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Abstract

In this third paper of a series describing direction-dependent corrections for polarimetric radio imaging, we present
the the A-to-Z solver methodology to model the full Jones antenna aperture illumination pattern (AIP) using
Zernike polynomials. In order to achieve accurate, thermal noise-limited imaging with modern radio
interferometers, it is necessary to correct for the instrumental effects of the antenna primary beam (PB) as a
function of time, frequency, and polarization. The algorithm employs the orthonormal, circular Zernike polynomial
basis to model the full Jones AIP response, which is obtained by a Fourier transform of corresponding antenna
holography measurements. These full Jones models are then used to reconstruct the full Mueller AIP response of
an antenna, in principle accounting for all the off-axis frequency-dependent leakage effects of the PB. The A-to-Z
solver is general enough to accommodate any interferometer for which holographic measurements exist, and we
have successfully modeled the AIP of the VLA, MeerKAT, and ALMA as a demonstration of its versatility. We
show that our models capture the PB morphology to high accuracy within the first two side lobes, and show the
viability of full Mueller gridding and deconvolution for any telescope given high-quality holographic
measurements.

Unified Astronomy Thesaurus concepts: Astronomical techniques (1684); Polarimetry (1278); Aperture synthesis
(53); Radio astronomy (1338); Radio interferometry (1346)

1. Introduction

Modern radio interferometers are capable of high-sensitivity
imaging in a high dynamic range. Imaging in particular is
limited by the presence of direction-dependent effects (DDEs).
In general, DDEs are a function of direction, frequency, time,
and polarization and are typically corrected for during the
imaging process, unlike direction-independent effects (DIEs).
Following Hamaker et al. (1996), the measurement equation in
radio interferometry is of the form

( ) ( ) ( )ò=V s I s se d 1b si
ij
Obs

ij ij ij
.ijG M

for a single baseline i–j for a given frequency at a given time,
Gij are the DIEs, Mij are the DDEs, Iij is the sky brightness
distribution, s defines the direction vector on the sky, and bij are
the uv coordinates of the baseline i–j. All the terms within the
integral in the above equation have to be corrected for during
the imaging process, as they are all functions of the direction
vector s.

Mij is a 4× 4 matrix describing the direction-dependent
(DD) mixing of the full-polarization image 4-vector (Ipp, Ipq,
Iqp, and Iqq). Each element of Mij is a description of the DD
response of an interferometer. The diagonal elements represent
the power response (i.e., forward gain) of the interferometer.
Elements in the first row (or column) encode the first-order DD
polarization leakages due to antenna optics. Other off-diagonal

elements encode higher-order combinations of power and
polarization leakage terms. These are typically orders of
magnitude smaller (but not always). Accurate models for the
elements of Mij, particularly the leakage terms, are a
prerequisite for full Mueller imaging that corrects for the
effects of the antenna DD response in full polarization. This
work describes a method to develop a model for Mij based on
holographic measurements of the antenna response.
The Mueller matrix Mij can be written as

( ) ( ) ( ) ( )n n n= Äs s st t t, , , , , , , 2i jij *M J J

where ⊗ is the Kronecker product, and Ji and Jj are the antenna
voltage patterns or the DD Jones matrices for antennas i and j,
respectively, as a function of frequency ν and time t. The
antenna Jones matrix encodes the polarization response of an
antenna-to-incident radiation and is represented by a 2× 2
matrix given by

( )⎜ ⎟
⎛
⎝

⎞
⎠

=
- ¬

¬

E E

E E
3

p p q

q p q
E

for two orthogonal feed polarizations p and q.
In order to accurately reconstruct the sky brightness

distribution, it is necessary to remove the imprint of Mij for
each baseline for all directions, frequency, and time.
Formally, the primary beam (PB) of an antenna is given by

the Fourier transform of the aperture illumination pattern (AIP)
and can be represented as

( ) ( ) ( )n n=  su v t t, , , , , , 4i iA J

where Ai is the complex AIP of antenna i at uv coordinates u
and v. Ji is the measured complex image plane Jones matrix, (
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i.e., antenna voltage pattern), and  is the Fourier transform
operator. Ai is mathematically a finite, bounded function, and
correspondingly, Ji is unbounded. The AIP in general is a
function of time, frequency, and polarization. The time
dependence for an altitude-azimuth mounted antenna manifests
as a rotation of the source within the field of view. We can
consider measurements made by a radio interferometer as the
sampling of a continuous visibility coherence function by the
AIPs at the locations of the baselines in the uv-plane. The
measurement equation (Equation (1)) can be recast using
Equation (4) (following Bhatnagar et al. 2013) as

( ) ( ) ( )n q n q= V s s V, , , , 5ij
Obs

PA ij PA ij
TrueA

,where = ij ijA M is the AIP (given by the Fourier transform of
Equation (1)), # is the outer convolution operator (as described
in Bhatnagar et al. 2013), θPA is the parallactic angle, and

( )= V I sij
True

ij is the continuous true-sky coherence function
that is sampled by the baseline AIP Aij, resulting in the
observed visibility data given by Vij

Obs.
Various algorithms are used to mitigate the effect of DDEs

such as peeling and facet-based algorithms (e.g., Cotton et al.
2004; Noordam 2004; Intema 2009; Van Weeren et al. 2016)
and projection algorithms (e.g., Bhatnagar et al. 2008, 2013;
Cornwell et al. 2008; Tasse et al. 2013; Van der Tol et al.
2018), both of which require a model of either the PB or the
AIP (we refer to Rau et al. 2009 for more details).

In this paper, we restrict ourselves to a discussion of PB
correction via projection algorithms, specifically, A-projection.
However, we note that the A-to-Z solver modeling approach is
itself agnostic to the choice of imaging algorithm. Although we
create the models in the aperture (i.e., data) domain, a Fourier
transform is sufficient to provide equivalent models for image-
domain algorithms.

The A-projection algorithm applies an a priori model inverse
of the antenna AIP ∣ ∣†M

ij ij
2A A at the time of convolutional

gridding such that

∣ ∣
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.
The resulting image is free of the time, frequency, and

polarization DDEs of the baseline i–j. The DDEs are “projected
out” by using a gridding convolution function that is equal to
the inverse of the model AIP, thus recovering the true-sky
brightness distribution. The quality of the model and its inverse
then determines how well we can correct for the DDE of the
baseline AIP. There have been many different approaches to
fitting, modeling, and simulating the antenna PB response at
different observatories (e.g., Du et al. 2016; Sokolowski et al.
2017; Jagannathan et al. 2018; Asad et al. 2021). The primary
challenge of pure modeling approaches such as electromagnetic
simulations or ray tracing lie with determining the off-diagonal
(leakage) Jones response of the antenna. Capturing these
leakage terms is necessary to be able to perform accurate wide-
field polarimetric observations. In all cases, and particularly for
dish antennas, measuring the antenna Jones beams via
holographic measurements yields the “ground truth” of the
antenna Jones response.

We approach the problem in the data domain where we
model the bounded and finite AIP (Bates 1971; Scott &

Ryle 1977). We also restrict our discussions to radio
interferometers composed of dishes for the rest of the paper,
specifically focusing on the Karl. G. Jansky Very Large Array
(VLA; Perley et al. 2011), the Atacama Large Millimeter Array
(ALMA; Wootten 2003), and MeerKAT (Jonas & Team 2018).
We present here a new method, the A-to-Z solver, to derive a
Zernike polynomial based model of the AIP from measure-
ments of antenna holography and demonstrate its accuracy and
efficacy in modeling the full Jones response of the antenna.
This allows us in turn to generate full Mueller AIP and antenna
PB models. This paves the way for a full Mueller treatment of
A-projection, which will result in accurate wide-field, wide-
band off-axis polarimetry. This is currently under development
and will be described in an upcoming paper (P. Jagannathan
et al., 2021, in preparation). This paper and the next is a part of
our effort to implement full Mueller polarization corrections in
the A-Projection algorithm in CASA (McMullin et al. 2007).
The rest of the paper is organized as follows: Section 2

provides the details of how we go from Jones measurements in
the image domain to Zernike polynomial models of the
aperture. Section 3 discusses the results of the modeling, the
accuracy and reproducibility and so on, and Section 4 provides
a summary of the methods and their merits and limitations.

2. From Apertures to Zernike

2.1. Interferometric Holography

Antenna holography is the process of measuring the far-field
voltage pattern of an antenna (Bates 1971; Napier &
Bates 1971), either by pointing at a reference (terrestrial)
source or at a well-characterized celestial calibrator source. In
order to measure the Jones matrices, a two-dimensional raster
scan is performed around a known, unresolved, and preferably
unpolarized calibrator source. Half the array tracks the
calibrator source (the “tracking antennas”), while the other
half performs the raster scan (the “scanning antennas”). The
two halves are then swapped around, in order to obtain a
measurement of all the antennas in the array.
We can recast Equation (1) in the following form (in vector

notation) under the assumption that all the tracking antennas
are pointing at the same location on the sky as

[( ) ] ( )†= ÄV I 7s tst st
skyG J J S

,where the subscripts s and t refer to the scanning and tracking
antennas, respectively. Gst are the direction-independent gains,
and S is a transformation matrix that converts the sky
brightness distribution from Stokes basis into the feed basis
of measurement. The Jones matrices Js and Jt represent the
antenna far-field voltage patterns in feed basis of the scanning
and the tracking antennas. After calibration of the tracking
antennas is performed (using the point-source calibrator), the
above equation reduces to

[( )] ( )= ÄV 8sst
cal J

,where the Jt is reduced to the identity matrix 1, and we can
therefore measure the complex Jones response (as a function of
direction) of the scanning antennas from the calibrated
visibilities. The product SIsky is the calibrator source flux as
measured in the feed basis. Since the calibrator flux is
nominally well known, this becomes a constant (known) factor
that can be normalized out.
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Furthermore, correlation products from all the pairs of
scanning-scanning antennas can be constructed, given by

[( ) ] ( )†= ÄV IS 9ss ss si sj
skyG J J

,where Jsi and Jsj are Jones beams corresponding to the
baseline i–j. Vss then measures the total power Jones beam.
These total power measurements measure the first row of the
Mueller matrix. It is not possible to reconstruct the antenna
Jones matrix from these Mueller measurements. However, the
first row of the Mueller matrix can be reconstructed from the
Jones beams (Equation (8)) and provides an internal con-
sistency check for our measurements. We describe below the
details of the holography for three different instruments (VLA,
MeerKAT, and ALMA).

VLA—We use the holography data described in Perley
(2016). In this paper, we discuss only the S-band observations,
although the method is applicable to any observable frequency
band at the VLA. At S-band the observations used 3C147 as
the standard unpolarized calibrator. The scanning antennas
covered a regular grid of 57× 57 points around the calibrator,
with an angular separation of ¢2.62 between each pointing. This
was sufficient to sample out to five side lobes at the highest end
of the band. Two spectral windows (centered at 2308 MHz and
2948 MHz) were badly affected by persistent radio frequency
interference (RFI), and we could not obtain reasonable beam
measurements from them. We instead used ray-traced antenna
AIPs that were modeled in the same way as the rest of the band
to derive the Zernike polynomial coefficients.

MeerKAT—We used MeerKAT L-band holography data
that covered the entire MeerKAT L-band (from ∼880 to 1680
MHz) at a resolution of ∼0.85 MHz. The data sampled out to
five side lobes at the highest frequency. The holographic
pointing was performed in a spiral pattern around the calibrator
source 3C273, using the on-the-fly capabilities of MeerKAT.
The beams were then resampled onto a regular 128× 128 grid
with a separation of 4 68 per grid pointing. For more details,
we refer to Asad et al. (2021).

ALMA—We use ALMA holography data described in
Bhatnagar et al. (2020), obtained in 2018. We focus here only
on the Band 3 data, which measured out to about the five side
lobes of the PB. The holography sampled a 49× 49 grid with a
spacing of 0.2× half-power beam width (HPBW) around the
calibrator source J1924–2914. The full Jones beams for both
the 12m antennas, DA and DV, were recorded. The DA and
DV antennas are two of the three types of 12 m antennas that
constitute ALMA. The primary difference between the
antennas is the position of the antenna feed legs, which are
rotated by 45°.

2.2. Pointing Offset Correction

Prior to modeling the measured aperture, any residual
pointing errors in the holography need to be removed first, as
small pointing errors cause a phase gradient across the aperture
(Bhatnagar & Cornwell 2017). If these phases remain during
the modeling step, they will be captured by the Zernike model,
leading to offsets in the generated model PB. While all the
telescopes discussed here have some form of a priori models
for pointing offsets (and in some cases perform a dedicated
pointing calibration scan), residual pointing errors tend to
accumulate through the course of an observation.

In order to measure and correct for the pointing errors, a 2D
Gaussian is fitted to the main lobe of the holographic beams.
We use a nonlinear Levenberg–Marquardt least-squares fitter
(Moré 1978) as implemented in the astropy Python package
(Robitaille et al. 2013).
The beam for each feed polarization was fitted indepen-

dently, and the vector sum of the pointing vectors between the
two feeds is taken to be the pointing offset. This procedure is
repeated as a function of antenna and frequency. We use the
vector sum to preserve the beam squint between the two
orthogonal polarizations. The measured pointing offsets were
used to regrid the beam such that the peak of the Stokes I beam
lies at the center of the image. All four Jones beams are
regridded identically. For the VLA and ALMA, where we had
access to the holography visibility data, we were able to
remove the pointing offsets per baseline prior to averaging all
the baselines of an antenna. This results in a higher signal-to-
noise ratio (S/N) upon averaging, eliminating smearing and
decorrelation due to baseline-based pointing errors.
Finally, the holography data were averaged across all

antennas and all channels within a spectral window prior to
applying the Fourier transform. This averaging results in an
improvement of ´N Nant chan in the S/N, which is especially
useful in the cross hands, which usually have ∼10–100×low er
S/N than the parallel hands. Empirically, we have determined
that the average antenna model is sufficient for our modeling
purposes. It is worth noting, however, that the choice to
average across antennas and frequency will impose a dynamic
range limitation on the final image, contingent on the level of
antenna-to-antenna variations and variation across a single
spectral window for a particular instrument.

2.3. Obtaining the AIP

The spatial frequency resolution in the aperture domain is
inversely proportional to the total angular extent sampled by
holography. It is given by

( )D µu
l

1
10

sky

,where lsky is the total angular extent of the hologaphy (in
radians), and Δu is the size of the resolution element in the
aperture (in lambda).
It is necessary that a large number of side lobes be covered

by holography in order to obtain accurate aperture plane
measurements. However, in practice, only a finite number of
side lobes can be measured because of various practical
considerations. In this case, the corresponding aperture domain
measurements are affected by ringing, and these ringing
artifacts extend far beyond the physical aperture. We therefore
need to determine the “true” edge of the aperture in order to
model the AIP rather than the ringing artifacts.
The real part of the AIP for an unblocked aperture is

guaranteed to be positive within the physical aperture itself. In
the case of a blocked aperture, ( ) A can have null or negative
values within the regions that are shadowed. However, in both
cases, the last pixel inside the aperture (in an unblocked region)
will be positive and the first pixel outside the aperture will be
negative. This is commonly called the “aperture roll-off”. In
absolute value, the drop between these two pixels can be a
factor of between 10 and 100. At low frequencies, the
magnitude of the drop is smaller because there is more
diffraction and spill-over at the edge of the aperture. The above
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condition has proven to be very robust in determining the
cutoff radius of the aperture for a variety of different antenna
types and frequencies. We identify the size of the aperture by
locating the radius of the first negative component in the real
part of the aperture, in a direction moving out from the center
of the aperture. This condition is general and allows us to
naturally determine the cutoff radius as a function of frequency.

The apertures derived from antenna holography have a
gradual roll-off at the edge of the aperture due to the limited
number of side lobes that can be sampled by holography. The
diameter of the main lobe of the PB depends very strongly on
the size of the aperture. To obtain the correct beam sizes, it is
therefore necessary to determine the aperture size as accurately
as possible. Directly applying a Fourier transform to the
measured holography typically results in 5–6 pixels across the
aperture, and the roll-off is contained in a single pixel. This can
bake in an error of up to 15% in the derived PB size.

In order to obtain accurate (<1% error) PB sizes, we used an
oversampling factor of 100 prior to the Fourier transform of the
holography followed by image plane minimization (see
Section 3.4) to account for the changing aperture efficiency
across the band. We performed this interpolation in CASA
using the imregrid4 task, which performs cubic spline
interpolation while preserving pixel flux scaling. We note here
that interpolation of any kind does not increase the amount of
information in the underlying image. Therefore interpolating by
a large factor, while allowing us to determine the edge of the
roll-off more accurately, does not increase the steepness of the
roll-off or give us a higher resolution across other features in
the aperture.

2.4. Aperture Fitting

Zernike polynomials are complex, orthonormal polynomials
defined on a unit circle (Zernike 1934; Born & Wolf 2013).
Zernike polynomials also form the natural basis to model
optical apertures, making them an ideal fit for modeling the
antenna AIP.

We refer to Lakshminarayanan & Fleck (2011) for the
definition of the Zernike polynomials, but we use Noll
sequential indices (Noll 1976) to map the two Zernike indices
(n, m) to a single index k. Under this mapping, the first 10
orders (n: 0→ 10) of Zernike polynomials map to the first 66
terms (k: 0→ 66) of the flattened index.

We fit the aperture measurements with the first 10 orders (
i.e., 66 terms) of Zernike polynomials after first taking out the
known systematic errors from the holography image (e.g.,
antenna pointing offsets).

The AIP model is given by

( ) [ ] · ( ) ( )Iå i= +
=

s sZ k, , 11M

k
k k

0

10

A A A

where s spans the aperture of a fixed diameter, and Ak are the
coefficients for the kth Zernike term Z(k, s). The superscripts
and I indicate separate coefficients for the real and imaginary
parts of the AIP. The objective functions used for deriving the
coefficients A and IA are

∣ [ ( ) ( )]∣ ( )åc = - s s a12
s

H M2 2A A

∣ [ ( ) ( )]∣ ( )II åc = -s s b, 12
s

H M2 2A A

where AH is the measured AIP from holography observations.
The models are fitted in the aperture domain independently for
the real and imaginary parts and for each of the four Jones
terms. Modeling all the terms of the complex antenna Jones
matrix allows us to reconstruct the entire 4× 4 Mueller matrix.
The reverse operation of going from Mueller matrix to Jones
matrices is not possible due to missing phase information in the
measured Mueller matrix. This is the primary reason for the
measurement of antenna Jones matrices (voltage beams).
We use a nonlinear least-squares fitter as implemented in the

SciPy package (Virtanen et al. 2020) to minimize the objective
functions defined in Equation (12). The fitter uses a nonlinear
trust region solver algorithm (Branch et al. 1999) with a
stopping threshold criterion. We define the stopping threshold
to be equal to the thermal noise per pointing in order to prevent
overfitting. We will demonstrate in the following sections that
the correlated nature of our residuals, albeit small, is a sign of
unmodeled Zernike terms. We eschew using higher orders in
favor of accurately modeling the main lobe of the antenna PB
and the first side lobe.
The plots in Figure 1 show the fitted power per Zernike term

(real and imaginary) for the VLA and MeerKAT. The y-scale
on the plots is in arbitrary units. The distribution of power
across the Zernike terms reflects the different characteristics of
the two apertures. The VLA has a blocked aperture and feed
legs that cast a shadow on the dish. Modeling the relatively
sharp edges of the shadow on the aperture requires higher-order
Zernike terms. Accordingly, the high spatial frequency Zernike
terms (above index 50) see an increase in power for the case of
the VLA, as seen in Figure 1. In contrast, MeerKAT has an
unblocked aperture and correspondingly has lower amplitudes
for the higher-order terms.
As mentioned previously, the Zernike polynomials capture

various physically meaningful optical properties of the aperture
(such as the piston, tip, tilt, etc.). Figure 2 plots the -Z2

2 term,
or the “oblique astigmatism”, across a section of the band for
the VLA and MeerKAT. This term clearly captures the
resonant frequency-dependent variation between the feed and
the antenna surface for both the telescopes. We measure the
VLA standing wave of frequency ∼17 MHz, corresponding to
a subreflector at a height of ∼8.5 m consistent with known
values for the VLA (e.g., Jagannathan et al. 2018). For
MeerKAT, we measure a standing wave with a frequency of
∼37 MHz, corresponding to a subreflector height of ∼4 m,
which is also consistent with the MeerKAT specification
(Esterhuyse et al. 2011).
Figure 3 shows a plot of the measured aperture, the Zernike

model, and the residual for (a) the VLA, (b) MeerKAT, (c)
ALMA DV, and (d) ALMA DA. The plots show the magnitude
(i.e., ( ) ( )I+ M M2 2A A following Equation (12)) of the
aperture for a single polarization and frequency for each
telescope type. As noted earlier, the fitting is performed
independently for the real and imaginary components. The
broad morphology of the aperture is captured by the model,
leaving behind residuals at the percent level or lower in all
cases. The residuals correspond to the unmodeled higher spatial
frequency signal and look similar across frequency and
polarization for all the telescopes.

4 https://casa.nrao.edu/casadocs/casa-6.1.0/global-task-list/task_imregrid/
about
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Figure 4 shows a slice across the residuals of the different
antenna types discussed in this paper. The shaded region spans
the region from the first null to the fourth null, i.e., the first
three side lobes for the EVLA. These plots are the Fourier
transform of the aperture residuals, i.e., [ ]- MHoloA A ,
because the modeling is performed in the aperture domain.
The beam models capture the response to floating point
precision (10−6) out to the second side lobe for all the modeled
telescopes. The residual error rapidly increases as we move
farther out, which is expected. In Figure 4 the residuals

correspond to unmodeled power in the outer side lobes. The
higher-order side lobes correspond to the high spatial frequency
features in the aperture domain, which correspondingly require
higher-order Zernike polynomials to model. Empirically, we
see that increasing the number of terms used to model the
aperture results in a reduction in the systematics of the aperture
plane residuals.

Figure 1. Plot of the power per Zernike term for the real and imaginary parts of the AIP for EVLA (top) and MeerKAT (bottom). The y-axis scale is in arbitrary units
because the FFT to convert the Jones beams into apertures scales all the pixels by a factor of Npix . This is has no impact on the accuracy of the modeling or
reconstruction because the relative power between the different Zernike terms determines the morphology of the reconstructed aperture, and this is a conserved
quantity under this transformation.

Figure 2. Normalized fitted value of -Z2
2 (oblique astigmatism) from the VLA and MeerKAT apertures. The sinusoidal patterns present in these coefficients

correspond to the standing waves in the antenna. Left: the coefficient power across a section of the VLA S-band. The coefficients capture the standing wave of ∼17
MHz. Right: the coefficient power across a section of the MeerKAT L-band. The standing wave with a frequency of ∼37 MHz is captured. These standing waves
correspond to the secondary reflection between the antenna surface and the feed.
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Figure 3. The measured, modeled, and residual apertures for each of the four antenna types discussed in this paper. In all cases, only the amplitude term for a single
polarization is shown for brevity. The residuals look similar across polarization in all cases. (a) VLA S-band (3 GHz) R polarization, (b) MeerKAT L-band (1.2 GHz)
X polarization, (c) ALMA Band 3 (108 GHz) DV-type X polarization, and (d) ALMA Band 3 (108 GHz) DA-type X polarization. The apertures have been normalized
to the peak illumination value. In every case, the residuals show systematic higher-order structure that corresponds to power in the higher side lobes. With the current
level of modeling, we are able to capture all the power in the main lobe and in the first side lobe.

Figure 4. Cut across the normalized residual PB for each of the four antenna types discussed here. The plot shows where the unmodeled structure in the aperture
appears in the image plane. The MeerKAT beam is at 1.6 GHz, the VLA S-band at 4 GHz, and the ALMA beams are at 108 GHz. In the case of the VLA and
MeerKAT, we selected the highest SPW in order to show the largest number of side lobes. The shaded region spans the region from the first null through the fourth
null, i.e., the first three side lobes for the EVLA.

Figure 5. Plot of the spectral index and spectral curvature of the EVLA S-band (left) and MeerKAT L-band (right) beams. The plots show only the main lobes of the
PB, with the spectral index steepening as we move farther away from the pointing center.
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3. Results and Beam Properties

3.1. Beam Spectral Index

With modern interferometers, wide-band continuum imaging
has become the norm, enabling theoretically higher sensitivies.
In order to achieve these sensitivity limits, it is vital to account
for the effects of the wide-band antenna PB. Figure 5 shows the
spectral index αpb and the spectral curvature βpb introduced by
the antenna PB onto a wide-band continuum image at 3 GHz at
the VLA on the left panel and at 1.2 GHz of MeerKAT on the
right. The spectral index and curvature are defined as

( )
( )⎜ ⎟

⎛
⎝

⎞
⎠

n
n

=n n

a b+ n
n

I I 13
0

log

0

0

,where α and β are the spectral index and spectral curvature,
respectively, I is the source flux density at frequency ν, and ν0
is the reference frequency.

The uncorrected PB spectral index at half-power of the VLA
PB is αpb=−5. The various means of mitigating the PB
spectral index have been analyzed in detail in Rau et al. (2016).
It is worth noting that for large continuum frequency bands of
observations, the higher-order spectral terms of the PB such as
curvature also leave a significant spectral signature on the PB
across wide fields of view.

3.2. Beam Squint and Squash

Figure 6 shows the contour density plots of the measured
residual pointing errors for EVLA, MeerKAT, and the ALMA
DA and DV antennas. The errors plotted here were determined
independently per antenna, spectral window (SPW), and
channel, except for ALMA, for which the band averaged
values for a single SPW were used. In all cases each color
corresponds to one of the two orthogonal feeds (blue shows R
and X, and red represents L and Y). The VLA shows a clear
separation between the pointing centers of the R and L feeds,
corresponding to the well-known beam squint as demonstrated
in Jagannathan et al. (2018). Both MeerKAT and ALMA show
significant overlap between the pointing center of the feeds, as
is expected from basic antenna optics for linear and circular
feeds.

Figure 7 plots the frequency dependence of the mean squint
and the beam squash. The mean pointing offset for each
correlation is defined as

( ) ( ) ( ) ( )ån
a n d n

=
D + D

d
N

1

2
, 14

i

i i
offset

ant

where Δαi(ν) and Δδi(ν) are the R.A. and decl. offsets,
respectively, as a function of frequency. The beam squash is
defined as

( )F =
l

l
15

major

minor

,where lmajor and lminor are the major and minor axes of the
ellipse fitted to the beam of the antenna-averaged response in
feed basis, measured along the position angle of the ellipse.
The plot only shows the frequency dependence for VLA and
MeerKAT because they have a large fractional bandwidth.

The VLA shows a clear separation between the pointing
centers of the R and L feeds (Figure 7(1a)). The separation is
∼3% of the HPBW as a function of frequency, which is

consistent with previous measurements of the beam squint.
MeerKAT, however, shows a more complex beam squint
behavior across the band. Both the X and Y feeds are biased
toward positive offsets at lower frequencies and approach
minimum at ∼1400 MHz. The beam squint also shows a quasi-
oscillatory behavior. The periodicity of the oscillation does not
correspond to the standing-wave frequency, and the cause of
the quasiperiodicity of the pointing is not immediately obvious.
In terms of beam squash, the VLA shows a consistent behavior
across the band. There is a small amount of beam ellipticity
(Φ= 1.01–1.03) that slightly increases toward the higher
frequencies. The MeerKAT beam squash behavior is analogous
to the beam squint, the two feeds showing ellipticity along
orthogonal directions, with a minimum at ∼1400 MHz.

3.3. Direction-dependent Polarization Leakage

During the process of antenna holography, we obtained two
independent measurements of the antenna beams. The first are
the Jones beams, as we discussed in previous sections. The
second are the total power beams (see Equations (7) and (9)).
Constructing the Stokes beams from the total power beams is a
much more straightforward process and is identical to
constructing the Stokes products from the correlated visibilities
themselves. By comparing the full Stokes beams derived from
Zernike models to the total power beams, we are able to verify
both the efficacy of the Jones modeling against an independent
measurement and the sign conventions of the Jones to Mueller
unitary conversion matrix S (Hamaker et al. 1996). The
conversion from Jones to Mueller via the unitary matrix S is
given by

[ ] ( )†= Ä 16i jstokes feedM S J J S

,where S is a 4× 4 transformation matrix, and Ji and Jj are the
2× 2 Jones matrices for antennas i and j, respectively.
Figure 8 shows the measured, modeled, and residual VLA S-

band and ALMA Band 3 Stokes products. The top row shows
the measured Stokes products from the total power beams. The
second row shows the equivalent Zernike models of the beams,
and the bottom row shows the difference between the two. The
residuals in Stokes I are at the level of 1012, i.e., a ∼1%
fractional error on the beam model. The morphologies for the
Stokes-Q and -U beams are generally in agreement. We note
that the power beams are different from the Jones beams in two
ways: (i) the baseline pairs used to construct the two sets of
beams are different (and do not overlap), and (ii) the effect of
pointing errors will affect the two beams slightly differently.
The comparison with the power beams or the Mueller matrix
does not reflect the efficacy of the fit itself, but rather
demonstrates the internal consistency of the Jones matrices
and the transformation matrix required to go from the feed to
the Stokes basis, namely the S matrix.
As an additional consistency check, we compare the Stokes I

PB generated from AW project to the Stokes I PB from
holography. The AW project calculates the PB via a Fourier
transform of the gridded, weighted baseline AIP derived during
imaging, which is reflective of the true PB of the measurement.
Figure 9 shows the fractional residuals between the Stokes I

beam produced by the awproject gridder in CASA and the
Stokes I beam derived from the holography for the VLA at
2.8 GHz and MeerKAT at 1.25 GHz. This figure is representa-
tive of other SPWs across the band for both telescopes. The
fractional error is large toward the nulls, which is expected. The
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AW projection code as yet cannot perform full Mueller
corrections, and hence we restrict ourselves to comparing the
Stokes I beams. From these plots, it is clear that our modeling
has captured the PB response well, both in the main lobe and
the first (few) side lobe(s). The details of how these coefficients
are included in CASA are outlined in Appendix B. The
implementation of a full Mueller, wide-band AW projection
algorithm is currently being tested, the results of which will be
described in a forthcoming paper (Jagannathan et al., 2021, in
preparation).

3.4. Modeling the Aperture across Frequency

In order to obtain PB sizes accurate to <1%, we need to
account for changes in aperture efficiency across the band.
Aperture efficiency changes the effective diameter of the dish,
and we introduce a scaling factor ηA to account for this as
follows:

( ) ( ) ( )n h n¢ =D D , 17A A A

where DA is the nominal antenna diameter (25 m in the case of
the VLA), and ¢DA is the effective antenna diameter. Figure 10

plots the behavior of ηA as a function of frequency for VLA S-
band observations.
We derive this scaling factor in the following manner: (i) ηA

is introduced in the code as a specifiable (free) parameter. (ii)
For a given value of ηA, a PB image is generated (at a given
frequency) using the awproject gridder in CASA, and the
residuals are computed against the PB generated via the
standard gridder. The value of ηA that minimizes these
residuals is stored. We found that a brute-force minimization
method was sufficient for generating a PB to the accuracy we
required. To this end, at every ηA starting from 0.7 through 1.3
in steps of 0.01, the minimization was carried out. Further
reducing the step size to 0.001 yielded no improvement in the
values of ηA.

3.5. Efficacy

To show the performance of the Zernike modeled apertures
in imaging, we carried out a simulation. We generated a sky
model of six point sources, each with a flux density of 1 Jy,
which were then attenuated by the average measured
holographic antenna PB, using a central frequency of 2948

Figure 6. Contour density plots of the measured pointing offsets for the VLA, MeerKAT, and ALMA DA and DV. In all cases, the two different colors correspond to
the different correlation products. The VLA is the only antenna type with circular feeds, and it shows a clear separation between the pointing centers of the R and L
feeds. This separation is the well-known beam squint. The squint as a function of frequency is plotted in Figure 7. MeerKAT and ALMA both have linear feeds and do
not show a consistent separation between the two feeds.
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MHz and 64MHz bandwidth. The simulated measurement set
is generated following Jagannathan et al. (2017).

The sources were placed at PB gain locations of 1.0, 0.8, 0.5,
0.2, 0.1, and 0.05. The first five sources were placed in the
main lobe, and the last source was placed at the peak of the first

Figure 7. Plots of the mean pointing offset (left) and the beam squash (right) per correlation product as a function of frequency for EVLA and MeerKAT. These data
show the frequency dependence of the same offsets as plotted in Figure 6. (1) The VLA shows a clear separation between the R and L feeds, which corresponds to
∼3% of the beam width as a function of frequency. This is consistent with previous measurements of the beam squint for the VLA. On the other hand, although the
VLA PB shows some degree of ellipticity (Φ > 1), the R and L beams are very similar across the band, and do not show a large difference in their beam squash. (2)
MeerKAT has a more complex beam squint behavior vs. frequency. Both the X and Y feeds tend toward a zero mean offset at higher frequencies, with a minimum at
∼1400 MHz. The X and Y beams show a significantly different beam squash, indicating that the beams are preferentially elongated along orthogonal axes. Similarly
to the squint, the beam squash is minimum at ∼1400 MHz.

Figure 8. The full Mueller residuals for the VLA (left) and ALMA (right). In each figure we show from top to bottom the measured Stokes beams (total power), the
model Stokes beams, and the residual. There is good agreement between the morphology of the measured and modeled Stokes beams. For ALMA, the Stokes V
measurement has a very low S/N because it is the difference between the cross-hand feeds. We note that this is a problem only in the total power measurements; the
S/N of the Jones beams is better.
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side lobe. The resulting measurement set was then imaged
using the awproject and standard gridding algorithms in
CASA, and the resulting images were PB-corrected to recover
the true flux densities, i.e., IM/PBM, where IM is the recovered

sky model, and PBM is the antenna PB produced by the
imaging algorithm during imaging.
Figure 11 shows the recovered flux densities of the sources

as a function of the PB gain level. The dashed line in gray
represents the true flux density of the predicted sources. If the
recovery were exact, all points would lie along that line. The
blue line represents the new Zernike aperture models used in
AW projection, while the orange line represents ray-traced
aperture illumination models currently in use. The green line
plots the polynomial model of the antenna main lobe used by
the default gridding algorithm (i.e., the standard gridder)
within the CASA tclean framework. The figure demon-
strates that the Zernike polynomial model more accurately
represents the antenna holography and consequently retrieves
the flux density of the source across the main lobe and out to
the first side lobe better, where the error in the retrieved flux
density is 10%. The ray-traced AIP performance within the
main lobe is consistently lower by 2% across the main lobe, but
underestimates the flux density by nearly 23% at the first side
lobe. The improvements in modeling the side lobe, as well as
the ability to generate full Mueller PB models, is the primary
advantage of the method outlined in this paper. The level of
flux density recovery makes the A-to-Z solver a more versatile
and effective method than both ray tracing and using axis-
symmetric 2D polynomials, as demonstrated here.

4. Conclusion

We have demonstrated the A-to-Z solver methodology,
which we used to model the full Jones response of an antenna
using Zernike polynomials. We have further demonstrated that
this approach results in wide-field, wide-band full Mueller PB
models that are accurate to the first side lobe. By using the
measured AIP, we rely on direct measurements of the optical
properties to inform the modeling, which is necessary to
capture the polarization leakage behavior. This makes it easy to
generalize our method to any arbitrary interferometer with
holographic measurements, without needing to rely on setting
up complex simulations that typically require a large time
investment and high computing capacities. We have demon-
strated the generality of our approach by modeling the VLA,
ALMA, and MeerKAT telescopes, which have a variety of
different feed polarization, dish, and frequency configurations.
The only limitation to extending this method to other
telescopes and facilities is the availability of high-quality
interferometric observations.
We also demonstrate the efficacy of the Zernike polynomials

in modeling optical properties of the dish and beam, such as the
standing wave due to the second reflection between the antenna
feed and secondary reflector. These effects show up in different
Zernike terms that typically correspond to actual optical
aberrations such as the tip, tilt, defocus, and astigmatism. The
broadband beam squint and beam squash behavior are also well
modeled, and our measurements are consistent with existing
previous estimates. The PB models described in this paper are
generally accurate to one to two side lobes, which is relevant
for wide-field imaging and deep mosaicing experiments.
We have implemented the A-to-Z modeling functionality in

a Python package (Sekhar & Jagannathan 2021a)5 that (at the
time of writing) has been verified to work on the VLA L- and
S-bands, MeerKAT L-band, and ALMA Band 3 data. These

Figure 9. Fractional residual between the Stokes I PB produced by the AW
projection framework and the Stokes I PB generated from measured
holography for the VLA at 2.9 GHz (left) and MeerKAT at 1.25 GHz (right).
In both cases, the fractional error is �2% within the main lobe, rising to �10%
in the first side lobe. The fractional error near the nulls will naturally tend to be
very large.

Figure 10. Plot of ηA scaling factor as a function of frequency for the VLA S-
band. The dashed line is the polynomial fit to the data. We find that ηA reduces
as a function of frequency, analogous to the increasing aperture efficiency, and
flattens out at the highest frequencies. The sudden spike at ∼2.25 GHz and the
dip at ∼3.25 GHz correspond to SPWs corrupted by RFI, yielding unreliable
antenna holography measurements.

Figure 11. Plot of the recovered flux between the Zernike model, the ray-traced
model, and the polynomial model of the EVLA PB.

5 https://gitlab.nrao.edu/pjaganna/zcpb
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models can then be used to generate full Stokes beam models (
i.e., the first row of the Mueller matrix), the functionality for
which has been implemented in a separate Python package
(Sekhar & Jagannathan 2021b)6 in order to perform image
plane leakage corrections. These coefficients have also been
included in (at the time of writing) a development branch of
CASA that uses the Zernike models within the A-projection
framework. As mentioned earlier, this branch currently only
corrects for Mueller-diagonal terms, and the full Mueller
corrections are underway. We will present the details of both
the aperture and image plane wide-field polarization leakage

corrections in a forthcoming paper in this series (Jagannathan
et al., 2021, in preparation).

The National Radio Astronomy Observatory is a facility of
the National Science Foundation operated under cooperative
agreement by Associated Universities, Inc. The MeerKAT
telescope is operated by the South African Radio Astronomy
Observatory, which is a facility of the National Research
Foundation, an agency of the Department of Science and
Innovation. IDIA is a partnership of the University of Cape
Town, the University of Pretoria and the University of the
Western Cape. We acknowledge the use of the ilifu cloud
computing facility -www.ilifu.ac.za a partnership between the
University of Cape Town, the University of the Western Cape,

Figure 12. The DD Mueller terms generated from the Zernike models for (a) the VLA S-band (2.5 GHz), (b) the MeerKAT L-band (1.2 GHz), (c) ALMA DV antenna
Band 3 (108 GHz), and (d) ALMA DA antenna Band 3 (108 GHz).

6 https://github.com/ARDG-NRAO/plumber
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Appendix A
FM Models

Figure 12 plots the full Mueller models for all the telescopes
discussed in this paper. These models were obtained by
constructing the Mueller elements from the Jones models.

Appendix B
Implementation of Zernike Coefficients in tclean

The coefficients derived in the manner described in
Section 2.4 are included in the awproject gridder in CASA
by listing them in a CSV file. This format allows for the
specification of Zernike coefficients as a function of frequency,
polarization, and antenna type (when necessary). Each band of
each telescope will be specified in a different CSV file that can
be passed into the code. Listing 1 shows an extract of such a
CSV file. This is an extendable format that can be modified to
accept heterogeneous arrays (partially or fully) by adding a
further index to track the antenna type.

Listing 1—Extract from the CSV file specifying the
cofficients for the VLA S-Band beams. The columns are
Stokes, frequency (in MHz), the Zernike index, the real and
imaginary coefficients, and the aperture efficiency factor. The
Stokes is listed in CASA readable format, using the numbers
5–8 to denote circular feeds and 9–12 for linear.

#stokes,freq,ind,real,imag,eta
5,2052,0,308.13023030,-0.06968780,1.11
6,2052,0,0.14375480,-0.07500360,1.11
7,2052,0,0.11308890,0.24478490,1.11
8,2052,0,301.83666030,-0.00622780,1.11

Since Zernike polynomials are analytically well defined, and
the aperture models can be exactly evaluated at the specified

UV locations during gridding, rather than using a cached
precomputed value from an oversampled grid.
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