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Abstract

In this paper, a mathematical model of Visceral Leishmaniasis is considered. The model incorporates three populations, the
uman, the reservoir and the vector host populations. A detailed analysis of the model is presented. This analysis reveals that
he model undergoes a backward bifurcation when the associated reproduction threshold is less than unity. For the case where
he death rate due to VL is negligible, the disease-free equilibrium of the model is shown to be globally-asymptotically stable
f the reproduction number is less than unity. Noticing that the governing model is a system of highly nonlinear differential
quations, its analytical solution is hard to obtain. To this end, a special class of numerical methods, known as the nonstandard
nite difference (NSFD) method is introduced. Then a rigorous theoretical analysis of the proposed numerical method is carried
ut. We showed that this method is unconditionally stable. The results obtained by NSFD are compared with other well-known
tandard numerical methods such as forward Euler method and the fourth-order Runge–Kutta method. Furthermore, the NSFD
reserves the positivity of the solutions and is more efficient than the standard numerical methods.
c 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Leishmaniasis; Mathematical modeling; Nonstandard finite difference method; Stability analysis

1. Introduction

Leishmaniasis is a vector-borne disease, caused by a protozoan parasite which is transmitted to humans by the
ite of infected female phlebotomine sandflies. There are four main forms of the disease: Visceral Leishmaniasis
VL, also known as Kala-Azar); Post-Kala-Azar Dermal Leishmaniasis (PKDL); Cutaneous Leishmaniasis (CL);
nd Mucocutaneous Leishmaniasis (MCL). In addition to these, Leishmaniasis can be classified as anthroponotic
r zoonotic depending on whether the natural reservoir of the parasite is human or animal [24]. It was indicated

✩ The research contained in this paper is also supported by the South African National Research Foundation.
∗ Corresponding author.

E-mail addresses: mihataims@gmail.com, aramanantoanina@uwc.ac.za (A. Ramanantoanina).
ttps://doi.org/10.1016/j.matcom.2021.02.007
378-4754/ c⃝ 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2021.02.007
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2021.02.007&domain=pdf
mailto:mihataims@gmail.com
mailto:aramanantoanina@uwc.ac.za
https://doi.org/10.1016/j.matcom.2021.02.007


E.M. Adamu, K.C. Patidar and A. Ramanantoanina Mathematics and Computers in Simulation 187 (2021) 171–190

s
e
o
c
A
t
a
p

W
b
d
t
a
s

a
1
r
s
r
a
a
o
c
s
V

m
p
b
t
t
w

a
s
w

in [4] that the Leishmaniasis is widely distributed across the tropical, subtropical, and temperate regions in 88
countries, 72 of which are developing. Three hundred fifty million women, men, and children are at risk in widely
scattered areas. An estimated 12 million people suffer from Leishmaniasis, with 500,000 new cases of VL per
year and 1 to 1.5 million new cases of CL per year, with 2.4 million disability-adjusted life-years. While Cutaneous
Leishmaniasis is the most common form of this disease, Visceral Leishmaniasis is the most serious and can be fatal if
untreated.

Mathematical models are known as a powerful tool to describe and investigate the dynamics of such biological
ystems. In most cases, these models are described by autonomous systems of nonlinear ordinary differential
quations. For instance, mathematical models for VL in [5,10,15,25], are developed with systems of nonlinear
rdinary differential equations. Existing mathematical models of VL suggest that treatment is a key parameter in the
ontrol of the disease among the human population [10]. Vaccination also contribute in the control of the disease [5].
s the author in [5] pointed out, the mass treatment alone cannot control the outbreak of VL disease. To eradicate

he disease from the community, high rate of human treatment should be accompanied by vector control strategies
s suggested by Elmojtaba et al. [10]. In the case of zoonotic VL, different models revealed that controlling sandfly
opulation is the most effective strategy but not culling dogs [15,25].

Such systems are not always easy to solve analytically and are often studied through robust numerical methods.
ell known numerical methods such as Euler and Runge–Kutta sometimes fail because they generate oscillations,

ifurcations, chaos and false steady states (see [8,13]). As a result we need to construct a more reliable solver that
oes not suffer through such drawbacks. To this end, we design a nonstandard finite difference schemes based on
he properties and nature of the differential equation. Readers may note that NSFD schemes are originally designed
nd explored for numerous mathematical models as indicated in the pioneering works of Mickens [18,19] and two
urvey articles of one of the authors of this paper [21,22].

The NSFD schemes are used to solve many biological problems. Standard numerical methods such as Euler
nd Runge–Kutta methods are usually applied for the comparison with many of NSFD schemes models [2,3,12,
6,20,23]. In models [2,20] the matlab solvers are also applied for comparison purposes. It was noticed by these
esearchers that standard methods like those mentioned above often fail to reflect some essential qualitative features,
uch as, positivity and invariance of a solution, backward bifurcation, convergence to the correct equilibrium for
elatively large step-sizes, etc., as stated in [12]. The author in [16] also mentioned that such methods produce bad
pproximations when simulating the model for large time step-sizes. However, the NSFD schemes are more efficient
nd usually preserve essential properties of the continuous model [16]. Arenas et al. [2] showed the effectiveness
f their proposed NSFD scheme. Furthermore, the NSFD schemes are stable in larger region than some other
ontemporary methods [23]. This approach has also been applied to mathematical models of vector borne diseases,
uch as, Dengue and Malaria. However, to the best of our knowledge the NSFD schemes are yet to be explored for
L disease model.
In this paper, we develop a nonstandard finite difference scheme to obtain numerical solution of a VL disease

odel. The continuous model that we considered is based on transmission of VL disease between three different
opulations, human host population, reservoir host population and vector host population. This model is represented
y a system of eight ordinary differential equations [10]. To our knowledge this is the first NSFD scheme applied to
his model. The construction of the scheme is based on some nonlocal approximation for the nonlinear terms with
he aim of obtaining positive approximations. A brief overview on different descriptions of these methods along
ith extensive account of works on these NSFD methods can be found in [21,22].
The rest of this paper is organized as follows: In Section 2, the mathematical model developed in [10] is presented

long with its detailed stability analysis. In Section 3, we design and analyze a novel NSFD scheme. Using this
cheme, extensive numerical simulations are carried out and results are presented in Section 4. Finally, in Section 5,

e present some discussions on these results and draw relevant conclusions.
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Table 1
State variables used in the system (2.1).

Variable Definition

SH (t) Susceptible population, individuals who have never encountered Visceral Leishmaniasis
IH (t) Individuals infected with Visceral Leishmaniasis
PH (t) Individuals who develop PKDL after treatment of Visceral Leishmaniasis
RH (t) Individuals who are recovered and have permanent immunity
NH (t) Human host population
SR(t) Susceptible reservoir
IR(t) Infected reservoir
NR(t) Reservoir host population
SV (t) Susceptible sandflies, vectors which are susceptible for the disease
IV (t) Infected sandflies
NV (t) Vector population.

2. Mathematical model

The model to be considered in this study is that of the dynamics of Visceral Leishmaniasis in the Sudan [10]. It
onsists of the following system of equations

S′

H = ΛH − abIV
SH

NH
− µh SH ,

I ′

H = abIV
SH

NH
− (α1 + δ + µh)IH ,

P ′

H = (1 − σ )α1 IH − (α2 + β + µh)PH ,

R′

H = σα1 IH + (α2 + β)PH − µh RH ,

S′

R = ΛR − abIV
SR

NR
− µr SR,

I ′

R = abIV
SR

NR
− µr IR,

S′

V = ΛV − acSV
IH

NH
− acSV

PH

NH
− acSV

IR

NR
− µvSV ,

I ′

V = acSV
IH

NH
+ acSV

PH

NH
+ acSV

IR

NR
− µv IV ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

here all state variables in the above system and their definitions are presented in Table 1 whereas the meanings
nd values of the parameters used in this system are presented in Table 2.

It was assumed in [10] that ΛH = bh NH ,ΛR = br NR and ΛV = bvNV are the recruitment rates of human,
eservoir and vector, where bh, br and bv are the rate for natural birth of human, reservoir and vector population,
espectively. The total populations in each population group are given by NH (t) = SH (t) + IH (t) + PH (t) +

RH (t), NR(t) = SR(t) + IR(t) and NV (t) = SV (t) + IV (t). These along with (2.1) lead to

N ′

H = (bh − µh)NH − δ IH ,

N ′

R = (br − µr )NR,

N ′

V = (bv − µv)NV .

he subscripts H, R and V refer to the population of human, reservoir and vector respectively.
Now we scale the system (2.1) as

sh =
SH
, ih =

IH
, ph =

PH
, rh =

RH
, sr =

SR
, ir =

IR
, sv =

SV
, and iv =

IV
.

NH NH NH NH NR NR NV NV
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Table 2
Parameters used in the system (2.2), their interpretation and values.

Parameter Interpretation Value

bh Natural birth rate of human 0.0015875 day−1

br Natural birth rate of reservoir host population 0.073 day−1

bv Natural birth rate of vector 0.299 day−1

a Biting rate of sandflies 0.2856 day−1

b Progression rate of VL in sandfly 0.22 day−1

c Progression rate of VL in human and reservoir 0.0714 day−1

α1 Treatment rate of VL 0.9 day−1

1 − σ Developing PKDL rate after treatment 0.36 day−1

σ Recovery rate from VL infection after treatment 0.64 day−1

δ Death rate due to VL 0.011 day−1

α2 PKDL recovery rate without treatment 0.00556 day−1

β PKDL recovery rate after treatment 0.033 day−1.

Also let m =
NV

NH
be the female vector–human ratio and n =

NV

NR
be the female vector–reservoir ratio; both of

which are considered as constants [10]. Then (2.1) reduces to the following equivalent system

s ′

h = bh − (abmiv + bh − δih)sh,

i ′

h = abmivsh − (α1 + δ + bh − δih)ih,

p′

h = (1 − σ )α1ih − (α2 + β + bh − δih)ph,

r ′

h = σα1ih + (α2 + β)ph − (bh − δih)rh,

s ′

r = br − abnivsr − br sr ,

i ′

r = abnivsr − br ir ,

s ′

v = bv − (acih + acph + acir + bv)sv,
i ′

v = acihsv + acphsv + acir sv − bviv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)

All parameters in the above system, their interpretations and appropriate values are presented in Table 2. Most of
the parameters values were obtained from the literature, namely from [10] and the references therein. The value of
the biting rate was made varying to explore the biting rates to promote the extinction of the disease.

For the model represented by system (2.2), we have

Theorem 2.1. The set

Γ =
{
(sh, ih, ph, rh, sr , ir , sv, iv) ∈ R8

+
: 0 ≤ sh, ih, ph, rh, sh + ih + ph + rh ≤ 1;

0 ≤ sr , ir , sr + ir ≤ 1; 0 ≤ sv, iv, sv + iv ≤ 1} ,

s positively invariant.

roof. Adding the equations of system (2.2) we obtain
d
dt

(sh + ih + ph + rh) = (bh − δih)(1 − (sh + ih + ph + rh))

≤ bh(1 − (sh + ih + ph + rh)).

t follows that

sh + ih + ph + rh ≤ 1 − e−bh t (1 − (sh(0) + ih(0) + ph(0) + rh(0))),

where sh(0), ih(0), ph(0) and rh(0) represent the initial values of the susceptible, infected, post kalazar and recovered
human populations respectively. Thus limt→+∞ sup(sh + ih + ph + rh) ≤ 1.

For the reservoir population
d

(sr + ir ) = br (1 − (sr + ir )).

dt
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It follows that

sr + ir = 1 − e−br t (1 − (sr (0) + ir (0))),

here sr (0) and ir (0) represent the initial values of the susceptible and infected reservoir populations, respectively.
hus lim

t→+∞
sup(sr + ir ) ≤ 1.

Similarly for the vector population
d
dt

(sv + iv) = bv(1 − (sv + iv)).

It follows that

sv + iv = 1 − e−bv t (1 − (sv(0) + iv(0))),

where sv(0) and iv(0) represent the initial values of the susceptible and infected vector populations respectively.
Thus lim

t→+∞
sup(sv + iv) ≤ 1. It implies respectively that the region

Γ =
{
(sh, ih, ph, rh, sr , ir , sv, iv) ∈ R8

+
: 0 ≤ sh, ih, ph, rh, sh + ih + ph + rh ≤ 1;

0 ≤ sr , ir , sr + ir ≤ 1; 0 ≤ sv, iv, sv + iv ≤ 1} ,

is a positively invariant set for system (2.2).
The disease free equilibrium (DFE) of the system (2.2) is obtained by setting the right-hand sides of the equations

in (2.2) to zero, and is given by E0 = (1, 0, 0, 0, 1, 0, 1, 0).

2.1. The basic reproduction number

Definition 2.2. The basic reproduction number [9], denoted by R0, is the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual. If R0 < 1, then an infected
individual produces, on average, less than one new infected individual over the course of its infectious period, and
hence the infection cannot grow. On the other hand, if R0 > 1, then each infected individual produces, on average,
more than one new infection, and the disease can invade the population.

The basic reproduction number, R0, for the system (2.2) is investigated by using the next generation matrix
approach [9]. The matrices F (for the new infection terms) and V (for the remaining transition terms) evaluated at
DFE are given by

F =

⎛⎜⎜⎝
0 0 0 abm
0 0 0 0
0 0 0 abn

ac ac ac 0

⎞⎟⎟⎠ and V =

⎛⎜⎜⎝
α1 + δ + bh 0 0 0
−(1 − σ )α1 α2 + β + bh 0 0

0 0 br 0
0 0 0 bv

⎞⎟⎟⎠ .

he spectral radius, ρ, of the matrix FV−1 (known as the next generation matrix) is the basic reproduction number,
0, given by

R0 =

√
ac[abmbr (α2 + β + bh + (1 − σ )α1) + abn(α1 + δ + bh)(α2 + β + bh)]

br bv(α1 + δ + bh)(α2 + β + bh)
. (2.3)

The above R0 determines the local stability of the DFE through

Lemma 2.3. The disease free equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

The global stability of DFE is established through a result in [6]. This is done as follows. Firstly, the system
2.2) can be rewritten in the following form

d X
dt

= F(X, Z ),

d Z
= G(X, Z ) with G(X, 0) = 0,

⎫⎪⎬⎪⎭ (2.4)
dt
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where X ∈ Rm denotes the number of uninfected individuals and Z ∈ Rn denotes the number of infected individuals
including latent, infectious, etc. Let U0 = (X0, 0) denote the disease free equilibrium of the system (2.4). Then
consider the following two assumptions

(H1) For
d X
dt

= F(X, 0), X0 is globally asymptotically stable.

(H2) G(X, Z ) = AZ − Ĝ(X, Z ), Ĝ(X, Z ) ≥ 0 for (X, Z ) ∈ Γ , where A = DZ G(X0, 0), the off diagonal elements
of A are nonnegative, and Γ is the feasible region.

If system (2.4) satisfies the above two conditions, then the following theorem holds.

Theorem 2.4 ([6]). The disease free equilibrium U0 = (X0, 0) is globally asymptotically stable equilibrium of
system (2.4) if R0 < 1 provided that the assumptions (H1) and (H2) are satisfied.

The following result ensures the global stability of the disease free equilibrium E0 when R0 < 1.

Theorem 2.5. The disease free equilibrium E0 of the system (2.2) is globally asymptotically stable if R0 < 1 and
δ = 0.

Proof. Considering X = (sh, rh, sr , sv)T and Z = (ih, ph, ir , iv)T , and comparing system (2.2) with system (2.4),
we have

F(X, Z ) =

⎛⎜⎜⎝
bh − (abmiv + bh − δih)sh

σα1ih + (α2 + β)ph − (bh − δih)rh

br − abnivsr − br sr

bv − (acih + acph + acir + bv)sv

⎞⎟⎟⎠
nd

G(X, Z ) =

⎛⎜⎜⎝
abmivsh − (α1 + δ + bh − δih)ih

(1 − σ )α1ih − (α2 + β + bh − δih)ph

abnivsr − br ir

acihsv + acphsv + acir sv − bviv

⎞⎟⎟⎠ .

The disease free equilibrium of the system (2.2) is U0 = E0 = (X0, 0) with X0 = (1, 0, 1, 1). Hence,

(H1)
d X
dt

= F(X, 0) is equivalent to the system of equations

s ′

h = bh − bhsh = bh(1 − sh),
r ′

h = −bhrh,

s ′

r = br − br sr = br (1 − sr ),
s ′

v = bv − bvsv = bv(1 − sv).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.5)

Integrating (2.5) and using the initial conditions as (1, 0, 1, 1), we obtain sh = 1−e−bh t , rh = 0, sr = 1−e−br t

and sv = 1 − e−bv t . Clearly as t → ∞, sh → 1, rh → 0, sr → 1 and sv → 1. Hence X0 is globally

asymptotically stable for
d X
dt

= F(X, 0) as X → X0 when t → ∞.
Now

(H2) G(X, Z ) =

⎛⎜⎜⎝
−(α1 + δ + bh) 0 0 abm

(1 − σ )α1 −(α2 + β + bh) 0 0
0 0 −br abn

ac ac ac −bv

⎞⎟⎟⎠
⎛⎜⎜⎝

ih

ph

ir

iv

⎞⎟⎟⎠ − Ĝ(X, Z )

where

Ĝ(X, Z ) =

⎛⎜⎜⎝
abmiv(1 − sh) − δihih

−δih ph

abniv(1 − sr )
ac(ih + ph + ir )(1 − sv)

⎞⎟⎟⎠ .

ˆ
Since sh ≤ 1, sr ≤ 1, sv ≤ 1 and if δ = 0 then G(X, Z ) ≥ 0.
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Thus, if R0 < 1 and δ = 0, then the disease free equilibrium E0 of system (2.2) is globally asymptotically
table. □

emark 2.6. If δ ̸= 0, then it will violate the non-negativity of Ĝ(X, Z ) and therefore E0 may or may not be
lobally stable. This indicates the possibility for the existence of endemic equilibria when R0 < 1.

heorem 2.7. The system (2.2) exhibits backward bifurcation at R0 = 1 whenever the bifurcation coefficient, acs ,
given by Eq. (2.11), is positive.

Proof. Consider system (2.2) and set sh = x1, ih = x2, ph = x3, rh = x4, sr = x5, ir = x6, sv = x7, and iv = x8.
Using the vector notation X = (x1, x2, x3, x4, x5, x6, x7, x8)T system (2.2) can be written in the form

d X
dt

= ( f1, f2, f3, f4, f5, f6, f7, f8)T ,

i.e.,

x ′

1 = bh − (abmx8 + bh − δx2)x1,

x ′

2 = abmx8x1 − (α1 + δ + bh − δx2)x2,

x ′

3 = (1 − σ )α1x2 − (α2 + β + bh − δx2)x3,

x ′

4 = σα1x2 + (α2 + β)x3 − (bh − δx2)x4,

x ′

5 = br − abnx8x5 − br x5,

x ′

6 = abnx8x5 − br x6,

x ′

7 = bv − (acx2 + acx3 + acx6 + bv)x7,

x ′

8 = acx2x7 + acx3x7 + acx6x7 − bvx8.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.6)

Consider the case when R0 = 1. Suppose further that b = b∗ is chosen as a bifurcation parameter. Solving for
b = b∗ from R0 = 1 in (2.3) gives

b = b∗
=

br bv(α1 + δ + bh)(α2 + β + bh)
a2c(mbr (α2 + β + bh + (1 − σ )α1) + n(α1 + δ + bh)(α2 + β + bh))

.

he Jacobian of the system (2.6), evaluated at the DFE E0 with b = b∗ (denoted by J ∗), is given by

J ∗
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−bh δ 0 0 0 0 0 −ab∗m
0 −(α1 + δ + bh) 0 0 0 0 0 ab∗m
0 (1 − σ )α1 −(α2 + β + bh) 0 0 0 0 0
0 σα1 α2 + β −bh 0 0 0 0
0 0 0 0 −br 0 0 −ab∗n
0 0 0 0 0 −br 0 ab∗n
0 −ac −ac 0 0 −ac −bv 0
0 ac ac 0 0 ac 0 −bv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

he Jacobian (J ∗) of the linearized system has a simple zero eigenvalue (with all other eigenvalues having negative
eal part). Hence, the center manifold theory [7,9] can be used to analyze the dynamics of the system (2.6). In
articular, a theorem in [7], reproduced below for convenience, will be used.

heorem 2.8 ([7]). Consider the following general system of ordinary differential equations with a parameter φ

dx
dt

= f (x, φ), f : Rn
× R → Rn, and f ∈ C2(Rn

× R). (2.7)
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Without loss of generality, it is assumed that 0 is an equilibrium for system (2.7) for all values of the parameter φ,
(i.e., f (0, φ) ≡ 0 for all φ). Assume

A1 : A = Dx f (0, 0) =

(
∂ fi

∂x j
, 0, 0

)
is the linearized matrix of system (2.7) around the equilibrium 0 with φ

evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;
A2 : The matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding to the zero

eigenvalue.

et fk be the kth component of f and

acs =

n∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0),

bcs =

n∑
k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0).

he local dynamics of system (2.7) around 0 are totally determined by the values of acs and bcs as follows:

(i) When acs > 0, bcs > 0: φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable and there exists a positive
unstable equilibrium; when 0 < φ ≪ 1, 0 is unstable and there exists a negative and locally asymptotically
stable equilibrium.

(i i) When acs < 0, bcs < 0: φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is locally asymptotically
stable, and there exists a positive unstable equilibrium;

(i i i) When acs > 0, bcs < 0: φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a locally asymptotically stable
negative equilibrium; when 0 < φ ≪ 1, 0 is stable, and a positive unstable equilibrium appears;

(iv) When acs < 0, bcs > 0: φ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.
Particularly, if acs > 0 and bcs > 0, then a backward bifurcation occurs at φ = 0.

Eigenvectors of J ∗
|b=b∗ : For the case when R0 = 1, it can be shown that J ∗ has a right eigenvector

corresponding to the zero eigenvalue), given by w = [w1, w2, w3, w4, w5, w6, w7, w8]T , where

w1 =
−ab∗m(α1 + bh)
bh(α1 + δ + bh)

w8,

w2 =
ab∗m

α1 + δ + bh
w8,

w3 =
ab∗m(1 − σ )α1

(α1 + δ + bh)(α2 + β + bh)
w8,

w4 =
ab∗mα1(α2 + β + δbh)

bh(α1 + δ + bh)(α2 + β + bh)
w8,

w5 =
−ab∗n

br
w8,

w6 =
ab∗n

br
w8,

w7 = −w8,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)
w8 = w8 and w8 > 0.
178



E.M. Adamu, K.C. Patidar and A. Ramanantoanina Mathematics and Computers in Simulation 187 (2021) 171–190

b

a

g

N
w

n

Similarly, the components of the left eigenvector of J ∗ (corresponding to the zero eigenvalue), denoted by v =

[v1, v2, v3, v4, v5, v6, v7, v8]T are given by

v1 = 0,

v2 =
ac(α2 + β + bh + (1 − σ )α1)
(α1 + δ + bh)(α2 + β + bh)

v8,

v3 =
ac

α2 + β + bh
v8,

v4 = 0,

v5 = 0,

v6 =
ac
br
v8,

v7 = 0,

v8 = v8 and v8 > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

For the transformed system (2.6), the associated non-zero partial derivative of f (evaluated at the DFE E0) is given
y

∂2 f2

∂x8∂x1
=

∂2 f2

∂x1∂x8
= ab∗m,

∂2 f2

∂x2
2

= 2δ,
∂2 f3

∂x3∂x2
=

∂2 f3

∂x2∂x3
= δ,

∂2 f6

∂x8∂x5
=

∂2 f6

∂x5∂x8
= ab∗n,

∂2 f8

∂x7∂x2
=

∂2 f8

∂x7∂x3
=

∂2 f8

∂x7∂x6
= ac,

∂2 f2

∂x8∂b∗
= am,

∂2 f6

∂x8∂b∗
= an.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.10)

Using the expressions in (2.8)–(2.10), it follows that

acs =

8∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0)

= 2ac
(

δ(ab∗m)2(1 − σ )α1

(α1 + δ + bh)3(α2 + β + bh)2 +
δ(ab∗m)2(α2 + β + bh + (1 − σ )α1)

(α1 + δ + bh)2(α2 + β + bh)

−
(ab∗m)2(α1 + bh)(α2 + β + bh + (1 − σ )α1)

bh(α1 + δ + bh)2(α2 + β + bh)
−

(ab∗n)2

b2
r

−
ab∗m

α1 + δ + bh

−
ab∗m(1 − σ )α1

(α1 + δ + bh)(α2 + β + bh)
−

ab∗n
br

)
v8w

2
8 (2.11)

nd

bcs =

8∑
k,i=1

vkwi
∂2 fk

∂xi∂b∗
(0, 0)

ives

bcs = a(v2m + v6n)w8 > 0.

ote that the coefficient bcs is positive, hence, it follows that the system (2.2) (or its transformed equivalent (2.6))
ill undergo backward bifurcation if the coefficient acs , given by (2.11), is positive. □

The phenomenon of backward bifurcation in the system (2.2) can be removed if the death rate due to VL is
egligible (i.e., δ = 0) as in the case of VL submodel of the co-infection model [14]. When substituted δ = 0 in
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the bifurcation coefficient acs , given by (2.11) it is clear that acs < 0 and bcs remains positive. Hence, the system
2.2) with δ = 0 does not undergo backward bifurcation.

heorem 2.9. The endemic equilibrium is locally asymptotically stable whenever it exists for R0 > 1.

roof. We use the center manifold theory [7,9] to obtain the local asymptotic stability of the endemic equilibrium.
n particular, Theorem 2.8 from [7] will be used.

It can be shown that 0 is a simple eigenvalue of the linearization matrix, J ∗, of system (2.2) around the DFE
hen b = b∗. Hence, Theorem 2.9 can be used to analyze the dynamics of system (2.6) near b = b∗. In particular,

t will be used to show local asymptotic stability of the endemic equilibrium of system (2.6) (which is the same as
he endemic equilibrium of system (2.2)), for b near b∗.

From the above it is clear that bcs > 0 and acs < 0 whenever R0 > 1. So by item (iv) of Theorem 2.8, the
ndemic equilibrium is locally asymptotically stable whenever it exists for R0 > 1.

In next section, we design and analyze a novel numerical method to solve the system (2.2).

. Construction of NSFD scheme

In this section, we construct a nonstandard finite difference scheme to simulate the system (2.2). The main aim
f the scheme is to obtain dynamically consistent numerical results and to ensure the positivity of the variables
epresenting the subpopulations sh(t), ih(t), ph(t), rh(t), sr (t), ir (t), sv(t) and iv(t).

The basic terminology, including modeling rules regarding the constructions of these schemes is presented in the
ioneering work of Mickens [1,18,19]. Subsequent illustrations of these rules as well as extensive review on the
orks that used these methods are presented in two long survey articles of Patidar [21,22].
To begin with the construction of the method for the model considered in this paper, let us denote by sk

h , i k
h , pk

h ,
k
h , sk

r , i k
r , sk

v and i k
v the approximations of sh(kl), ih(kl), ph(kl), rh(kl), sr (kl), ir (kl), sv(kl) and iv(kl), respectively,

or k = 0, 1, 2, 3, . . ., and l the time-step of the scheme. The sequences sk
h , i k

h , pk
h , r k

h , sk
r , i k

r , sk
v and i k

v should be
onnegative in order to be consistent with the biological nature of the model [17]. The numerical scheme to solve
ystem (2.2) is therefore constructed with the aim of obtaining positive approximations as follows

sk+1
h − sk

h

l
= bh − abmi k

v sk+1
h − bhsk+1

h + δi k
h sk

h ,

i k+1
h − i k

h

l
= abmi k

v sk+1
h − (α1 + δ)i k+1

h − bhi k+1
h + δi k

h i k
h ,

pk+1
h − pk

h

l
= (1 − σ )α1i k

h − (α2 + β)pk+1
h − bh pk+1

h + δi k
h pk

h,

r k+1
h − r k

h

l
= σα1i k

h + (α2 + β)pk
h − bhr k+1

h + δi k
hr k

h ,

sk+1
r − sk

r

l
= br − abni k

v sk+1
r − br sk+1

r ,

i k+1
r − i k

r

l
= abni k

v sk+1
r − br i k+1

r ,

sk+1
v − sk

v

l
= bv − ac(i k

h + pk
h + i k

r )sk+1
v − bvsk+1

v ,

i k+1
v − i k

v
= ac(i k

+ pk
+ i k)sk+1

− bvi k+1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
l h h r v v
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o

After rearranging (3.1) we obtain the following explicit scheme

sk+1
h =

sk
h + lbh + lδi k

h sk
h

1 + labmi k
v + lbh

,

i k+1
h =

i k
h + labmi k

v sk+1
h + lδi k

h i k
h

1 + l(α1 + δ + bh)
,

pk+1
h =

pk
h + l(1 − σ )α1i k

h + lδi k
h pk

h

1 + l(α2 + β + bh)
,

r k+1
h =

r k
h + lσα1i k

h + l(α2 + β)pk
h + lδi k

hr k
h

1 + lbh
,

sk+1
r =

sk
r + lbr

1 + labni k
v + lbr

,

i k+1
r =

i k
r + labni k

v sk+1
r

1 + lbr
,

sk+1
v =

sk
v + lbv

1 + lac(i k
h + pk

h + i k
r ) + lbv

,

i k+1
v =

i k
v + lac(i k

h + pk
h + i k

r )sk+1
v

1 + lbv
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

It is clear from (3.2) above that if the initial conditions sh(0), ih(0), ph(0), rh(0), sr (0), ir (0), sv(0) and iv(0) are
non-negative, then the right hand side of Eqs. (3.2) admit no negative terms for any k. This implies the positivity
of the solution for the NSFD method given by (3.2).

The following result will be used to show the stability of the fixed points of (3.2).

Theorem 3.1. Consider the nonlinear system X t+1 = ψ(X t ), where ψ : Rn
→ Rn , is a C1-diffeomorphism with a

fixed point, X0. Then a steady-state equilibrium, X0, is locally asymptotically stable if and only if the moduli of all
eigenvalues of the Jacobian matrix, J (X0), are smaller than one.

Proof. The reader is referred to [11] for the proof of Theorem 3.1.
Let us consider X0, to be the fixed point of the system (3.2), i.e., X0 = (ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv). This is

btained by solving

ŝh = f1(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

îh = f2(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

p̂h = f3(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

r̂h = f4(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

ŝr = f5(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

îr = f6(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

ŝv = f7(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv),

ˆ ˆ ˆ ˆ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)
iv = f8(ŝh, ih, p̂h, r̂h, ŝr , ir , ŝv, iv),
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a

where

f1(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
ŝh + lbh + lδîh ŝh

1 + labmîv + lbh
,

f2(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
îh + labmîv ŝh + lδîh îh

1 + l(α1 + δ + bh)
,

f3(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
p̂h + l(1 − σ )α1 îh + lδîh p̂h

1 + l(α2 + β + bh)
,

f4(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
r̂h + lσα1 îh + l(α2 + β) p̂h + lδîh r̂h

1 + lbh
,

f5(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
ŝr + lbr

1 + labnîv + lbr
,

f6(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
îr + labnîv ŝr

1 + lbr
,

f7(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
ŝv + lbv

1 + lac(îh + p̂h + îr ) + lbv
,

f8(ŝh, îh, p̂h, r̂h, ŝr , îr , ŝv, îv) =
îv + lac(îh + p̂h + îr )ŝv

1 + lbv
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

In the above system, if îh = 0, p̂h = 0, îr = 0, îv = 0, and given that fi (X0) = X0, i = 1, 2, . . . , 8, then

ŝh =
ŝh + lbh

1 + lbh
⇒ ŝh + ŝhlbh = ŝh + lbh ⇒ ŝh = 1,

r̂h =
r̂h

1 + lbh
⇒ r̂h + r̂hlbh = r̂h ⇒ r̂h = 0,

ŝr =
ŝr + lbr

1 + lbr
⇒ ŝr + ŝr lbr = ŝr + lbr ⇒ ŝr = 1,

ŝv =
ŝv + lbv
1 + lbv

⇒ ŝv + ŝvlbv = ŝv + lbv ⇒ ŝv = 1.

hus the disease free equilibrium is unique and is given by E0 = (1, 0, 0, 0, 1, 0, 1, 0).

emark 3.2. The continuous system (2.2) and the discrete system (3.2) have the same disease free equilibrium.

Equations of system (3.3) are nonlinear in ŝh, îh, ŝr and ŝv , and hence explicit solutions are difficult to find.
e therefore solve the system (3.3) numerically to obtain the endemic fixed point.
The Jacobian matrix of (3.2) at the disease free equilibrium is given by

J (E0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 0 0 0 0 a18
0 a22 0 0 0 0 0 a28
0 a32 a33 0 0 0 0 0
0 a42 a43 a44 0 0 0 0
0 0 0 0 a55 0 0 a58
0 0 0 0 0 a66 0 a68
0 a72 a73 0 0 a76 a77 0
0 a82 a83 0 0 a86 0 a88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

11 =
1

1 + lbh
, a12 =

lδ
1 + lbh

, a18 =
−labm
1 + lbh

, a22 =
1

1 + l(α1 + δ + bh)
,

28 =
labm

, a32 =
l(1 − σ )α1

, a33 =
1

,

1 + l(α1 + δ + bh) 1 + l(α2 + β + bh) 1 + l(α2 + β + bh)
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42 =
lσα1

1 + lbh
, a43 =

l(α2 + β)
1 + lbh

, a44 =
1

1 + lbh
, a55 =

1
1 + lbr

, a58 =
−labn
1 + lbr

,

66 =
1

1 + lbr
, a68 =

labn
1 + lbr

, a72 =
−lac

1 + lbv
, a73 =

−lac
1 + lbv

, a76 =
−lac

1 + lbv
,

77 =
1

1 + lbv
, a82 =

lac
1 + lbv

, a83 =
lac

1 + lbv
, a86 =

lac
1 + lbv

, a88 =
1

1 + lbv
.

The characteristic equation associated with the above matrix is |J (E0) − λI | = 0, which can be simplified as
(a11 − λ)(a44 − λ)(a55 − λ)(a77 − λ)ϕ(λ) = 0, where

ϕ(λ) = λ4
+ (−a88 − a66 − a33 − a22)λ3

+ (a22a33 + a22a66 + a22a88 − a28a82 + a33a66 + a33a88

+ a66a88 − a68a86)λ2
+ (−a22a33a66 − a22a33a88 − a22a66a88 + a22a68a86 − a28a32a83

+ a28a33a82 + a28a66a82 − a33a66a88 + a33a68a86)λ+ (a88a66a33a22 − a22a33a68a86

+ a28a32a66a83 − a28a33a66a82).

e need to show that each eigenvalue λi satisfies |λi | < 1. Since lbh > 0, lbr > 0, lbv > 0, it is clear that

1 = a11 =
1

1 + lbh
< 1, λ2 = a44 =

1
1 + lbh

< 1, λ3 = a55 =
1

1 + lbr
< 1, λ4 = a77 =

1
1 + lbv

< 1, for every

values of the step length l > 0.
Now consider ϕ(λ) = λ4

+ a1λ
3
+ a2λ

2
+ a3λ+ a4 where a1, . . . , a4 are the corresponding coefficients of ϕ(λ)

bove.
For the polynomial ϕ(λ), let b4 = 1 − a2

4, b3 = a1 − a4a3, b2 = a2 − a4a2, b1 = a3 − a4a1;

4 = b2
4 −b2

1, c3 = b4b3 −b1b2, c2 = b4b2 −b1b3. The Jury conditions, which ensure that the roots of the polynomial
(λ) have magnitudes less than one, are ϕ(1) > 0, ϕ(−1) > 0, |a4| < 1, |b4| > |b1| , |c4| > |c2|.

The first condition ϕ(1) = 1 + a1 + a2 + a3 + a4 implies that

ϕ(1) =
1

((δl + lbh + lα1 + 1)(βl + lbh + lα2 + 1)(lbr + 1)(lbv + 1))
(l4(a2bcmσbrα1

+βδbr bv + βbhbr bv + βbr bvα1 + δbhbr bv + δbr bvα2 + b2
hbr bv + bhbr bvα1 + bhbr bvα2

+ br bvα1α2 − a2bβcδn − a2bβcmbr − a2bβcnbh − a2bβcnα1

− a2bcδnbh − a2bcδnα2 − a2bcmbhbr − a2bcmbrα1 − a2bcmbrα2 − a2bcnb2
h

− a2bcnbhα1 − a2bcnbhα2 − a2bcnα1α2)).

fter some simplifications, we obtain

ϕ(1) =
l4br bv(α1 + δ + bh)(α2 + β + bh)(1 − R2

0)
(1 + lbr )(1 + lbv)(1 + l(α1 + δ + bh))(1 + l(α2 + β + bh))

.

t is clear that ϕ(1) > 0 when R0 < 1.
Now the second condition ϕ(−1) = 1 − a1 + a2 − a3 + a4 implies that

ϕ(−1) =
−1

(1 + lbr )(1 + lbv)(1 + l(δ + bh + α1))(1 + l(β + bh + α2))
(a2bcl4mσbrα1

+ a2bβcδl4n + a2bβcl4mbr + a2bβcl4nbh + a2bβcl4nα1 + a2bcδl4nbh

+ a2bcδl4nα2 + a2bcl4mbhbr − a2bcl4mbrα1 + a2bcl4mbrα2 + a2bcl4nb2
h

+ a2bcl4nbhα1 + a2bcl4nbhα2 + a2bcl4nα1α2 + 2a2bcl3mσα1 + 2a2bβcl3m

+ 2a2bβcl3n + 2a2bcδl3n + 2a2bcl3mbh + 2a2bcl3mbr − 2a2bcl3mα1 + 2a2bcl3mα2

+ 4a2bcl3nbh + 2a2bcl3nα1 + 2a2bcl3nα2 − βδl4br bv − βl4bhbr bv − βl4br bvα1

− δl4bhbr bv − δl4br bvα2 − l4b2
hbr bv − l4bhbr bvα1 − l4bhbr bvα2 − l4br bvα1α2

+ 4a2bcl2m + 4a2bcl2n − 2βδl3br − 2βδl3bv − 2βl3bhbr − 2βl3bhbv − 2βl3br bv
− 2βl3brα1 − 2βl3bvα1 − 2δl3bhbr − 2δl3bhbv − 2δl3br bv − 2δl3brα2

− 2δl3bvα2 − 2l3b2
hbr − 2l3b2

hbv − 4l3bhbr bv − 2l3bhbrα1 − 2l3brα1α2 − 2l3bhbrα2
3 3 3 3 3 2 2
− 2l bhbvα1 − 2l bhbvα2 − 2l br bvα1 − 2l br bvα2 − 2l bvα1α2 − 4βδl − 4βl bh
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− 4βl2br − 4βl2bv − 4βl2α1 − 4δl2bh − 4δl2br − 4δl2bv − 4δl2α2 − 4l2b2
h

− 8l2bhbr − 8l2bhbv − 4l2bhα1 − 4l2bhα2 − 4l2br bv − 4l2brα1 − 4l2brα2 − 4l2bvα1

− 4l2bvα2 − 4l2α1α2 − 8βl − 8δl − 16lbh − 8lbr − 8lbv − 8lα1 − 8lα2 − 16),

hich upon simplification leads to

ϕ(−1) =
1

(1 + lbr )(1 + lbv)(1 + l(α1 + δ + bh))(1 + l(α2 + β + bh))
(((2 + lbv)(2 + lbr ))

((α1 + δ + bh)l + 2)((α2 + β + bh)l + 2) + l3a2bcmα1(1 − σ )(2 + lbr ) − a2bcl2

(((α1 + δ + bh)n + mbr )l + 2m + 2n)((α2 + β + bh)l + 2)).

t is hard to retrieve what above right hand sides will give us for ϕ(−1) but some simulations show that its value
s always positive when R0 < 1.

The third condition requires us to show that |a4| < 1, which is equivalent to 1 − a2
4 > 0. Hence, let us consider

1 − a2
4 = 1 −

(1 + a2bcl2(mα1(1 − σ )l − (m + n)))2

((1 + l(α2 + β + bh))(1 + l(α1 + δ + bh))(1 + lbr )(1 + lbv))2 ,

hich is positive when

1 + a2bcl2(mα1(1 − σ )l − (m + n)) < (1 + l(α2 + β + bh))(1 + l(α1 + δ + bh))(1 + lbr )(1 + lbv).

his condition is always true for any parameter values that we have used in our simulation. Hence, the inequality
a4| < 1 is also satisfied.

Finally, we just have to verify that the inequalities⏐⏐1 − a2
4

⏐⏐ > |a3 − a1a4|

nd ⏐⏐(1 − a2
4)2

− (a3 − a1a4)2
⏐⏐ > ⏐⏐(1 − a2

4)(a2 − a2a4) − (a3 − a1a4)(a1 − a3a4)
⏐⏐

re true. This is rather complicated to study theoretically. However, through some numerical simulations with the
arameters presented in Table 2, we could see that the inequalities are true when R0 < 1 for all l > 0. Hence, we can
onclude that all the eigenvalues of the Jacobian matrix are all less than one in magnitude. Thus, by Theorem 3.1,
he scheme (3.2) is unconditionally stable when R0 < 1.

To study the stability of the steady states of the NSFD numerically, we generated 10000 sets of parameter values
andomly. For each parameter set, we calculated reproductive number R0, the disease free and endemic equilibria
nd the spectral radius of their respective Jacobian matrix. The reproductive number R0 and the spectral radii are
lotted in Fig. 1. We observe that when R0 < 1, the spectral radius is less than 1, indicating that the DFE of
he NSFD is locally asymptotically stable. When R0 > 1, the spectral radius of the DFE is larger than 1 (positive
ogarithmic values) and that of the EE is less than 1 (negative logarithmic values) indicating that the DFE is unstable
nd the EE is asymptotically stable. In other words, the stability of the equilibrium points of the NSFD corresponds
o that of equilibrium points of the continuous model.

emark 3.3. The endemic equilibrium of the NSFD is locally asymptotically stable when R0 > 1.

In next section, we present some numerical results confirming the above mentioned theoretical observations.

. Numerical results

In this section we present extensive numerical results that we obtained by simulating the model with NSFD and
ther classical methods for a range of time step-sizes. Parameter values used for the simulations are presented in
able 2. Furthermore, numerous values of biting rate of sandflies, a, which are taken in the numerical simulations,
re indicated in the captions of figures and tables. Initial condition used for these simulations is indicated in Table 3.
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Fig. 1. The logarithm of the spectral radii of the Jacobian of the NSFD at the DFE (left) and EE (right), and the reproductive number R0.
Each point represents a set of randomly generated parameter values. The step size is l = 10.

Table 3
Initial condition used for numerical simu-
lations.

Initial condition Value

sh (0) 0.985
ih (0) 0.0025
ph (0) 0.0005
rh (0) 0.012
sr (0) 0.9
ir (0) 0.1
sv(0) 0.8
iv(0) 0.2

4.1. Disease free equilibrium (R0 < 1)

In this section, we present the results to study the convergence behavior of the numerical methods to disease free
quilibria. We provide the results for different values of biting rate of sandflies a satisfying R0 < 1. In Fig. 2, it can
e seen that all the numerical methods converge to the disease free equilibrium when the step-size l = 1. Then, in
able 4, we present some results about convergence of forward Euler, fourth-order Runge–Kutta and NSFD schemes
or different time step-sizes. It can be seen that the NSFD method converges to the correct disease free equilibrium
or all l used in the numerical simulations, and preserves positivity of the state variables whereas both forward
uler and fourth-order Runge–Kutta methods only converge for smaller values of l and diverge for larger values
f time step-sizes. In addition, Table 6 provides the spectral radius for different values of l and initial conditions
or the forward Euler and NSFD schemes. It can be observed for the NSFD scheme, these radii are less than one
or every values of the time step-size and initial conditions. Hence, by Theorem 3.1, the disease free equilibrium
s asymptotically stable for NSFD scheme.

.2. Endemic equilibrium (R0 > 1)

In this section, we study the behavior of the numerical methods to endemic equilibria. We provide the results
or different values of biting rate of sandflies a satisfying R0 > 1. It can be seen from Fig. 3 that all the numerical
ethods converge to the endemic equilibrium. However, in Table 5, we can see the qualitative values of convergence
or forward Euler, fourth-order Runge–Kutta and NSFD schemes for different time step-sizes. It can be concluded
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Fig. 2. Solution profiles obtained by different numerical methods for l = 1, a = 0.1556 and R0 < 1.

Table 4
Numerical convergence to the DFE for a = 0.1556, R0 < 1 (Initial
condition: See Table 3).

l Euler RK4 NSFD

0.01 Convergent Convergent Convergent
0.05 Convergent Convergent Convergent
0.1 Convergent Convergent Convergent
0.5 Convergent Convergent Convergent
1 Convergent Convergent Convergent
2.5 Divergent Convergent Convergent
3.5 Divergent Divergent Convergent
7 Divergent Divergent Convergent
10 Divergent Divergent Convergent
100 Divergent Divergent Convergent

Table 5
Numerical convergence to the EE for a = 0.2856, R0 > 1 (Initial
condition: See Table 3).

l Euler RK4 NSFD

0.01 Convergent Convergent Convergent
0.05 Convergent Convergent Convergent
0.1 Convergent Convergent Convergent
0.5 Convergent Convergent Convergent
1 Convergent Convergent Convergent
2.5 Divergent Convergent Convergent
3.5 Divergent Divergent Convergent
7 Divergent Divergent Convergent
10 Divergent Divergent Convergent
100 Divergent Divergent Convergent
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Fig. 3. Solution profiles obtained by different numerical methods for l = 1, a = 0.2856 and R0 > 1.

Fig. 4. Solution profiles obtained by Euler, RK4 and NSFD methods; for l = 3.4, a = 0.2856 and R0 > 1.

hat the NSFD method converges to the correct endemic equilibrium for large values of l, whereas forward Euler
nd fourth-order Runge–Kutta methods only converge for smaller values and diverge for larger l. From Fig. 4, we
ee that the forward Euler and fourth-order Runge–Kutta methods failed to converge to the endemic equilibrium.
n the other hand the NSFD scheme starting from different initial conditions converges to the correct endemic

quilibrium even for large values of l (see Fig. 5). In addition, it can be observed from Table 7 that the spectral
adius of the NSFD scheme is less than one for every values of the time step-size l and initial conditions. Hence,

he endemic equilibrium is stable for NSFD.
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Fig. 5. The approximations generated by the NSFD method with l = 10 converges to the EE (red dots) for different initial conditions. The
iting rate is a = 0.2856 giving a reproductive number R0 > 1.

able 6
umerical convergence to the DFE for different time step-size l and initial conditions. Here a = 0.1556 and 0.1656, giving R0 = 0.9351

nd 0.9951, respectively.

l sh (0) ih (0) ph (0) rh (0) sr (0) ir (0) sv(0) iv(0) R0 ρ(Euler) ρ(NSFD)

0.1 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 0.9351 0.99984 0.99984
1 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 0.9951 0.99943 0.99949
2.2 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 0.9351 1.00791 0.99652
2.2 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 0.9951 1.00794 0.99901
10 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 0.9951 8.12703 0.99739
10 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 0.9351 8.12689 0.98437

Here ρ(Euler) and ρ(NSFD) denote the spectral radii of Euler and NSFD methods, respectively.

able 7
umerical convergence to the EE for different time step-size l and initial conditions. Here a = 0.2856 and 0.2956, giving R0 = 1.7163 and
.7764, respectively.

l sh (0) ih (0) ph (0) rh (0) sr (0) ir (0) sv(0) iv(0) R0 ρ(Euler) ρ(NSFD)

0.1 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 1.7163 0.99984 0.99984
1 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 1.7764 0.99951 0.99951
2.2 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 1.7163 1.00854 0.99658
2.2 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 1.7764 1.38846 0.99893
10 0.985 0.0025 0.0005 0.012 0.9 0.1 0.8 0.2 1.7764 8.13057 0.98464
10 0.8 0.1 0.01 0.09 0.6 0.4 0.7 0.3 1.7163 9.51766 0.99520

Here ρ(Euler) and ρ(NSFD) are used for the spectral radius of Euler and NSFD schemes, respectively.

. Discussion and conclusions

In this paper, a numerical scheme for the dynamics of Visceral Leishmaniasis disease is proposed. We formulated
he NSFD scheme based on some nonlocal approximations for the nonlinear terms. We studied the convergence
ehavior of the numerical methods near the steady state. We provided the results for different values of biting rate
f sandflies, a, and R0.

The change in the values of the parameter, a, the biting rate of sandflies, changes the dynamics of the system
see Fig. 6). When a < 0.166 then R0 < 1 and the DFE is stable, and when a > 0.166 then R0 > 1 and the

endemic equilibrium is stable.
We also noticed that the NSFD scheme is unconditionally stable for R0 < 1 and converge to the disease free

quilibrium for arbitrary step-sizes. On the other hand, forward Euler and fourth-order Runge–Kutta methods diverge
or several time step-sizes. Similarly, for the case R0 > 1, NSFD scheme is unconditionally convergent to the
ndemic equilibrium point whereas the forward Euler and fourth-order Runge–Kutta methods diverge for several
ime step-sizes.

Euler and Runge–Kutta fourth order methods converge to the correct steady state only when the time step-sizes

re very small and diverge for larger values. However, the NSFD scheme converges to the correct steady state
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Fig. 6. The population size at equilibrium obtained by NSFD method for l = 10 with different values of the biting rate (a). The solid
black and red lines are the susceptible and infected population, respectively. The dashed black line on the left represents the PKDL and
recovered human population. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

with all positive parameter values. Hence, it can be concluded from the numerical results presented in Sections 4.1
and 4.2, that the proposed NSFD scheme is more efficient computationally than the other well known numerical
methods.
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