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Abstract: The growing antimicrobial resistance (AMR) of pathogenic organisms to currently pre-
scribed drugs has resulted in the failure to treat various infections caused by these superbugs.
Therefore, to keep pace with the increasing drug resistance, there is a pressing need for novel an-
timicrobial agents, especially from non-conventional sources. Several natural products (NPs) have
been shown to display promising in vitro activities against multidrug-resistant pathogens. Still, only
a few of these compounds have been studied as prospective drug candidates. This may be due to
the expensive and time-consuming process of conducting important studies on these compounds.
The present review focuses on applying cheminformatics strategies to characterize, prioritize, and
optimize NPs to develop new lead compounds against antimicrobial resistance pathogens. Moreover,
case studies where these strategies have been used to identify potential drug candidates, including a
few selected open-access tools commonly used for these studies, are briefly outlined.

Keywords: antimicrobial resistance; natural products; cheminformatics; hit prioritization; hit-
optimization; drug-likeness

1. Introduction

The advent of antibiotics in the 20th century has been a significant turning point in
medical sciences and humanity [1]. Many antibiotics were discovered and developed for
human use twenty years after the second world war [2]. This golden era (the 1940s to 1970s)
is remembered for the rise of antibiotics in transforming human health by saving many lives
through the treatment of infectious diseases [2,3]. However, the few antibiotics developed
after the period were derivatives of the existing ones. The situation was compounded by
the sudden emergence of antibiotic-resistant pathogens [1,4]. This condition has resulted in
a global burden of bacterial infections to a significant threat level, especially among those
pathogens, which cannot be controlled using the old classes of antimicrobial agents [5,6].
Therefore, there is a need for the discovery and development of novel antibiotics.

Natural products (NPs) have continued to gain relevance in the battlefront against
infectious diseases. Newman and Cragg [7] studied the use of NPs as sources of novel
drugs approved between 1981 and 2019. The authors concluded that these compounds
have prospects for discovering new agents against various infectious diseases. An earlier
study conducted by Seyed [8] also reported the potential of NPs as antimicrobial agents
acting against a wide range of human diseases. The efficient exploration of libraries of NPs
using modern drug discovery techniques, such as cheminformatic characterization can
help identify potential antibiotics.

Several cheminformatic techniques have been developed and employed in drug dis-
covery, design, and development to reduce the research cycle and minimize the cost of
producing new anti-infective agents [9]. Generally, the cheminformatics approach to ratio-
nal drug design involves the estimation of pharmacokinetic and toxic properties of potential
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drug candidates, with the prospect of minimizing the risk of future attrition [10–12]. Here,
we reviewed natural products with antimicrobial activities and described the role of chem-
informatics characterization in hit profiling, hit prioritization, and hit optimization for
antimicrobial development.

2. Natural Products in Antimicrobial Drug Discovery

Compounds sourced from natural products (NPs) have proven to be promising in the
discovery and development of novel antimicrobial drugs [13,14]. These compounds are
obtained from living organisms, such as bacteria, fungi, plants, and marine microorgan-
isms [15,16]. Studies have reported that four-fifths of the population in most developing
nations live on trado-medical practices as the primary source of treatment in essential
healthcare services [17,18]. The approval of some NP-based therapies against a range of
diseases, such as Alzheimer, cancer, diabetes, and other infections was extensively dis-
cussed in another study [19]. Furthermore, three out of the five newly developed drugs
by the United States Food and Drug Administration (FDA), representing novel classes of
antibiotics between 1981 and 2010, were also sourced from NPs [20]. Therefore, there has
been increasing interest in exploring and pursuing NPs as promising lead compounds in
combating multidrug-resistant bacteria [18,21].

The antimicrobial potential of crude extracts and pure NPs has been studied by observ-
ing the growth response of pathogens to samples. Table 1 shows selected NPs with their
reported bioactivity against some antimicrobial-resistant bacteria. The selection criteria of
promising antimicrobial compounds are based on minimum inhibitory concentration (MIC)
values of not more than 100 µg/mL and 25 µM for crude extract, and pure compounds,
respectively [22–24].
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Table 1. Selected natural products with their reported antimicrobial activity.

SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
Tested Strains Reference

1 Resveratrol
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SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
Tested Strains Reference
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Table 1. Cont.

SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
Tested Strains Reference
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Table 1. Cont.

SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
Tested Strains Reference
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SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
Tested Strains Reference
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Table 1. Cont.

SN Natural
Compound Structure Source of

Compounds Pathogen Average Reported
MIC (µg/mL) Value

No of the
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Despite the availability of these bioactivity data for natural products against resistant
bacteria, virtually none have been developed into an antimicrobial drug candidate. This
might be due to the difficult, broad, risky, costly, and time-intensive process of drug
discovery and development [9,38]. Therefore, it has become imperative to embrace the
available knowledge to quest for faster, cheaper, and more effective drug discovery and
development approaches.

3. Cheminformatics Techniques in Antimicrobial Drug Discovery and Development

Drug developers are employing different modern strategies to overcome the chal-
lenges. These current drug discovery and design strategies can computationally identify
potential liabilities and optimize hit compounds to impact desired drug-like properties prior
to expensive synthesis and pre-clinical experiments. In addition, it can computationally
process a large set of compounds from virtual combinatorial libraries and high-throughput
screening to guide rational decision-making in drug discovery and development. This
technique of processing large chemical bioactivity data is called cheminformatics [39].

3.1. Overview of Cheminformatics

Cheminformatic is a data mining technique that uses computer and information strate-
gies to solve chemical problems by processing raw data into information and information
into knowledge [39,40]. Chemical data processing in this context involves working with
chemical structures [41]. Therefore, this strategy for drug developers aims to provide better
and faster decision-making processes in discovery and lead optimization [39]. Chemin-
formatics is gaining much acceptance in the field of computational chemistry. It has great
potential, especially in the retrieval and extraction of chemical information, database search
for compounds, interactive data mining for molecular graphs, and analyses of chemical
diversity [39,41–43]. It is relevant, particularly in processing hit compounds from virtual
and actual high throughput screenings. Cheminformatic processes such as hit profiling
(assessing physiochemical properties, molecular descriptors, and drug-likeness) can guide
hit prioritization and hit optimization to identify lead compounds (Figure 1), especially
from phenotypic screening.
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3.1.1. Hit Profiling: Physicochemical Properties of NPs

Cheminformatics have played a significant role in the identification of NPs that
has the potential to become drug candidates [44]. These techniques are widely used to
support traditional wet-lab experiments towards the early identification of drug-like hit,
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hit-to-lead, and lead optimization processes while improving potency and selectivity. For
example, various structural and molecular representations in cheminformatics have proven
to help study the molecular complexity and quantify the chemical diversity of a library of
compounds. This computational approach has also allowed for profiling, prioritization, and
comparison of the molecular descriptors, physicochemical, and pharmacokinetic properties
of a group of NPs and others or with those of known drugs [44–47].

The evaluation of the physicochemical parameters (PP) of potential drug candidates
is crucial in drug development, as it assists in the early identification of molecules that
may fail at a later stage [48]. The absorption or therapeutic action elicited by a drug
depends mainly on the interaction between the various physical and chemical properties
of the drug and the targets [49]. Therefore, the physical and chemical properties of any
compound are crucial to evaluate the drug-likeness. Furthermore, PP can be manipulated
to an optimized condition using computer-aided strategies for a better drug-receptor
relationship. The PP that is key to determining the biological activity of any drug candidate
has been reviewed [48–53], a few of these properties are discussed below.

Molecular Weight (MW)

Molecular weight (MW) is one of the commonly examined physicochemical properties
in drug discovery research [54]. This property has been widely studied for its ability
to influence various pharmacokinetic properties like absorption, bioavailability, perme-
ation, and elimination, particularly with respect of compounds that are intended for oral
administration [55]. MW and few other properties are used in various rule-based drug-
likeness filters, such as Lipinski [56] and Ghose [57] to remove undesired compounds from
a library. However, antibacterial agents have been reported to deviate from these rules
as marketed antibacterial drugs have higher molecular weights than other drugs [58,59].
Furthermore, most marketed antibacterial agents like streptogramins, macrolides, and
daptomycin, commonly used against Gram-positive bacteria, possess larger MW than those
used against Gram-negative groups [59,60]. However, few Gram-negative bacteria drugs
are characterized by substantially high MW. Polymyxin B1 (1203 Da) and azithromycin
(749 Da) are examples of these drugs, and they require penetration enhancers to aid their
permeability [59].

Partition Coefficient (logP)

The partition coefficient (logP) is the ability of an uncharged molecule to dissolve in
a nonhomogeneous two-phase system of lipid and water [61]. It measures the amount
of solute that mixes in the water against that which dissolves in a lipophilic portion. The
logP is used to evaluate how a molecule travels to the target from the site of administra-
tion [49,61]. This implies that the values of logP are significant indicators of the fate of an
administered drug in the target organism. A negative logP indicates that the molecule is
more hydrophilic, and a positive logP shows that the molecule has a higher affinity for the
lipophilic phase.

Similarly, zero logP means that the substance is equally partitioned between the bi-
phasic system [61,62]. In order to achieve the desired antimicrobial efficacy, it is important
to identify or design compounds with optimum logP that will ensure efficient penetration
of the microbes’ cell wall by the natural products. High permeability through microbial
cell wall increase efficacy while decreased permeability may give rise to antimicrobial
resistance. The ideal logP of active molecules against Gram-negative bacteria was around
four, and six, respectively [63].

Hydrogen Bonding

Hydrogen bonding refers to the relationship of an atom of hydrogen from a given com-
pound (known as the donor) and a hydrogen atom from different compounds (known as
acceptor), evidenced by bond formation [64,65]. Hydrogen bonds (HBs) are crucial in eval-
uating the specificity of the binding of a ligand substance to a receptor. The importance of
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hydrogen bonds in determining the specificity of drug binding has been reported in various
studies [66–68]. The impact of HBs in the analysis of the quantitative structure-activity rela-
tionships (QSAR) model has also been established [49,64]. For example, Kemegne et al. [69]
studied the antimicrobial structure-activity relationship of anthraquinones isolated from
Vismia laurentii. They reported that hydrogen bond acceptors of the compounds were a
determinant of their antimicrobial activity. Furthermore, the addition of a properly posi-
tioned HBA side chain (to form an intramolecular HB) may be logical when hydrogen bond
donors are required for target activity [70]. Hence, quantifying HBs is vital in identifying
and optimizing hit compounds [57].

3.2. Concept of Drug-Likeness

Drug-likeness is a quantitative concept used to describe molecules that possess func-
tional groups, chemical and physicochemical properties consistent with most of the ap-
proved drugs [71,72]. It provides an insight into the early identification of chemical
compounds that are “most likely to succeed” in the drug development venture. A com-
monly used approach for estimating the drug-likeness of a given molecule is to screen
against acceptable boundaries of some fundamental molecular properties. An example
of this strategy is the famous “Rule of Five” developed by Lipinski et al. [56]. Ghose [57]
and Veber’s rule [73], among many other property-based rules, have also been used in
various studies to determine drug-likeness [74]. The question is whether the application
of these drug-likeness estimation strategies to natural products is a comparison of apples
with oranges? Natural products, chemical entities produced by living organisms, tend
to break these established drug-likeness rules obtained from synthetic chemical libraries.
The concept of natural product-likeness has been reported to have the potential to open
new opportunities for drug discovery from natural compounds while neglected by the
drug-likeness rule [72].

3.2.1. Lipinski’s Rule of Five (Ro5)

The Ro5 is a collection of some important PP that needs to be prioritized in deter-
mining the success of orally administered drugs [49,75,76]. There are a likelihood for
poor absorption and permeability for drug candidates whose logP, hydrogen bond donors
(HBDs), hydrogen bond acceptors (HBAs), and molecular weight (MW) is above 5, 5, 10,
and 500, respectively [74–77]. The digit 5 in Ro5 indicates the limit of the parameters,
multiples of 5 [49]. This strategy aims to use a drug-likeness filter to identify for quickly;
removal or optimization of poor pharmacokinetic compounds at an earlier stage of drug
discovery [74,76,77].

Several authors have explained successful cases where Ro5 has been employed to
evaluate the drug-likeness of hundreds and thousands of NPs [76,78,79]. Zhang and Wilkin-
son [80] also reported that about two-thirds of the FDA-approved drugs are administered
orally and passed the Ro5. However, some drawbacks have been identified with the use
of Lipinski’s rule. For example, approved drugs, such as atorvastatin, bromocriptine, and
everolimus are notable violators of the Ro5 [81,82]. Similarly, Zhang and Wilkinson [80]
have reported that 20% of all orally administered drugs failed at least one of the parameters
of Lipinski’s rule.

Furthermore, the harsh cut-off that is used in Lipinski’s parameters has failed to
distinguish between molecules with similar properties [71,83]. In another words, a com-
pound with a MW of 501 Da is considered to have a considerably lower likelihood of
success than one with a MW of 499 Da [84]. These constraints can result in significantly
missed opportunities [83,84]. Therefore, the Ro5 alone may not be sufficient to evaluate the
drug-likeness prospects of many compounds [74].

3.2.2. Pharmacokinetics and Toxicity Parameters

Pharmacokinetic descriptors such as absorption, distribution, metabolism, and excre-
tion (ADME), and toxicity (T) are commonly used properties for profiling or predicting the
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fate of many drug candidates after clinical administration [85]. The concept of investigating
the ADMET is of interest in early drug discovery given that over 70% of clinical failures
have been connected to these properties [86,87]. In addition to potency, a successful drug
candidate is expected to have favorable ADMET properties [85,87].

The use of in silico methods in determining these parameters has significantly con-
tributed to recent advancements in discovery and development [49]. For instance, ADMET
profiling has been used in various studies to identify lead compounds [88,89]. In addi-
tion, the assessment of the ADMET properties for potential drug candidates could guide
computational chemists towards an effective structure-activity relationship (SAR) based
optimization [87,90].

3.3. Hit-Prioritization Using the Quantitative Estimate of Drug-Likeness

To address the constraints of the rule-based filtering of compounds, Bickerton et al. [71]
developed a quantitative estimate of drug-likeness (QED) by combining the desirability
of key physicochemical properties (such as molecular weight, polarity, numbers of hy-
drogen bond acceptors, and donors, lipophilicity, and the number of structural alerts) ,
which impacts the likelihood of attrition [74,91,92]. The QED is a flexible and continuous
metric score whose value ranges between 0 and 1. A score of 1 in this context describes
any chemical compound with all its physicochemical properties within the space of an
ideal oral drug-like profile, while a score of 0 describes a compound with undesired
properties [62,92,93]

The concept of QED has been used in various studies to prioritize large compound sets
and their drug targets. For example, Egieyeh et al. [93] conducted cheminformatic profiling
of 1040 NPs with anti-plasmodial activity. They generated a list of compounds that can be
prioritized in the development of anti-malarial drugs. Similarly, a collection of more than
100 active compounds against methicillin-resistant Staphylococcus aureus (MRSA) was also
prioritized for anti-MRSA drug development in a recent study [62]. Kim and Lee [94] also
screen chemical compounds obtained from a Chinese medicinal plant. They used the QED
concept as one of the approaches to profile 475 active compounds for drug-likeness and
oral bioavailability. In all these studies, QED has been described as a more reliable method
to estimate drug-likeness than the rule-based approaches [74,92].

3.4. Hit Optimization after Hit Profiling

The aim of structurally optimized hit compounds is to enhance the development of
potential drug candidates. In silico cheminformatic tools can help enhance the physico-
chemical and pharmacokinetic properties of hit compounds. This is achieved by selectively
modifying the structure of such compounds [95–97]. In general, this strategy also tends
to optimize the compounds toward reducing toxicity, improving ADME properties, and
synthetic accessibility while maintaining the desired potency [95,96].

Structural optimization in drug design can be carried out through a combination of
different approaches [97]. The simplest of these strategies is the direct chemical modification
of functional groups through isosteric replacement, addition, and alteration of the ring
systems [98]. This strategy is based on the chemical similarity principle, which states
that chemically similar structures will have similar bioactivity. In a recent study [62],
random replacement of the functional group was performed on two chemical compounds,
α-viniferin and aminoethyl-chitosan, which showed good anti-MRSA activity but a low
desirability score. This led to the identification of two compounds with a significantly
improved properties and a better desirability score.

Similarly, the removal or addition of a halide to a low-potency inhibitor of factor Xa
was performed by Wunberg et al. [99]. The authors obtained a new compound, BAY 59-7939
which had a more improved activity. Another optimization approach is through SAR and
subsequent SAR-directed optimization. Here, the chemical and biological information
of the chemical compounds generates a SAR for rational optimization of hit compounds.



Molecules 2021, 26, 3970 13 of 18

These two approaches describe the case of more than 30% of anti-cancer drugs that are
analogues of natural products [97,100].

The optimization of a natural hit also uses a molecular design based on the core
structures to generate a pharmacophore-oriented molecular design [97]. Examples of this
strategy, include eliminating redundant chiral centers and scaffold hopping, commonly
used to identify novel hits with intellectual properties. Unlike the first two approaches,
the core structures of the original compound may change significantly during the last
approach [97].

3.5. Cheminformatics Language and Open Access Software Packages for Hit Characterization,
Prioritization, and Optimization

The advent of technology in drug discovery has ushered in various computer-readable
chemical representations [101]. For example, chemical structures are represented in chem-
informatics as linear strings of the Simplified Molecular Input Line System (SMILES).
The SMILES is a line notation language widely used to represent the chemical structure
effectively read and processed across various computational systems [101,102]. Most chem-
informatics software and online platforms are designed to generate or accept SMILES for
calculating essential molecular descriptors, drug-likeness, and other related algorithms.
The various strategies described in this review can be achieved using software available as
open-access, web servers, or commercial packages. The open-access or webserver tools
commonly employed in cheminformatics studies are described in Table 2. A comprehensive
compilation of the free and commercial software packages, databases and other in silico
drug design tools can also be found at click2drug [103] and vls3d [104].

Table 2. Open access in silico tools for cheminformatics characterization, prioritization, and optimization of hits. All the
URL were accessed on the 29 May 2021.

Tool Name Function Algorithm Identifier Reference

ADMETlab
Drug-likeness evaluation, profiling
of ADMET, and subsequent
prioritization of chemical entities

Random Forests (RF), Support
Vector Machine (SVM), etc.

http:
//admet.scbdd.com/ [103]

DruLiTo Physicochemical properties,
Drug-likeness rules, QED score SVM, QSAR

http:
//www.niper.gov.in/pi_
dev_tools/DruLiToWeb/
DruLiTo_index.html

[104,105]

Drugmint Predicting the drug-likeness, QED
score, and optimization SVM http://crdd.osdd.net/

oscadd/drugmint/ [106]

SwissADME
Physicochemical properties, ADME,
Rule-based drug-likeness, and
Optimization

SVM and Bayesian techniques http:
//www.swissadme.ch/ [107]

SwissBioisostere Optimization Hussain-Rea algorithm http://www.
swissbioisostere.ch/ [108]

pkCSM
Physicochemical properties,
Rule-based drug-likeness, ADMET
parameters

Graph-based structural signatures http://structure.bioc.cam.
ac.uk/pkcsm [109]

DataWarrior

Physicochemical properties,
Rule-based drug-likeness, Toxicity
prediction, prioritization, and
optimization (through the
generation of Structure−Activity
Landscape Index)

Stereo-enhanced Morgan-algorithm https://openmolecules.
org/datawarrior/ [110]

Galaxy Physicochemical properties, QED
score Structural similarity https://usegalaxy.eu/ [71]

BioTransformer Prediction f drug metabolism Machine learning algorithms www.biotransformer.ca [111]

Knime Molecular descriptors and ADME Machine learning https:
//www.knime.com/ [112]

http://admet.scbdd.com/
http://admet.scbdd.com/
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://crdd.osdd.net/oscadd/drugmint/
http://crdd.osdd.net/oscadd/drugmint/
http://www.swissadme.ch/
http://www.swissadme.ch/
http://www.swissbioisostere.ch/
http://www.swissbioisostere.ch/
http://structure.bioc.cam.ac.uk/pkcsm
http://structure.bioc.cam.ac.uk/pkcsm
https://openmolecules.org/datawarrior/
https://openmolecules.org/datawarrior/
https://usegalaxy.eu/
www.biotransformer.ca
https://www.knime.com/
https://www.knime.com/
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4. Conclusions

In light of the growing antimicrobial resistance (AMR), it has become imperative for
researchers to stay ahead of this impending global pandemic by developing newer and
more potent antibiotics. Although many NPs have proven to have the potential of being
developed into new antimicrobial drug candidates, the high financial implications, cost in
time, and attrition rates, commonly associated with drug discovery and development, are
limiting this venture, especially within the academic research places. Computational strate-
gies, such as cheminformatic characterization offer the potential to resurrect many valuable
NPs from the graveyard for antimicrobial hit identification and enhance the progress to-
wards hit-to-lead optimization, as well as the eventual development of potent antimicrobial
drug candidates. Some of the methods reviewed here have been used to identify new ther-
apeutic interventions against various pathogens, such as the inhibitors of matrix protein
(VP40) in Ebola virus [12]. The cheminformatics methods have also played a significant role
in pandemic-related studies, including the ongoing COVID-19 research [113]. However,
in vitro, or in vivo techniques are crucial in validating cheminformatic hypotheses as this
could guide drug developers in receiving less false-positive results.
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