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Abstract: The objective of this study was to elucidate the proteomic mechanisms of drug resistance 

in HIV-infected African patients. Cell membrane fractions from forty oral Candida isolates isolated 

from African HIV-positive patients were analysed using HPLC-MS with the aim of identifying 

proteins associated with their pathogenicity and drug resistance. Heat shock proteins that mediate the 

fungicidal activity of salivary peptides were found in all tested Candida fractions, with pH-

responsive proteins associated with increased pathogenicity only being present in the three most 

commonly isolated species. ABC multidrug transporter efflux pumps and estrogen binding proteins 

were only found in C. albicans fractions, while ergosterol biosynthesis proteins were identified in 

four species. The combination of various adherence, invasion, upregulation and efflux pump 

mechanisms appear to be instrumental for the Candida host colonization and drug resistance 

emergence in HIV-infected individuals. 
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1. Introduction 

The opportunistic yeast, Candida albicans, can cause life-threatening infections with mortality 

rates exceeding 40% in treated cases [1], paralleled by a simultaneous increase in the numbers of 

resistant non-albicans Candida species [2]. Oropharyngeal candidiasis (OC) is diagnosed clinically 

by the appearance of white, plaque-like lesions of the tongue or oropharyngeal mucosa, usually 

confirmed by laboratory culture. As an early indicator of immune suppression and HIV infection, OC 

increases the risk for AIDS-related morbidity and mortality [3] since HIV-infected individuals are 

known to have higher fungal loads than HIV-naïve patients [4]. Antifungal agents and combined 

anti-retroviral therapy (cART) are standard care at most HIV clinics. Prolonged antibiotic and 

antifungal therapy and prophylaxis are challenging in resource-limited countries, where systemic resistant 

infections are costly to treat and often result in increased patient morbidity and mortality [5]. 

Among the most commonly prescribed antifungal agents are the azoles (fluconazole, 

itraconazole, ketoconazole, voriconazole), echinocandins (anidulafungin, caspofungin, micafungin) 

and polyenes (nystatin, amphotericin B). Oral fluconazole is the treatment of choice. Patients tolerate 

fluconazole better than itraconazole and ketoconazole [6] and even though topical therapy (clotrimazole, 

nystatin and miconazole) may adequately treat initial episodes of oropharyngeal candidiasis [7], 

fluconazole is found to be more effective. 

Candida species express drug resistance and virulence-related proteins in their cell membranes, 

which are pivotal in fungal pathogenesis. Virulence is mediated through morphogenesis and invasion [8]. 

Cell membrane proteins are involved in drug modification, detoxification, and resistance in both 

prokaryotic and eukaryotic systems [9]. The following pluripotent proteins are response mechanisms 

to stress that enable survival: i) ATP-binding cassette transporters Cdr1p and Cdr2p which act as 

efflux pumps to expel azoles and other drugs in C. albicans [10,11] and elicit resistance, ii) Mdr1p, 

an efflux pump transporter implicated in C. albicans and C. dubliniensis azole resistance [12,13], iii) 

Heat shock protein Hsp90, a chaperone that binds to human salivary peptides to mediate fungicidal 

activity and is implicated in antifungal drug resistance [14,15], iv) Hsp70 proteins SSA1 and SSA2, 

which affect the fungicidal activity of human antimicrobial peptides [16]. SSA1 is associated with 

disseminated oropharyngeal disease [17], v) NADPH dehydrogenase EBP1 (estrogen binding protein 1) 

which binds with high affinity to mammalian estrogen [18], vi) pH-responsive protein 2 (PHR2), 

which may also be involved in pathogenesis [19] and vii) ECM33, an adhesin implicated in 

caspofungin resistance [20]. Additionally, lanosterol 14-alpha demethylase (Erg11p) catalyses C14-

demethylation of lanosterol, a critical step for ergosterol biosynthesis [21]. Its involvement in the 

subpathway that synthesizes zymosterol from lanosterol is affected by the action of azole drugs, 

which bind to Erg11p and reduce ergosterol production in Candida. Twenty-five other enzymatic 

reactions take place in this biosynthetic pathway, with Erg1p, Erg2p and Erg24 being used as targets 

by other antifungal drugs [22]. Upregulation of Erg11p expression has been associated with 

increased resistance to azole in C. albicans [23], C. tropicalis [24] and C. auris [25]. 

Mechanistic studies of these membrane proteins are critical to the development of novel 

therapies to combat azole resistance in Candida, particularly in immunocompromised patients. 

Therefore, the objective of this study was to elucidate the mechanisms of drug-resistance-related 

Candida proteins detected in two cohorts of African HIV-infected individuals. 
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2. Materials and methods 

2.1. Sampling 

Ethics approval was obtained from the Research Ethics Committee of the University of the 

Western Cape in Cape Town, South Africa and from the Bamenda Regional Hospital Institutional 

Review Board (IRB) in the North West Province of Cameroon under ethics protocol numbers 07/2/40 

and R.005/MPH.RDPH.RHB/359. The study protocol followed in accordance with the revised 

Declaration of Helsinki [26] and written informed consent was obtained from all participants for both 

the collection and storage of samples for future analyses. The study included HIV-positive patients 

presenting with white pseudomembranous plaque on the tongue or other visible oral candidiasis. 

Patients who received antifungals or other antimicrobial medications within two weeks prior to 

sample collection were excluded from the study. Oral swabs were collected for laboratory processing 

from 20 study participants recruited from health clinics in the Cape Flats region in Cape Town, South 

Africa and a further 20 recruited from Bamenda, Cameroon. 

2.2. Identification and antifungal drug susceptibility testing of Candida isolates 

Swab samples were plated onto Sabouraud agar (Cat. no. 84088; Sigma-Aldrich, St. Louis, MI, 

USA) and incubated at 37 ℃ for 24 hours. Presumptive species identification was achieved by 24–72 

hour culture on Fluka chromogenic Candida identification agar (Cat. no. 94382; Sigma-Aldrich, St. 

Louis, MI, USA) and Oxoid chromogenic Candida agar (Cat. no. CM1002A; Oxoid, Hampshire, 

UK), incubated at 30 ℃ and species identification was confirmed using Gram stain morphology, 

growth on selective media, the germ tube test and API ID 32 C biochemical testing (Cat. no. 32200; 

bioMérieux, Marcy l'Etoile, France). Drug susceptibility was tested against the azoles (fluconazole, 

itraconazole, posaconazole and voriconazole), echinocandins (anidulafungin, caspofungin and 

micafungin), amphotericin B and 5-flucytosine using a Clinical and Laboratory Standards Institute (CLSI) 

approved broth microdilution susceptibility platform, as previously described [27]. 

2.3. Isolation of Candida cell membrane proteins 

Drug resistance-related protein profiles expressed by different Candida species regarded as 

susceptible or resistant to azoles (as determined by CLSI guidelines) were compared, along with the 

proteins expressed using other antifungal drug classes. 

Isolates were cultured on Sabouraud agar plates for 24 hours at 37 ℃, before individual 

colonies were picked and incubated in yeast extract peptone dextrose (YPD) broth (peptone 10 g/L 

and dextrose 40 g/L distilled water) at 37 ℃ for 16 hours with agitation. Culture density was 

measured at 600 nm absorbance and the biomass was recovered by centrifugation at 3000 g. The fungal 

cell pellet was washed in 2 mL of sterile distilled water before being re-pelleted at 3000 g for 10 minutes. 

The isolated pellet was then resuspended in 2 mL homogenizing buffer with the protease inhibitor 

phenylmethylsulfonyl fluoride (PMSF) (50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 1 mM PMSF), 

using a protein isolation method based on the one described by Niimi et al [10]. One-millimetre 

borosilicate glass beads (Cat. no. Z273619, Sigma-Aldrich, USA) were used to disrupt the fungal 

cells, by placing the tubes in a vortex for 6 minutes. The cell debris were pelleted at 5000 g for 10 min 



323 

AIMS Microbiology                                                           Volume 7, Issue 3, 320–335. 

at 4 ℃ and the lysates (containing fungal cell membrane components) were then pelleted at 20 000 g 

for 1 hour at 4 ℃, to result in a crude membrane fraction. 

Protein concentration was determined by the Bradford method [28], using a Bio-Rad Bovine 

Serum Albumin (BSA) Standards Set (Cat. no. 500-0207, Bio-Rad, USA), according to the 

manufacturer’s instructions. Sixteen microliters of a 10 mM Tris-HCl, pH 7.0, 5 mM EDTA solution 

were added to the isolated pellets, with standardized sample concentrations being subsequently 

diluted to an approximate protein concentration of 0.65 mg/mL. 

Using filter-aided sample preparation (FASP) on the cell fractions, 50 μL samples were mixed 1:1 

with SDT lysis buffer (4% SDS, 100 mM Tris-HCl pH 7.6, 0.1 M DTT), then mixed with an equal 

volume of UA buffer (8 M urea, 100 mM Tris-HCl, pH 8.5) and concentrated on an Amicon ultra 10 

kDa MWCO filter (EMD Millipore, USA) by 40 minutes centrifugation at 14000 g. For simplicity, 

all subsequent centrifugation steps were performed at 14000 g. Next, 200 μL UA buffer was added 

and the samples were again centrifuged for 40 minutes before isolated proteins were alkylated with 

the addition of 100 μL of 0.05 M iodoacetamide in UA buffer. After a 5-minute incubation and 30-

minute centrifugation, 100 μL of UB buffer (8 M urea, 0.1 M Tris-HCl pH 8.0) was added. This was 

followed by another hour centrifugation, the addition of 100 μL 50 mM ammonium bicarbonate 

solution before a 1-hour centrifugation cycle. Next, 40 μL trypsin was added and the filter was 

incubated at 37 ℃ for 17 hours in a wet chamber. The filter was subsequently transferred to a new 

tube and centrifuged for 40 minutes, followed by the addition of 40 μL of a 0.5 M sodium chloride 

solution and another 20-minute centrifugation cycle. Finally, the solution was acidified by the 

addition of 2.4 μL formic acid solution. The filtrate was then desalted using C18 StageTips (Thermo-

Fisher Scientific, USA) according to the manufacturer’s instructions, before drying in vacuo and -20 ℃ 

storage (Figure 1). Dried peptides were dissolved in 5% acetonitrile in 0.1% formic acid and 10 μL 

injections were made for nano-LC chromatography. 

2.4. HPLC-MS protein identification 

Mass spectrometry experiments were performed on a Thermo Scientific EASY-nLC II 

connected to a LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, Bremen, Germany) 

equipped with a nano-electrospray source. For liquid chromatography, separation was performed on 

an EASY-Column (2 cm, ID 100 μm, 5 μm, C18) pre-column followed by XBridge BEH130 

NanoEase (15 cm, ID 75 μm, 3.5 μm, C18) column with a flow rate of 300 nL/min. The gradient 

used was from 5–17% B in 5 min, 17–25% B in 90 min, 25–60% B in 10 min, 60–80% B in 5 min 

and kept at 80% B for 10 min. Solvent A was 100% water in 0.1% formic acid, and solvent B was 100% 

acetonitrile in 0.1% formic acid. 

The mass spectrometer was operated in data-dependent mode, to automatically switch between 

Orbitrap-MS and LTQ-MS/MS acquisition and data acquired using the Xcalibur software 

package (Thermo Scientific Cat. No. OPTON-30487). The 20 most intense ions were isolated and 

fragmented in a linear ion trap (number of accumulated ions 1.5 × 10
4
) using collision induced 

dissociation. The lock mass option (polydimethylcyclosiloxane; m/z 445.120025) enabled accurate 

mass measurement in both the MS and MS/MS modes. 

Thermo Proteome Discoverer 1.3 software (Thermo Scientific, Bremen, Germany) was used to 

identify proteins via automated database searching (Mascot, Matrix Science, London, UK, and 

Sequest) of all tandem mass spectra against the Uniprot database [29], with the aim of exclusively 
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identifying specific protein functions related to antifungal drug resistance and proteins that affected 

the organism’s pathogenicity and virulence. Proteins were considered positively identified when they 

were characterised with at least 1 tryptic peptide per protein, a Mascot score threshold of 20 and 

Sequest score threshold of 1.5. In order to include only significant data, only proteins with a mascot 

score above 24 were included in the study. 

  

Figure 1. Filter-Aided Sample Preparation (FASP) overview. Membrane protein 

denaturing and binding to the Amicon filter takes place in steps  to : The SDS 

component of the SDT buffer assists in solubilising the membrane proteins in the crude 

extract, while the DTT acts as a reducing agent, breaking disulphide residue bonds. 

Membrane proteins are further denatured with the high urea content of the UA and UB 

buffers that further destabilise internal protein bonds. Iodoacetamide is a sulfhydryl-

reactive alkylating reagent that blocks binding to the reduced cysteine residues and 

prevents disulphide bonding and protein refolding while the addition of bicarbonate 

renders the proteins in a highly-charged state, improving Amicon filter bonding. The 

addition of Trypsin and the overnight incubation at 37 ℃ in step , further denatures the 

membrane proteins that are eluted from the Amicon filter by the interaction between the 

positively-charged proteins and negatively-charged chloride ions in the sodium chloride 

solution used in step . Formic Acid further cleaves the membrane proteins into peptides 

at their C- or N- terminal domains (step ) before the eluted proteins then bind to a 

derivatised C18 filter in the StageTip (step ) through hydrophobic interactions. This 

step allows for other salts, buffers and chaotropes to be eluted. The tip with the bound 

proteins is then dried under vacuum pressure and stored at -20 ℃ until needed for HPLC-

MS. This figure was created by an author (RF) using BioRender (https://biorender.com/). 
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3. Results 

3.1. Cohort demographics and combination ART 

The majority of participants were female (80%) with a median age of 33.5 years (age range 24 

to 70). Recruits were on the following ART at the time of sample collection: 82.5% receiving 

Lamivudine, 52% on Nevirapine, 42.5% on Zidovudine, 37.5% on Stavudine, 27.5% receiving 

Efavirenz, one person (2.5%) received Tenofovir and one person received Lopinavir/ritonavir as part 

of their 1st line cART regimen. Of the 40 patients, seven (17.5%) were confirmed HIV-positive but 

planned to begin cART, pending viral load testing results. 

3.2. Drug resistance protein profiles 

Standardized cell membrane fractions from seven Candida species (C. albicans, C. dubliniensis, 

C. glabrata, C. tropicalis, C. krusei, C. rugosa and C. parapsilosis) expressing different azole 

resistance patterns, were prepared for High Performance Liquid Chromatography-Mass Spectrometry 

(HPLC-MS) analysis. 

Chromatograms obtained after HPLC-MS analysis differentiated between Candida species as 

well as between fluconazole-susceptible and fluconazole-resistant strains of the same species (Figure 

2 A–D). 
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Figure 2. Chromatograms for (A) FCZ-susceptible C. albicans, isolate SA201; (B) FCZ-

resistant C. albicans, isolate C199; (C) FCZ-intermediate resistant C. glabrata, isolate 

SA92; (D) FCZ-resistant C. krusei, isolate C144. 

3.3. Expression of azole resistance-related proteins 

Various colonization and resistance mechanisms detected in azole-resistant isolates were 

elucidated using HPLC-MS. Representatives of heat-shock proteins were detected in all isolates. The 

identified heat shock proteins included Hsp70 (SSA1) and Hsp90 (expressed by all species). 

Hsp70 (SSA1 and SSA2) and Hsp90 were found in resistant isolates across all seven Candida 

species in our study, with Hsp70 (SSA1) expressed in seven of the nine C. glabrata strains tested. Of 

these seven, six Hsp70 (SSA1) positive isolates were also resistant to at least one azole drug tested. 

Only a single C. glabrata isolate was susceptible to all tested drug classes and did not express Hsp70, 

highlighting the possible pluripotent nature of this protein. In the C. glabrata isolate that displayed 

both fluconazole and voriconazole resistance, Hsp70 (SSA1) (UniProtKB accession number P10591) 

was expressed with the highest mascot score (1835.96) and had a high MS sequence coverage of 42.37%. 

Hsp70 (SSA1) was also identified in the membrane fractions of C. glabrata isolates that were 

susceptible to all azoles tested but were resistant to amphotericin B (one isolate) or had intermediate 

resistance to micafungin (one isolate). Heat-shock protein Hsp70 (SSA2) was expressed by resistant 

representatives of all species with the exception of C. dubliniensis. Other resistance-related 

proteins included NADPH dehydrogenase oxidoreductase EBP1 (expressed by C. albicans) and 

PHR2 (expressed by C. albicans and C. dubliniensis resistant isolates). The expression of a 
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multidrug resistance transporter protein Cdr1p was seen in two C. albicans azole-resistant fractions, 

with multidrug efflux transporter Cdr2p being present in a C. albicans isolate resistant to all four 

azole drugs tested. Transporter protein Cdr4p was also identified in eight C. albicans resistant 

fractions (Table 1). Proteins associated with ergosterol biosynthesis were found in C. albicans, C. 

dubliniensis, C. glabrata and C. tropicalis cell fractions. Although Erg11p was the most predominant 

protein in this group, other proteins that are involved in ergosterol biosynthesis were also identified. 

They included Erg9p (which synthesises squalene from farnesyl diphosphate), Erg1p (which 

synthesises squalene epoxide from squalene), Erg6p (which synthesises fecosterol from 4,4 

dimethylzymosterol) and Erg3p (which synthesises ergosta-5,7,24(28)-trienol from episterol). A C. 

albicans isolate highly resistant to all tested azole drugs had the highest detected mascot score for 

Erg11p (188.9), while also expressing Erg6p. Some proteins appeared to be more prevalent in certain 

species, for example, efflux pumps, corticosteroid and estrogen binding proteins were only present in 

C. albicans isolates, while other protein types were more widely distributed (Table 1). 

While most isolates initially selected for their susceptibility to azoles were also susceptible to 

other drug classes, one C. glabrata isolate and the sole C. rugosa representative expressed resistance 

to amphotericin B. In the latter, only salivary histatin binding heat-shock proteins Hsp70 (SSA1/2) 

and Hsp90 were identified along with PHR2. 
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Table 1. Individual drug-resistance and pathogenicity-related proteins seen in azole-susceptible and -resistant isolates, identified by HPLC-

MS and the UniProt database. 

Candida 

species 

 

Azole 

resistance 

 

ABC transporters Increased 

pathogenicity 

Estrogen 

binding 

Heat shock proteins Ergosterol biosynthesis proteins 

Cdr1p 

 

Cdr2p 

 

Cdr4p 

 

pH-responsive protein 2 EBP1 Hsp70 Hsp90 Erg11p Erg1p Erg3p Erg6p Erg9p 

SSA1 SSA2 

UniProtKB accession numbers P43071 P78595 O74676 O13318 P43084 P41797 P46587 P46598 P10613; 

P14263; 

P50859 

O13306 O93875; 

P50860 

O74198; 

Q6FRZ7; 

Q875K1 

P78589; 

Q9HGZ6 

C. albicans 

 

S (n = 10) √ (3) 
_ 

√ (7) √ (9) √ (4) √ (10) √ (9) √ (10) √ (3) 
_ _ 

√ (3) √ (1) 

R (n = 10) √ (2) √ (1) √ (8) √ (9) √ (3) √ (10) √ (5) √ (7) √ (5) 
_ 

√ (1) √ (1) 
_ 

C. glabrata 

 

S (n = 3)    √ (1) 
_ 

√ (2) √ (2) √ (2) 
_ _ _ 

√ (1) 
_ 

R (n = 6)    
_ _ 

√ (5) √ (3) √ (5) √ (3) _ √ (1) √ (1) √ (3) 

C. dubliniensis 

 

S (n = 3)    √ (2) 
_ 

√ (3) √ (2) √ (3) √ (1) √ (1) 
_ _ _ 

R (n = 1)    √ (1) 
_ 

√ (1) 
_ 

√ (1) 
_ _ _ _ _ 

C. krusei 

 

S (n = 1)    
_ _ _ _ 

√ (1) 
_ _ _ _ _ 

R (n = 2)    
_ _ 

√ (1) √ (1) √ (1) 
_ _ _ _ _ 

C. tropicalis R (n = 2)    
_ _ 

√ (2) √ (2) √ (1) √ (2) 
_ _ 

√ (1) 
_ 

C. rugosa S (n = 1)    
_ _ 

√ (1) √ (1) √ (1) 
_ _ _ _ _ 

C. parapsilosis S (n = 1)    √ (1) 
_ 

√ (1) √ (1) √ (1) 
_ _ _ _ _ 

√ : protein present; -: protein not present 
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3.4. Expression of cross-resistance-related proteins 

Isolates demonstrating cross-resistance to both azoles and other drug classes expressed PHR2, a 

protein family associated with increased pathogenicity. PHR2 was seen in multi-drug resistant C. 

dubliniensis and in three C. albicans isolates where one expressed cross-resistance to amphotericin B 

and two expressed cross-resistance to 5-flucytosine. Interestingly, one of the C. albicans azole-

resistant isolates resistant to 5-flucytosine, expressed 9 resistance-associated proteins including two 

multi-drug transporters, three distinct heat-shock proteins, NADPH dehydrogenase (EBP1), PHR2 

and two ergosterol biosynthesis proteins. Incidentally, this was the isolate expressing the highest 

mascot score for Erg11p. Another C. albicans isolate with resistance to both azoles and 5-flucytosine 

expressed a similar protein profile, with the exception of Hsp70 (SSA2) and NADPH dehydrogenase. 

3.5. Comparison of resistance protein profiles of patients on cART and those not yet on cART 

Of the patients who were not yet on cART at the time of sample collection, five were colonised 

by C. albicans (three of which were highly resistant to fluconazole and two of these also being 

resistant to 5-flucytosine), one was colonised by a multi-drug resistant (MDR) C. dubliniensis isolate 

and one was colonised by C. glabrata. When comparing the protein profiles between patients who 

were yet to start cART and those already on cART, it was noted that apart from the presence of the 

ubiquitous heat shock proteins, the species isolated from patients not on cART also expressed pH-

responsive protein 2 (seen in the MDR C. dubliniensis and four C. albicans isolates), while one of 

the Cdr1p and two Cdr4p efflux transporters were identified in two C. albicans isolates from this 

group. Ergosterol biosynthesis proteins were identified in a C. albicans isolate and in the MDR C. 

dubliniensis isolate (Erg9p, Erg11p and Erg3p) belonging to this group. 

4. Discussion 

Our previous finding of the high resistance of Candida to various antifungal drugs seen in these 

HIV patients [27] is supported by this attempt to elucidate the different mechanisms that increase the 

pathogenicity and drug resistance of these organisms. This study focused on 40 novel Candida 

isolates whose membrane protein composition were characterised to better understand their role in 

drug resistance. 

Candida species can express estrogen-and progesterone-binding proteins, explaining the higher 

predisposition of females to candidiasis [30,31] and in the current study, estrogen-binding proteins 

were identified in C. albicans cell fractions in the form of EBP1. 

The heat-shock proteins Hsp70 (SSA1 and SSA2) and Hsp90 are known to bind to 

HTN3/histatin-5 found in saliva, affecting the fungicidal activity of these native antimicrobial 

proteins [14,15,32] and leading to resistance [33] and increased oral Candida colonization [34], 

especially in immunocompromised patients [35]. Histatins are small (7–38 amino acids) histidine-

rich, broad spectrum, cationic immunological peptides that act on the cell membrane causing pore 

formation and fungal cell lysis. Demonstrating potent antifungal activity, histatins are known to 

interact with Hsp70 (SSA1/2) and kill Candida [32]. Hsp70 (SSA1) was previously reported to be 

upregulated in fluconazole-resistant membrane fractions of C. glabrata [36], while in contrast, it was 
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found by the same group to be downregulated in voriconazole-resistant isolates [37]. The presence of 

Hsp70 (SSA1) in most tested isolates, the ability of this protein to affect the fungicidal activity of the 

host’s antimicrobial peptides [16] and its association with oropharyngeal disease [17] are factors that 

can directly influence the treatment outcomes of HIV patients.The ubiquitous Hsp90, on the other 

hand, has a role in supporting cell survival by stabilizing enzymes during stress [13], but has also 

been implicated in the rapid acquisition [38] and increased fluconazole resistance in Candida 

biofilms [15]. 

Multidrug resistance proteins were detected in most C. albicans cell membrane fractions tested 

in this study. The appearance of multidrug resistance protein Cdr1p may lead to resistance to a range 

of compounds as well as to azole antifungal drugs [39]. Cdr1p plays a role in fluconazole drug 

resistance [40] and confers resistance to cycloheximide, chloramphenicol and miconazole [41]. The 

up-regulation of Cdr1p in the cell membrane of a C. glabrata fluconazole-resistant strain [42] and in 

azole-resistant C. parapsilosis [43] have previously been documented, but this protein was not 

detected in membrane fractions of azole resistant C. glabrata in the present study. The sole C. 

parapsilosis isolate tested in this study was a highly susceptible isolate, possibly explaining the lack 

of this drug resistance mechanism on this strain. Cdr2p (identified in a C. albicans isolate resistant to 

all four azole drugs tested) has the ability to not only confer resistance to azoles but also to other 

antifungals such as terbinafine and amorolfine in addition to metabolic inhibitors [44]. The ability of 

histatin-5 to inhibit the development of Cdr1p and Cdr2p-mediated multidrug resistance [45], 

demonstrates how various cellular mechanisms may act together to modulate fungal pathogenicity. 

The identification of Cdr4p in eight drug-resistant C. albicans cell membrane fractions deserves attention 

since Cdr4p is an ABC transporter protein involved in azole resistance in filamentous fungi [46]. 

Five of the 25 proteins involved in ergosterol biosynthesis were found in this study. Azole drugs 

target this biosynthesis pathway by inhibiting Erg11p, leading to a block in ergosterol synthesis and 

the accumulation of toxic sterol intermediates by Erg6p and Erg3p [22]. Candida is known to mutate 

the Erg11 gene [23,47] and demonstrate drug target overexpression of Erg11p [48] as part of its 

resistance mechanisms against azole drugs. 

Coupled with filter-aided sample preparation, HPLC is a useful method for demonstrating 

antifungal susceptibility profiles and, with further developments in sample preparation, could 

become a rapid, reliable and practical technique for the early detection of resistance and subsequent 

prompt treatment of resistant Candida infections. HPLC analysis can be completed within hours, 

favouring its application over the traditional time-consuming processes of culture and disc diffusion 

or microdilution methods for drug susceptibility testing which may take days to complete. 

Comparatively, the cost, equipment specifications and skilled operators needed to perform FASP-

HPLC analysis outweigh those associated with traditional drug resistance testing methods, not to 

mention the higher fungal biomass needs in relation to more sensitive molecular sequencing methods. 

Although the introduction of cART has vastly improved the quality of life for the HIV-infected, 

it has minimally impacted the observed number of Candida infections [49,50]. The large number of 

immunocompromised HIV-positive patients in Africa receiving non-protease-inhibitor-based first 

line cART [51] and the prevalence of multidrug-resistant candidiasis, suggests a bleak future, barring 

any natural therapeutic intervention without adverse cART interactions [52]. A limitation of this 

study is that since only seven of the 40 isolates were collected before the commencement of cART, 

an association between the effect of cART on protein expression could not adequately be compared, 

thus creating an avenue which may be further explored. 
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Furthermore, the inability to significantly differentiate between individual protein expression 

profiles and their relation to specific antifungal classes in MDR isolates indicates that further 

optimization of the protein isolation methods should be prioritized in future studies. In spite of this 

methodological limitation, it was possible to identify the presence of protein profiles in organisms 

expressing specific drug resistance patterns within the different species studied. The combination of 

diverse drug resistance and survival mechanisms were notably more prevalent in C. albicans, C. 

dubliniensis and the inherently fluconazole-resistant C. glabrata. These isolates expressed proteins 

that enhance their fungicidal activity by increasing their adherence to salivary peptides and 

improving the binding of fungal proteins to mammalian hormones, modifications that are 

instrumental in the ability of these organisms to colonise immunocompromised patients and resist 

antifungal drugs. 

The possibility exists that cell membrane changes could have occurred in response to 

environmental stress, such as pH changes during protein isolation, rather than to stress induced by 

drugs. Additionally, given that most UniProt strains are isolates from other geographical regions, and 

since there is a paucity of studies on isolates from Africa, it is possible that the isolates have 

sequence polymorphisms and different amino acid sequences when compared to other previously 

tested populations. In essence, the limited MS data for Candida isolates from sub-Saharan Africa 

identifies the lack of proteomics-based drug resistance monitoring in this study’s sample populations. 

5. Conclusions 

Fluconazole-resistance is steeply rising, and it is the most frequently prescribed antifungal for 

HIV-associated opportunistic infections. Antifungals such as echinocandins, are usually considered 

for treating patients who show resistance due to previous azole exposure, or when C. glabrata, C. 

parapsilosis or C. krusei have been identified [53]. Although shown to be as effective in treating OC 

with less serious side effects, echinocandins have a greater relapse rate, contributing significantly to 

ever-increasing antifungal resistance prevalence [54,55]. Amphotericin B is used when patients show 

resistance to fluconazole and echinocandins. However, in very ill patients, it may prove toxic [56] 

and has limited availability in resource-poor countries due to its cost. 

Reported drug interactions between systemic antifungals (particularly azoles) and antiretrovirals 

have led to the addition of special guidelines for their use with combination ART for HIV-infected 

persons by the US Department of Health and Human Services [57]. Moreover, the evolving drug 

resistance and subsequent circulation of multidrug-resistant or inherently drug-resistant, non-albicans 

species in the treatment-naïve population not only limits treatment options but may also reduce the 

tolerance of combination ART through drug interactions. 

Thus, there is an urgent need for the development of novel, non-toxic, broad spectrum, highly 

potent, natural antifungal therapies. HPLC provides beneficial protein abundance data that is 

essential for understanding the role of individual proteins in drug resistance mechanisms in vitro, 

thus establishing a role in studies contributing to the development of novel therapies. 

Acknowledgements 

This material is based upon work partially supported financially by the National Research 

Foundation of South Africa [Grant number TTK2008052700013]. Any opinion, findings and 



332 

AIMS Microbiology                                                           Volume 7, Issue 3, 320–335. 

conclusions or recommendations expressed in this material are those of the authors and therefore the 

NRF does not accept any liability in regards thereto. 

Our sincere gratitude is expressed to the patients who willingly participated in this study. We 

also wish to acknowledge the passing of our wonderful colleague, collaborator and friend, Dr Leo 

Ayuk Njock of Bamenda, Cameroon due to Covid 19. Dr Ayuk worked assiduously for several 

months to recruit the Cameroonian cohort from which half of these patients were selected. 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 

Authors’ contributions 

CA conceptualized the study, participated in its design, coordination and writing of the 

manuscript. PA performed the laboratory isolation, identification, drug susceptibility and cell 

fractioning of the Candida isolates, analysed the data and prepared the first draft of the manuscript. 

RF assisted with the protocol for the isolation of the cell fractions and contributed to the writing of 

the manuscript. PB participated in the study’s design and coordination and facilitated sample 

collection in South Africa. BF assisted with the protocol for the isolation of the cell fractions. CM 

facilitated the recruitment and specimen collection in Cameroon and contributed to the final revision 

of the manuscript. 

References 

1. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health 

problem. Clin Microbiol Rev 20: 133–163. 

2. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16: 603–616. 

3. Bhayat A, Yengopal V, Rudolph M (2010) Predictive value of group 1 oral lesions for HIV 

infection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: 720–723. 

4. Patel M, Shackleton JT, Coogan MM (2006) Effect of antifungal treatment on the prevalence of 

yeasts in HIV infected subjects. J Med Microbiol 55: 1279–1284. 

5. Ben-Ami R, Olshtain-Pops K, Krieger M, et al. (2012) Antibiotic exposure as a risk factor for 

fluconazole-resistant Candida bloodstream infection. Antimicrob Agents Chemother 56: 2518–

2523. 

6. Vazquez JA, Skiest DJ, Nieto L, et al. (2006) A multicenter randomized trial evaluating 

posaconazole versus fluconazole for the treatment of oropharyngeal candidiasis in subjects with 

HIV/AIDS. Clin Infect Dis 42: 1179–1186. 

7. Van Roey J, Haxaire M, Kamya M, et al. (2004) Comparative efficacy of topical therapy with a 

slow-release mucoadhesive buccal tablet containing miconazole nitrate versus systemic therapy 

with ketoconazole in HIV-positive patients with oropharyngeal candidiasis. J Acquir Immune 

Defic Syndr 35: 144–150. 

8. Douglas LM, Wang HX, Keppler-Ross S, et al. (2012) Sur7 promotes plasma membrane 

organization and is needed for resistance to stressful conditions and to the invasive growth and 

virulence of Candida albicans. mBio 3: e00254–11. 



333 

AIMS Microbiology                                                           Volume 7, Issue 3, 320–335. 

9. Borges-Walmsley MI, McKeegan KS, Walmsley AR (2003) Structure and function of efflux 

pumps that confer resistance to drugs. Biochem J 376: 313–338. 

10. Prasad R, Rawal MK (2014) Efflux pump proteins in antifungal resistance. Front Pharmacol 5: 

202. 

11. Bhattacharya S, Sobel JD, White TC (2016) A combination fluorescence assay demonstrates 

increased efflux pump activity as a resistance mechanism in azole-resistant vaginal Candida 

albicans isolates. Antimicrob Agents Chemother 60: 5858–5866. 

12. Basso LR, Gast CE, Mao Y, et al. (2010) Fluconazole transport into Candida albicans secretory 

vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p. Eukaryot Cell 9: 960–970. 

13. Cowen LE, Sanglard D, Howard SJ, et al. (2015) Mechanisms of antifungal drug resistance. 

Cold Spring Harb Perspect Med 5: a019752. 

14. Singh SD, Robbins N, Zaas AK, et al. (2009) Hsp90 governs echinocandin resistance in the 

pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5: e1000532. 

15. Robbins N, Uppuluri P, Nett J, et al. (2011) Hsp90 governs dispersion and drug resistance of 

fungal biofilms. PLoS Pathog 7: e1002257. 

16. Xuewei SL, Reddy MS, Baev D, et al. (2003) Candida albicans Ssa1/2p is the cell envelope 

binding protein for human salivary histatin 5. J Biol Chem 278: 28553–28561. 

17. Sun JN, Solis NV, Phan QT, et al. (2010) Host cell invasion and virulence mediated by Candida 

albicans Ssa1. PLoS Pathog 6: e1001181. 

18. Madani ND, Malloy PJ, Rodriguez-Pombo P, et al. (1994) Candida albicans estrogen-binding 

protein gene encodes an oxidoreductase that is inhibited by estradiol. Proc Natl Acad Sci USA 91: 

922–926. 

19. Mühlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of 

the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 

17: 5960–5967. 

20. Liu TT, Lee REB, Barker KS, et al. (2005) Genome-wide expression profiling of the response to 

azole, polyene, echinocandins, and pyrimidine antifungal agents in Candida albicans. 

Antimicrob Agents Chemother 49: 2226–2236. 

21. Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol 

biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast 

Res 4: 87–95. 

22. Bhattacharya S, Sae-Tia S, Fries BC (2020) Candidiasis and mechanisms of antifungal resistance. 

Antibiotics (Basel) 9: 312. 

23. Whaley SG, Berkow EL, Rybak JM, et al. (2017) Azole antifungal resistance in Candida 

albicans and emerging non-albicans Candida species. Front Microbiol 7: 2173. 

24. Jiang C, Dong D, Yu B, et al. (2013) Mechanisms of azole resistance in 52 clinical isolates of 

Candida tropicalis in China. J Antimicrob Chemother 68: 778–785. 

25. Bhattacharya S, Holowka T, Orner EP, et al. (2019) Gene duplication associated with increased 

fluconazole tolerance in Candida auris cells of advanced generational age. Sci Rep 9: 5052. 

26. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical 

principles for medical research involving human subjects. JAMA 310: 2191–2194. 

27. Abrantes PMDS, McArthur CP, Africa CWJ (2014) Multi-drug resistant (MDR) oral Candida 

species isolated from HIV-positive patients in South Africa and Cameroon. Diagn Microbiol 

Infect Dis 79: 222–227. 



334 

AIMS Microbiology                                                           Volume 7, Issue 3, 320–335. 

28. Bradford MMA (1976) rapid and sensitive method for quantitation of microgram quantities of 

protein utilizing the principle of protein-dye-binding. Anal Biochem 72: 248–254. 

29. UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45: 

D158–D169. 

30. Tarry W, Fisher M, Shen S, et al. (2005) Candida albicans: the estrogen target for vaginal 

colonization. J Surg Res 129: 278–282. 

31. Cheng G, Yeater KM, Hoyer LL (2006) Cellular and molecular biology of Candida albicans 

estrogen response. Eukaryot Cell 5: 180–191. 

32. Li XS, Reddy MS, Baev D, et al. (2003) Candida albicans Ssa1/2p is the cell envelope binding 

protein for human salivary histatin 5. J Biol Chem 278: 28553–28561. 

33. Gordon YJ, Romanowsky EG, McDermott AM (2005) A review of antimicrobial peptides and 

their therapeutic potential as anti-infective drugs. Curr Eye Res 30: 505–515. 

34. Peters BM, Zhu J, Fidel PL, et al. (2007) Protection of the oral mucosa by salivary Histatin-5 

against Candida albicans in an ex vivo murine model of oral infection. Radiology 34: 733–742. 

35. Torres SR, Garzino-Demo A, Meiller TF, et al. (2009) Salivary Histatin-5 and oral fungal 

colonisation in HIV+ individuals. Mycoses 52: 11–15. 

36. Yoo JI, Choi CW, Kim HS, et al. (2012) Proteomic analysis of cellular and membrane proteins 

from fluconazole-resistant Candida glabrata. Osong Public Health Res Perspect 3: 74–78. 

37. Yoo JI, Kim HS, Choi CW, et al. (2013) Proteomic analysis of intracellular and membrane 

proteins from voriconazole-resistant Candida glabrata. Osong Public Health Res Perspect 4: 

293–300. 

38. Cowen LE, Steinbach WJ (2008) Stress, drugs and evolution: the role of cellular signalling in 

fungal drug resistance. Eukaryot Cell 7: 747–764. 

39. Niimi M, Niimi K, Takano Y, et al. (2004) Regulated overexpression of CDR1 in Candida 

albicans confers multidrug resistance. J Antimicrob Chemother 54: 999–1006. 

40. Holmes AR, Lin YS, Niimi K, et al. (2008) ABC transporter Cdr1p contributes more than Cdr2p 

does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob 

Agents Chemother 52: 3851–3862. 

41. Prasad R, De Wergifosse P, Goffeau A, et al. (1995) Molecular cloning and characterization of a 

novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. 

Curr Genet 27: 320–329. 

42. Rogers PD, Vermitsky J-P, Edlind TD, et al. (2006) Proteomic analysis of experimentally 

induced azole resistance in C. glabrata. J Antimicrob Chemother 58: 434–438. 

43. Berkow EL, Manigaba K, Parker JE, et al. (2015) Multidrug transporters and alterations in sterol 

biosynthesis contribute to azole antifungal resistance in Candida parapsilosis. Antimicrob 

Agents Chemother 59: 5942–5950. 

44. Sanglard D, Ischer F, Monod M, et al. (1997) Cloning of Candida albicans genes conferring 

resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC 

transporter gene. Microbiology 143: 405–416. 

45. da Rocha Curvelo JA, Reis de Sá LF, Moraes DC, et al. (2018) Histatin-5 induces the reversal of 

Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae. J Mycol Med 28: 137–142. 

46. Zhang Y, Zhang Z, Zhang X, et al. (2012) Cdr4 is the major contributor to azole resistance 

among four Pdr5p-like ABC transporters in Neurospora crassa. Fungal Biol 116: 848–854. 

 



335 

AIMS Microbiology                                                           Volume 7, Issue 3, 320–335. 

47. Xiang MJ, Liu JY, Ni PH, et al. (2013) Erg11 mutations associated with azole resistance in 

clinical isolates of Candida albicans. FEMS Yeast Res 13: 386–393. 

48. Lee Y, Puumala E, Robbins N, et al. (2021) Antifungal drug resistance: molecular mechanisms in 

Candida albicans and beyond. Chem Rev 121: 3390–3411. 

49. Thompson GR, Patel PK, Kirkpatrick WR, et al. (2010) Oropharyngeal candidiasis in the era or 

antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: 488–495. 

50. Goulart LS, de Souza WWR, Vieira CA, et al. (2018) Oral colonization by Candida species in 

HIV-positive patients: association and antifungal susceptibility study. Einstein (São Paulo) 16: 

eAO4224. 

51. Cassone A, Tacconelli E, de Bernardis F, et al. (2002) Antiretroviral therapy with protease 

inhibitors has an early, immune reconstitution-independent beneficial effect on Candida 

virulence and oral candidiasis in human immunodeficiency virus-infected subjects. J Infect Dis 

15: 188–195. 

52. Seleem D, Pardi V, Murata RM (2017) Review of flavonoids: a diverse group of natural 

compounds with anti-Candida albicans activity in vitro. Arch Oral Biol 76: 76–83. 

53. Pappas PG, Kauffman CA, Andes DR, et al. (2016) Clinical practice guideline for the 

management of candidiasis: 2016 update by the infectious diseases society of America. Clin 

Infect Dis 62: e1–e50. 

54. Krause DS, Simjee AE, van Rensburg C, et al. (2004) A randomized, double-blind trial of 

anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin Infect Dis 39: 

770–775. 

55. de Wet N, Llanos-Cuentas A, Suleiman J, et al. (2004) A randomized, double-blind, parallel-

group, dose-response study of micafungin compared with fluconazole for the treatment of 

esophageal candidiasis in HIV-positive patients. Clin Infect Dis 39: 842–849. 

56. Gafter-Gvili A, Vidal L, Goldberg E, et al. (2008) Treatment of invasive candidal infections: 

systematic review and meta-analysis. Mayo Clin Proc 83: 1011–1021. 

57. Panel on Antiretroviral Guidelines for Adults and Adolescents: Guidelines for the use of 

antiretroviral agents in adults and adolescents with HIV. Department of Health and Human 

Services, 2019. Available from: 

https://aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.pdf. 

 

 

© 2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


