞ =
∣∣en

m
∣∣ = max

1≤l≤L–1

∣∣en
l
∣∣,

which yields the following when n = 1:

∥∥e1∥∥∞ =
∣∣e1

m
∣∣

≤ ∣∣a1me1
m–1 + b1me1

l + c1me1
m+1

∣∣
=

∣∣R1
l
∣∣

≤ Ĉβ–1
1

(
k1+α + kαh

)
(using (4.22)). (4.23)

The following is also true for n ≥ 2:

∥∥en∥∥∞ =
∣∣en

m
∣∣

≤ ∣∣anmen
m–1 + bnmen

m + cnme1
m+1

∣∣
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=
∣∣ϕ1en–1 + ϕ2en–2 + · · · + ϕ1e1 + Rn

m
∣∣

≤ ϕ1
∣∣en–1∣∣ + ϕ2

∣∣en–2∣∣ + · · · + ϕn–1
∣∣e1∣∣ +

∣∣Rn
m
∣∣

≤ ϕ1
∣∣en–1∣∣ + ϕ2

∣∣en–2∣∣ + · · · + ϕn–1
∣∣e1∣∣ + Ĉ

(
k1+α + kαh

)

≤ ϕ1
∥∥en–1∥∥∞ + ϕ2

∥∥en–2∥∥∞ + · · · + ϕn–1
∥∥e1∥∥∞ + Ĉ

(
k1+α + kαh

)

≤ (ϕ1 + ϕ2 + · · · + ϕn–1 + βn)β–1
n Ĉ

(
k1+α + kαh

)

=

( n–1∑
j=1

ϕj + βn

)
β–1

n Ĉ
(
k1+α + kαh

)

= (1 – βn + βn)β–1
n Ĉ

(
k1+α + kαh

)

= Ĉβ–1
n

(
k1+α + kαh

)
. (4.24)

Note that

lim
n→∞

β–1
n

nα
= lim

n→∞
n–α

n1–α – (n – 1)1–α

= lim
n→∞

n–α

n1–α

(
1

1 – (1 – 1
n )1–α

)

= lim
n→∞

n–1

1 – (1 – 1
n )1–α

= lim
n→∞

n–1

(1 – α)n–1

=
1

1 – α
. (4.25)

Therefore, (4.23) and (4.24) yield the following:

∥∥en∥∥∞ ≤ Ĉnα
(
k1+α + kαh

)

= Ĉnαkα(k + h)

= Ĉtα
n (k + h) (since tn = nk ≤ T)

≤ C̃(k + h) (since C̃ = Ĉtα
n and tα

n ≤ T). (4.26)

This completes the proof of the theorem. �

In the next section, a set of numerical experiments are presented.

5 Numerical results
In this section, two numerical examples on pricing of standard European put options un-
der the time-fractional BS-PDE (2.23), along with conditions (2.24), and implemented us-
ing the implicit difference scheme (3.9) are presented. A set of varying dividend yields
and order (α) of fractional derivative ranging from 0.1 to 0.9 are considered. Numerical
convergence and stability results are also presented.
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Table 1 Maximum absolute errors for Example 5.1 with r = 0.055 and δ = 0.065

Values of α N = 40 N = 80 N = 160 N = 320 N = 640

0.1 6.1152e–02 3.1069e–02 1.5659e–02 7.8606e–03 3.9381e–03
0.2 5.9707e–02 3.0276e–02 1.5245e–02 7.6491e–03 3.8312e–03
0.3 5.7925e–02 2.9330e–02 1.4758e–02 7.4021e–03 3.7069e–03
0.4 5.5896e–02 2.8272e–02 1.4218e–02 7.1294e–03 3.5698e–03
0.5 5.3692e–02 2.7136e–02 1.3641e–02 6.8388e–03 3.4240e–03
0.6 5.1370e–02 2.5948e–02 1.3040e–02 6.5369e–03 3.2726e–03
0.7 4.8978e–02 2.4731e–02 1.2427e–02 6.2289e–03 3.1183e–03
0.8 4.6552e–02 2.3503e–02 1.1809e–02 5.9190e–03 2.9631e–03
0.9 4.4121e–02 2.2277e–02 1.1194e–02 5.6107e–03 2.8088e–03
1.0 4.1705e–02 2.1064e–02 1.0586e–02 5.3066e–03 2.6567e–03

Table 2 Rates of convergence for Example 5.1 with r = 0.055 and δ = 0.065

Values of α N = 80 N = 160 N = 320 N = 640

0.1 0.98 0.99 0.99 1.00
0.2 0.98 0.99 0.99 1.00
0.3 0.98 0.99 1.00 1.00
0.4 0.98 0.99 1.00 1.00
0.5 0.98 0.99 1.00 1.00
0.6 0.99 0.99 1.00 1.00
0.7 0.99 0.99 1.00 1.00
0.8 0.99 0.99 1.00 1.00
0.9 0.99 0.99 1.00 1.00
1.0 0.99 0.99 1.00 1.00

Table 3 Maximum absolute errors for Example 5.2 with r = 0.065 and δ = 0.045

Values of α N = 40 N = 80 N = 160 N = 320 N = 640

0.1 1.5661e–01 8.1330e–02 4.1509e–02 2.0978e–02 1.0547e–02
0.2 1.3930e–01 7.2084e–02 3.6713e–02 1.8533e–02 9.3120e–03
0.3 1.2548e–01 6.4751e–02 3.2926e–02 1.6607e–02 8.3404e–03
0.4 1.1445e–01 5.8938e–02 2.9934e–02 1.5088e–02 7.5750e–03
0.5 1.0574e–01 5.4365e–02 2.7586e–02 1.3898e–02 6.9759e–03
0.6 9.8970e–02 5.0832e–02 2.5777e–02 1.2983e–02 6.5152e–03
0.7 9.3914e–02 4.8203e–02 2.4435e–02 1.2304e–02 6.1741e–03
0.8 9.0418e–02 4.6397e–02 2.3516e–02 1.1840e–02 5.9410e–03
0.9 8.8420e–02 4.5378e–02 2.3001e–02 1.1581e–02 5.8109e–03
1.0 8.7951e–02 4.5161e–02 2.2896e–02 1.1530e–02 5.7857e–03

Table 4 Rates of convergence for Example 5.2 with r = 0.065 and δ = 0.045

Values of α N = 80 N = 160 N = 320 N = 640

0.1 0.95 0.97 0.98 0.99
0.2 0.95 0.97 0.99 0.99
0.3 0.95 0.98 0.99 0.99
0.4 0.96 0.98 0.99 0.99
0.5 0.96 0.98 0.99 0.99
0.6 0.96 0.98 0.99 0.99
0.7 0.96 0.98 0.99 0.99
0.8 0.96 0.98 0.99 0.99
0.9 0.96 0.98 0.99 0.99
1.0 0.96 0.98 0.99 0.99

Example 5.1 Consider equation (2.23) subject to conditions (2.24) for pricing a European
put option with the following parameters: K = 150, r = 0.055, σ = 0.1, T = 1, Smax = 450,
L = 30, N = 50, δ = 0.025, 0.045, and 0.065.
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Example 5.2 Consider equation (2.23) subject to conditions (2.24) for pricing a European
put option with the following parameters: K = 200, r = 0.065, σ = 0.025, T = 1, Smax = 600,
L = 33, N = 100, δ = 0.045, and 0.085.

The proposed scheme is unconditionally stable and converges with order O(h, k). The
results are presented in Tables 1 and 2 for Example 5.1, and in Tables 3 and 4 for Exam-
ple 5.2. Results presented in Tables 1 and 3 indicate that the proposed method is very suit-
able method for solving the tfBS-PDE in (2.23) for a range of values of α between 0 and 1.
Though the accuracy of the results is better in the case when 1/2 ≤ α < 1 as compared to
when 0 < α < 1/2, from the numerical point of view, α can be chosen small or large with-
out substantially affecting the convergence of the method. That is so because of the fact
that the proposed method is unconditionally stable, hence the choice of α does not affect
the overall convergence of the method, see Tables 2 and 4. One may further note that the
restriction on α to be between 0.5 and 1 is not too large a hindrance, as regular market con-
ditions would not require extremely small values of α. This is true because, for extremely
small α values, the returns on underlying stock price St become negatively correlated, sig-
naling antipersistent features, which in-turn violates some key fundamental principles of
asset pricing theory. Similar observations are made for all considered dividend yields. To
this end, it is worth noting that changing the dividend yield does have a significant effect
on the option premium results. By carefully contrasting the premium profiles obtained for
different dividend yields, it is observed that, regardless of the value of α, higher dividends
yields result in higher put option premiums. This so because the underlying stock price is
expected to drop by the amount of dividend payout, and hence a higher dividend would

Figure 1 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.025 at t = T
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Figure 2 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.045 at t = T

Figure 3 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.065 at t = T
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Figure 4 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.025, for all 0≤ t ≤ T

Figure 5 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.045, for all 0≤ t ≤ T

imply a higher put option premium. For Example 5.2, the same set of parameter values for
α were used and almost similar observations were obtained. Due to space limitations, only
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Figure 6 Payoffs under Example 5.1 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.065, for all 0≤ t ≤ T

Figure 7 Payoffs under Example 5.2 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.045 at t = T



Nuugulu et al. Advances in Difference Equations        (2021) 2021:123 Page 22 of 25

Figure 8 Payoffs under Example 5.2 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.085 at t = T

Figure 9 Payoffs under Example 5.2 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.045 for all 0≤ t ≤ T



Nuugulu et al. Advances in Difference Equations        (2021) 2021:123 Page 23 of 25

Figure 10 Payoffs under Example 5.2 for α = 0.3, 0.5, 0.7, 0.9; δ = 0.085 for all 0≤ t ≤ T

two dividend yields (i.e., δ = 0.045 and 0.085) are presented for Example 5.2. In Figs. 1–3
and 4–6, plots of the European put option payoffs at maturity as well as the general payoffs
using the parameters as indicated in Examples 5.1 are presented respectively. In Figs. 7–8
and 9–10, maturity and general payoffs under Examples 5.2 are presented, respectively. In
the maturity payoff curves, the solid lines indicate the intrinsic payoffs whereas the lines
with asterisks indicate the payoffs obtained using the proposed model.

6 Concluding remarks and directions for future research
In this paper, a time-fractional Black–Scholes PDE for pricing standard European put op-
tions written on a continuous dividend paying stock is derived. An implicit finite difference
scheme for solving the derived tfBS-PDE was designed and analyzed. Theoretical results
indicate that the proposed numerical method is unconditionally stable and converges with
order O(h, k). Two numerical examples supporting the theoretical results were presented.
Numerical results indicate that the proposed numerical method is very efficient for all
values of α considered in the simulation experiments.

Overall, the results indicate that the tfBS-PDE model and the proposed numerical
method can produce put option premiums which are very different from what classical
theory suggests. These results are in agreement with existing results in literature that
fractional calculus based models outperform their classical counterparts, see, for exam-
ple, [15, 18, 20, 38] among others. Another important feature to note is that the classical
BS models are known to produce option premium curves which are similar in shape and
hence may not fully reflect the actual market dynamics. However, the model formulated
under the fractional calculus framework produces option premium curves which are quite
sensitive to changes in associated market parameters, such as volatility, dividends, interest
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rates, etc. In summary, if sufficient market data is available, the proposed tfBS model can
be calibrated to produce option price curves which take into account a variety of actual
market conditions.

Since tractable analytical solutions to fractional Black–Scholes PDEs seldom exist, for
further research directions, high-order numerical methods for the current proposed
model, as well as high-order numerical solutions to models proposed in recent literature
such as [15, 20], can be explored.
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