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We discuss conditions under which certain compactifications of topological spaces 
can be obtained by composing the ultrafilter space monad with suitable reflectors. In 
particular, we show that these compactifications inherit their categorical properties 
from the ultrafilter space monad. We further observe that various constructions 
such as the prime open filter monad defined by H. Simmons, the prime closed 
filter compactification studied by Bentley and Herrlich, as well as the separated 
completion monad studied by Salbany fall within the same categorical framework.
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1. Introduction

The purpose of the present work is to present a categorical framework to the approach considered by 
Salbany in his article [31] to describe certain compactifications. Salbany showed in [31] that standard 
compactifications such as the T0 stable compactification ([32]) and the Čech-Stone compactification can 
be seen as quotients of the space of ultrafilters on the designated spaces. The construction of the space 
of ultrafilters itself yields a monad, called ultrafilter space monad, on the category of topological spaces as 
shown in [23]. This monad, as we shall show, plays a similar role to that of the completion monad studied 
by Salbany in the article [29] in the context of quasi-uniform spaces. Under some mild conditions a suitable 
reflector composed with the ultrafilter space monad gives the desired compactification. In particular, many 
of the results in [31] can be obtained from this observation.
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The fact that reflective subcategories play an important role in Topology is well-known as is visible in the 
work of Herrlich’s [15]. On the other hand, monads have grown increasingly important in Topology espe-
cially through the influential work of Barr ([4]), Manes ([25]), Brümmer ([8]), Salbany ([30]), Simmons ([33]) 
and Wyler ([34]). In Pointfree Topology, the presence of monads can be explicitly observed in Johnstone’s 
book [19] and in Banaschewski and Brümmer’s paper [3]. Recently, monads were considered as fundamental 
building blocks in the study of lax algebras ([23]) and contributed to further applications of categorical 
techniques in Topology. Following these various developments, we show that monads play some significant 
role in certain familiar constructions. Indeed, by observing that idempotent monads are essentially reflec-
tors, we can consider the algebras of a monad as sitting in a generalised reflective subcategory. This is 
especially important for compactifications such as the closed prime filter compactification ([5]) which is not 
idempotent.

In this paper, we consider a monad T together with a reflector R, and present conditions under which 
the composition R · T itself becomes a reflector. In categorical parlance, we provide conditions that permit 
the distributivity of T over R, a fact that expresses the harmonious interplay between separation and 
compactness. In the examples of compactifications furnished here, these conditions are intimately linked to 
the fact that continuous maps between compact and separated spaces must be proper (or perfect). Among 
other things, we show that R · T can be seen as the universal reflection of T among suitable monads on the 
ambient category. Together with the Boolean Ultrafilter Theorem1 (BUT), this is used to deduce that some 
classical instances of compactifications are suitable quotients of the ultrafilter space.

The paper is organised in a simple manner. After providing the strict necessary background in the second 
section, we review Salbany’s construction of the ultrafilter space as well as Simmons’ prime open filter monad 
in the third section. This section not only motivates the categorical approach but provides technical details 
that are similar to the proofs that shall be omitted in the example on prime closed filter monad. The main 
results are discussed in Section 4, followed with some fundamental examples. The examples are admittedly 
not exhaustive but are chosen to illustrate the theory. For instance, spectral spaces, bitopological spaces and 
the Samuel compactification which deserve to be treated, are unfortunately left out. The abstract language 
is then necessary not only for the duality it provides (e.g. the case for frames) and its capacity to handle 
similar constructions in different settings, but also for its role as a guide for future examples.

2. Background and preliminaries

2.1. Categorical background

The composition of morphisms f and g in a category shall be denoted by g ·f or just simply by gf . Given 
two pairs of parallel functors F, G : C → D and H, K : D → E and two natural transformations α : F → G

and β : H → K, the natural transformation which is given by the horizontal composition β ◦α : HF → KG

is defined as follows: for each X in C

(β ◦ α)X = βGXH(αX) = K(αX)βFX .

In most cases, the variable X will be omitted and we shall simply write β ◦ α = βG · Hα = Kα · βF . If 
L : C → D is another functor and δ : G → L another natural transformation, then the vertical composition 
δ · α : F → L is simply defined as δX · αX for each X ∈ C. Recall that

1 Every proper filter on a given Boolean algebra is contained in an ultrafilter.
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Lemma 1 (Middle-Interchange Law). Given natural transformations

C D E
α

α′

β

β′

we have (β′ ◦ α′) · (β ◦ α) = (β′ · β) ◦ (α′ · α). (See [23,24].)

A subcategory D of C is said to be reflective if it is full and the inclusion functor D → C admits a left 
adjoint R : C → D. If r : 1 → R is the unit of R, then the pair (R, r) is called a reflector. We say that the 
pair (R, r) is an epireflector if each rX : X → RX is an epimorphism in the category C. We usually write 
R(C) for D and just consider R : C → C as an endofunctor.

A monad T on a category C is a triple (T, μ, η), where μ : TT → T and η : 1 → T are natural 
transformations satisfying the identities

μ · Tμ = μ · μT and μ · ηT = μ · Tη = 1T .

A morphism between two monads T = (T, μ, η) and M = (M, m, e) is a natural transformation α : T → M

satisfying α · η = e and α · μ = m · (α ◦ α). A T -algebra (or an Eilenberg-Moore algebra) is a pair (X, a), 
where X ∈ C and a : TX → X a morphism called structure morphism such that

a · Ta = a · μX and a · ηX = 1X .

Note that (TX, μX) is the free T -algebra over X. If (X, a) and (Y, b) are T -algebras, then a T -algebra 
homomorphism f : (X, a) → (Y, b) is a morphism f : X → Y in C such that f · a = b · Tf . We note 
that structure morphisms a : TX → X are T -algebra homomorphisms. The category of T -algebras and T -
algebra homomorphisms are denoted by CT . The forgetful functor GT : CT → C : (X, a) �→ X admits a left 
adjoint FT : C → CT : X �→ (TX, μX), f �→ Tf . The unit of this adjunction is given by ηX : X → GTFTX

and the co-unit is provided by structure maps ε(X,a) : FTGT (X, a) → (X, a). We wish to emphasize the 
following observations.

Lemma 2 ([25, Section 4, Item 12]). For each morphism f : X → GT (Y, b) in C, there is a unique T -algebra 
homomorphism f̄ : (TX, μX) → (Y, b), namely f̄ = b · Tf , such that GT f̄ · ηX = f . In particular there is at 
most a unique T -algebra homomorphism a : TX → X such that aηX = 1X .

Lemma 3 ([7, Corollary 4.2.4]). Reflective subcategories of C coincide, up to equivalences of categories, with 
categories CT of T -algebras for the idempotent monads T on C.

Example 4. Consider the category Set of sets and functions, and for each set X the collection UX of 
ultrafilters on X. To each function f : X → Y is assigned a function Uf defined by

Uf(F) = {B ⊆ Y |f−1(B) ∈ UX}.

Thus U is an endofunctor and it forms a monad U = (U, μ, η) on Set with the multiplication μ and the unit 
η defined by:

μX(X) = {A ⊆ X | A∗ ∈ X} and ηX(x) = {A ⊆ X | x ∈ A}

where A∗ = {F ∈ UX | A ∈ F}, X ∈ UUX and x ∈ X. It was shown by E. Manes [25] that SetU is 
isomorphic to the category of compact Hausdorff spaces and continuous maps.
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2.2. Stably compact spaces

A given topological space X comes with a natural pre-ordering through the specialisation order : x ≤ y

if and only if x ∈ {y} or {x} ⊆ {y}. T0 spaces are those spaces for which the equality {x} = {y} implies 
x = y. The specialisation order is then anti-symmetric in a T0 space.

A nonempty closed set G is called irreducible if the inclusion G ⊆ F1 ∪ F2 implies G ⊆ F1 or G ⊆ F2

whenever F1 and F2 are closed. A space X is sober if all irreducible closed sets in X are of the form {x}, 
where such x ∈ X must be unique. Thus sobriety implies the T0 separation axiom. If this property of 
uniqueness is not granted, then X shall be called weakly sober ([23]).

For two open sets O and U in a topological space X, we say that O is relatively compact in U - and 
we write O 	 U , when every open covering of U admits a finite sub-covering of O. A space X is said to 
be stable if the order relation 	 is finitely multiplicative, i.e. X 	 X and for any open sets O, U, W and 
V , if O 	 U and W 	 V then O ∩ W 	 U ∩ V . Finally, we say that X is locally compact if compact 
neighbourhoods form a base for the neighbourhood system of the space X.

Definition 5. A space X that is locally compact, stable and weakly sober shall be called a Salbany space. X
is called stably compact if X is a T0 Salbany space.

Salbany spaces are called quasi-stably compact spaces in [6] and Salbany called them stably compact spaces
in [31]. These are precisely the representable topological spaces in [23]. On the other hand, stably compact 
spaces went under various names: strongly sober locally compact (in [21]) and stably quasi-compact (in [16]). 
Note that these nomenclatures may be potentially confusing over time: for instance stably quasi-compact
and quasi-stably compact spaces may be perceived as the same class of spaces. We find it convenient to 
adopt a new name that does not include the prefixes ‘quasi’ and ‘stably’.

A subset A ⊆ X such that A =
⋂
{O ⊆ X | O open and A ⊆ O} is called saturated. A continuous map 

f : X → Y between two Salbany spaces is said to be proper2 if for any compact saturated set K ⊆ Y , the 
inverse image f−1(K) is compact in Y . The category of Salbany spaces and proper maps is denoted by Sal
and that of stably compact spaces and proper maps by Stb.

Example 6. Salbany spaces which are not stably compact can be obtained by “inserting” points into the 
irreducible closed subsets. An example in the finite case is the set X = {1, 2, 3} with the topology τ =
{∅, X, {1}}. (X, τ) is easily seen to be stable, locally compact and weakly sober with irreducible closed 
subsets {X, {2, 3}}.

Patch topology If (X, τ) is a stably compact space, then one can form a new topology τ c with the collection 
{K ⊆ X | K compact saturated} as basic closed sets. The join topology π = τ∨τ c is called the patch topology
on (X, τ). In principle, the patch topology can be constructed for any given topological space. However, in 
the case where X is stably compact, the topology π is compact and Hausdorff ([6]). It can be shown that 
if σ is another compact Hausdroff topology on X such that τ ⊆ σ, then π ⊆ σ. Consequently we have that

Lemma 7 ([12]). Compact Hausdorff spaces are coreflective in the category Stb.

It is known that Stb is equivalent to the category of ordered compact Hausdorff spaces and monotone 
continuous maps. These spaces are discussed by various authors in [6,20,23,16,35].

2 Also called perfect, these are the pseudo-homomorphisms in [23].
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3. The ultrafilter space monad

The ultrafilter monad U = (U, μ, η) on Set from Example 4 can be lifted to Top by defining the topology 
with basis3

{O∗ | O ⊆ X open} where O∗ = {F ∈ UX | O ∈ F}

on the set of ultafilters UX for each space X. That μ and η are continuous follow in a straightforward way 
from the facts that μ−1

X (O∗) = (O∗)∗ and η−1
X (O∗) = O for each open set O ⊆ X (see [27]). This lifting 

into the category Top shall still be denoted with the same symbols U = (U, μ, η) since we will not concern 
ourselves with Set, and we will refer to U as the ultrafilter space monad. The following were shown by 
Salbany in [31]:

Proposition 8 ([31, Theorem 1, Propositions 2, 3 and 5]). A space X is a Salbany space if and only if 
the embedding η admits a continuous retraction r : UX → X. The space UX is a salbany space and the 
embedding η : X → UX is dense in the patch topology of UX.

Note that a given continuous retraction as in Proposition 8 is not necessarily an U -homomorphism since 
it is not unique as already pointed out in [31, Proposition 3]. Although Salbany showed that any retraction 
r : UX → X is proper ([31, Proposition 4]), this is not enough to conclude that Sal is the category of 
U -algebras. Instead, Salbany spaces and proper maps form the category of pseudo-algebras and pseudo-
homomorphisms as shown in [23, Theorem 5.7.2]. Algebras of the ultrafilter space monad were identified up 
to equivalence in [23, Lemma 5.6.1] and fully characterised in [6].

Theorem 9 ([6, Lemma 4.12 and Theorem 4.15]). The algebras TopU of U are exactly the bitopological 
spaces (X, τ, π) together with maps f : (X, τ, π) → (Y, τ ′, π′) such that both f : (X, τ) → (X, τ ′) and 
f : (X, π) → (X, π′) are continuous and such that:

1. (X, τ) is a Salbany space and (X, π) is compact Hausdorff;
2. τ ⊆ π and every compact saturated subset of (X, τ) is closed in (X, π).

The topology π in Theorem 9 owes its existence and uniqueness to the fact that the underlying set-monad 
of U admits precisely the compact Hausdorff spaces as algebras ([25]). It is important to point out in this 
case that if τ is not sober, then π does not necessarily agree with the patch topology construction τ∨τ c. (See 
Example 6 for instance.) The category TopU is equivalent to the category of pre-ordered compact Hausdorff 
spaces and monotone continuous maps. This equivalence is discussed in [6, Theorem 5.5] and [23, Lemma 
5.6.1].

Our task in the remaining part of this section is to describe the passage from TopU to Stb through a 
reflector. One of the two monads described by Simmons in [33] is the prime open filter monad S = (Σ, m, e), 
where ΣX = {G filter | G ⊆ τ is prime with respect to open subsets} for each space X, with

mX(X) = {O open | O× ∈ X} and eX(x) = {O | O open and x ∈ O},

and where O× = {G ∈ ΣX | O ∈ G}, x ∈ X and X ∈ ΣΣX. The topology on ΣX has as a basis the sets 
{O× | O ⊆ X open}. For each continuous map f , Σf acts as a restriction of Uf . It was shown by Simmons 
in [33, Theorem 1.3 and Lemma 3.12] that TopS ∼= Stb.

3 Various equivalent constructions are given in [6] and [23].
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Proposition 10. For each space (X, τ), the map αX : UX → ΣX that takes each ultrafilter F to the prime 
open filter F ∩ τ is part of a morphism of monads α : U → Σ.

Proof. Each αX is clearly well-defined. If O× is a basic open set in ΣX, then

α−1
X (O×) = {F ∈ UX | F ∩ τ ∈ O×} = {F ∈ UX | O ∈ F ∩ τ} = O∗.

If f : X → Y is a continuous map, then we easily have Σf ·αX = αY ·Uf . That e = α · η is clear. It remains 
to show that m · (α ◦ α) = α · μ. First note that we have α ◦ α = αΣ · Uα so that for each X ∈ UUX

(αΣ · Uα)(X) = αΣ
(
{χ ⊆ ΣX | α−1(χ) ∈ X}

)

= {χ ⊆ ΣX | α−1(χ) ∈ X} ∩ {χ ⊆ ΣX | χ open}

= {χ ⊆ ΣX | α−1(χ) ∈ X and χ open}.

Now (m · (α ◦ α))(X) = (m · αΣ · Uα)(X) = {O open | α−1(O×) ∈ X}. On the other hand

(α · μ)(X) = {W ⊆ X | W ∗ ∈ X} ∩ τ = {O open | α−1(O×) ∈ X}.

We then have equality. �
We now show that ΣX appears as the T0 reflection of UX.

Proposition 11. Let (R, r) : Top → Top be the T0 reflector. For each space X, there is an isomorphism 
rX ∼= αX in a sense that there is an homeomorphism ϕ : RUX → ΣX with ϕ · rX = αX .

Proof. The existence of ϕ as a continuous function follows from the fact that ΣX is a T0 space ([33]). For 
each equivalence class r(F) ∈ RUX we have ϕ(r(F)) = F ∩ τ . Since r(F) = r(G) if and only if {F} = {G}, 
and that F ∈ O∗ if and only if O ∈ F , ϕ is injective. That ϕ is surjective follows from BUT. Finally as α
is initial and r is surjective, ϕ is initial and hence open. �

Proposition 10 and Proposition 11 imply that rU : U → RU is a morphism of monads. In fact this is 
a consequence of a much deeper aspect of (R, r) and U , namely that the composition R · U is a monad 
composition R ◦U .

Proposition 12. Let (R, r) be the T0 reflector on Top. For each space X, rX is a proper map.

Proof. For arbitrary open sets O ⊆ X and U ⊆ RX, r−1(r(O)) = O and r(r−1(U)) = U . This establishes 
a lattice isomorphism between the topology of X and that of RX. Thus K ⊆ RX compact is equivalent to 
r−1(K) ⊆ X being compact. �

Now if f : X → Y is a proper map where Y is a T0 space, then the unique continuous map ϕ : RX → Y

such that ϕ · r = f is proper. Therefore

Corollary 13. Stb is reflective in both Sal and TopU .
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If I : Stb → TopU is the full inclusion, then adjunction between Top and Stb is decomposed as follows4

Top
FU

⊥ TopU

GU

R

Stb
I

⊥

Salbany has shown in [31] - citing [32] and [33], that if X is T0 space, then rU ·η : X → RUX or equivalently 
e : X → ΣX is the T0 stable compactification of X.

4. Distributivity of a monad over an epireflector

We fix a reflector R = (R, r) and a monad T = (T, μ, η) on a given category C. Let us start with the 
following result which is from [23, Lemma II.3.8.1] and [23, Propositions II.3.8.2 and II.3.8.4]. (See also [26, 
Theorem 2.4.2].)

Theorem 14 ([26] and [23]). The composite functor RT underlies a composite monad R ◦ T = (RT, w, r ◦η)
if and only if there is a lifting of R on CT , i.e. there is a monad R̃ = (R̃, n, d) such that the diagram

CT R̃

GT

CT

GT

C
R

C

commutes, GTn = 1RGT and GTd = rGT . Under these conditions, rT : T → RT is a monad morphism 
and (CT )R̃ ∼= CR◦T .

This means that for each T -algebra (X, a), one has R̃(X, a) = (RX, R̃a) for some structure morphism 
R̃a : TRX → RX. The multiplication w is obtained as the reflection RR̃μ. Since GT forgets algebra 
structures, the underlying C-morphisms of n and d coincide with 1R and r respectively. Thus also n = 1R̃, 
and since d : (X, a) → R̃(X, a) is a morphism in CT , the necessary condition above can be exclusively 
expressed through T and R.

Lemma 15. The composite functor RT is part of a monad R ◦ T if for each T -algebra (X, a), the morphism 
r : X → RX is a T -algebra homomorphism, i.e. there is a morphism b : TRX → RX making (RX, b) into 
a T -algebra and such that b · Tr = r · a.

Proposition 16. (CT )R̃ is isomorphic to a reflective subcategory of CT .

Proof. If R ◦ T is a monad, then the lifting R̃ : CT →CT produces an adjunction

CT
F R̃

⊥ (CT )R̃

GR̃

Since R is idempotent, we have R̃(R̃(X, a)) ∼= R̃(X, a) for any T -algebra (X, a). Thus R̃ is also idempo-
tent. �
4 This adjunction is described as a reflection by Simmons in [33, Theorem 1.3]. This notion of reflectivity does not include 

idempotency of the reflector. In our case, since the subcategory Stb is not full, Σ cannot be idempotent.
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Corollary 17. Suppose that (R, r) is a reflector. CR◦T is isomorphic to a reflective subcategory of CT if and 
only if r : X → RX is a T -algebra homomorphism for each T -algebra (X, a).

A potential difficulty associated to Theorem 14 and Lemma 15 is that the algebras CT ought to be 
identified. In certain categories, the properties of the free algebras (TX, μX) can be understood before the 
algebras are characterised, and this is certainly the case for Salbany’s paper [31]. In what follows, we shall 
provide conditions on the free algebras and on R that will render the lifting in Theorem 14 possible without 
fully understanding the algebras of T .

Lemma 18. If (R, r) is an epireflector, then the following are equivalent:

1. For each parallel pair of morphisms f, g : TX → RY , the equations fη = gη and f = g are equivalent.
2. Rη : RX → RTX is an epimorphism in R(C).

Lemma 19. Suppose that (R, r) is an epireflector and that Rη is an epimorphism in R(C). If for a T -algebra 
(X, a), RX admits a T -structure morphism b, then r : X → RX is a T -algebra homomorphism.

Proof. Since the outer diagram of

X
η

r

TX
a

Tr

X

r

RX
ηR

TRX
b

RX

commutes, we have (ra)η = (bTr)η which is equivalent to ra = bTr. �
Note that with the assumptions of Lemma 19, there is at most one C-morphism b : TRX → RX such 

that b · ηR = 1R and when this morphism exists, then (RX, b) is a T -algebra. In fact it is enough for ηRT

to split for RX to become a T -algebra, as shown below.

Theorem 20. Suppose that (R, r) is an epireflector and Rη an epimorphism in R(C). If for each X ∈ C, 
ηRTX is a split monomorphism, then for each T -algebra (X, a), RX admits a T -structure morphism b.

Proof. Let β be a morphism such that β · ηRT = 1RT and define b := Ra · β · TRη. Note first that 
TRη · ηR = ηRT · Rη since η is a natural transformation. We have b · ηR = (Ra · β · TRη) · ηR =
Ra · β · ηRT ·Rη = Ra ·Rη = R(a · η) = 1R. This also makes the outer diagram of

TRX
ηTR

b

TTRX
μR

Tb

TRX

b

RX
ηR

TRX
b

RX

commutative and b a T -algebra homomorphism. �
Corollary 21. Suppose that (R, r) is an epireflector and Rη an epimorphism in R(C). If for each X ∈ C, 
ηRTX is a split monomorphism, then the composite functor RT forms a monad R ◦ T .
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We now discuss certain aspects of the behaviour of CR◦T with respect to CT and R(C). The following 
Lemma is a consequence of Theorem 14.

Lemma 22. If X is an R ◦ T -algebra, then it is a T -algebra.

Proof. If α : RTX → X is an R ◦ T -structure morphism, then α · rT is a T -structure morphism. �
Lemma 23. Suppose that (R, r) is an epireflector.

1. If X is an R ◦ T -algebra, then X ∼= RX.
2. If Rη is an epimorphism in R(C), then RT is idempotent.

Proof. For the first statement, if α : RTX → X is an R ◦ T -structure morphism, then we have (α ·Rη) ·r =
α · (rT · η) = 1X . Therefore r, being an epimorphism, is an isomorphism. For the second statement, it 
is enough to show that if X is R ◦ T -algebra, then X ∼= RTX. If α : RTX → X is an R ◦ T -structure 
morphism, then

(r ◦ η) · α · rT · η = (r ◦ η) · α · (r ◦ η) = r ◦ η = rT · η.

Since rT is an epimorphism and Rη is an epimorphism in R(C), we have (r ◦ η) · α = 1RTX . �
Proposition 24. If R ◦ T is a monad, (R, r) an epireflector and Rη an epimorphism in R(C), then CR◦T is 
isomorphic to a reflective subcategory of R(C) and C.

Proof. Clearly if RT is idempotent then CR◦T is a reflective subcategory of C (Lemma 3). Now, if RY

is an R ◦ T -algebra (as in Lemma 23.1) and f : RX → RY a morphism in R(C), then there is a unique 
R ◦ T -algebra homomorphism ϕ : RTRX → RY such that ϕ · (r ◦ η)R = f . Since the inclusion R(C) → C
is full, both ϕ and (r ◦ η)R are in R(C). �

A test for (non-)idempotency has been given by Fakir in [13] and it allows for a partial converse of 
Proposition 24.

Proposition 25 ([13, Proposition 1]). Suppose that W = (Σ, m, e) is an idempotent monad on C. If eX :
X → ΣX is monomorphism for each object X, then it is an epimorphism.

Corollary 26. Suppose that CR◦T is reflective in R(C) with reflector (RT, r ◦ η). If for any object X, the 
unit (η ◦ r)R : RX → RTRX is a monomorphism, then it is an epimorphism.

Now, consider another monad M = (M, n, e) on C.

Theorem 27. Assume that (R, r) is an epireflector and that T preserves epimorphisms. Suppose that R ◦ T
is a monad and that for each object X ∈ C, MX ∈ R(C). Then for any morphism of monads γ : T → M , 
there is a unique morphism of monads λ : R ◦ T → M such that λ · rT = γ.

Proof. For each object X, there is a unique morphism λX : RTX → MX such that λ · rT = γ. First we 
note that λ = (rM)−1 ·Rγ, and therefore λ is a natural transformation. Now, we observe that λ · (r ◦ η) =
λ · rT · η = γ · η = e. Finally, since γ and rT are morphisms of monads, we have rT ·μ = Rm · (rT ◦ rT ) and 
n · (γ ◦ γ) = γ · μ. By the middle-interchange law, we have (λ ◦ λ) · (rT ◦ rT ) = (λ · rT ) ◦ (λ · rT ) = γ ◦ γ. 
Consequently
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n · (λ ◦ λ) · (rT ◦ rT ) = n · (γ ◦ γ)

= γ · μ

= λ · rT · μ

= λ ·Rm · (rT ◦ rT ).

Note that rT ◦ rT = rTRT · TrT . Since rTRT and TrT are epimorphisms, the result follows. �
The condition that T should preserve epimorphisms may be compared with the notion of compactification 

reflector that is developed by Holgate in [18]. More specifically, a compactification reflector preserves the 
morphisms in a class E that is part of an ambient factorisation system (E , M) on morphisms of C. This 
feature is present in our examples on compactifications. We give the following observation.

Proposition 28. Let (R, r) be an epireflector on C and let MonE(C) be the category of those monads 
over C that preserve epimorphisms and whose composition with R gives a monad. Let RMonE(C) be 
the subcategory of MonE(C) consisting of those monads whose ranges are in R(C). Then the embedding 
I : RMonE(C) → MonE(C) admits a left adjoint.

Proof. We define the left adjoint F as follows: F (T ) = R ◦ T and F (γ) = Rγ for any morphism γ : T → S. 
By Theorem 27, F is well-defined and Hom(F (T ), M) ∼= Hom(T , I(M)). �

In the article [13], Fakir showed that under mild conditions, the category of idempotent monads is core-
flective within the category of monads and monad morphisms. This construction was applied by Lambek 
and Rattray to describe - among other results, the Stone-Čech compactification and the Samuel compacti-
fication in [22, Example 2 and Example 3]. Following Lambek and Rattray, Salbany used the construction 
to study what is known as regular closure operators (See [28] and [11, Chapter 6]), a tool that is used to 
characterise epimorphisms in certain categories. (See [10] for instance.) The question that eventually arises 
is then that of comparing the reflective subcategories (as well as the various closure operators) associated 
to the idempotent cores of T and RT . This question shall not be investigated here as it goes beyond the 
scope of the present paper.

5. Fundamental examples

In this section, we shall treat three separate and basic examples, and we shall give brief remarks about 
sobriety which will be helpful in clarifying certain aspects of the T0 stable compactification. This will appear 
at the end of the first set of examples.

5.1. Topological spaces and ultrafilter space monad

We consider the ultrafilter space monad U = (U, μ, η) on Top. For each topological space X, η : X →
UX is a monomorphism (injective and continuous) which may fail to be an epimorphism (surjective and 
continuous), hence U is not idempotent. Given a surjective continuous map f : X → Y , each ultrafilter 
G ∈ UY is the image of the ultrafilter with base {f−1(G) | G ∈ G}. Therefore U preserves epimorphisms. 
Finally, as already shown before, η is a patch-dense and therefore is also a dense embedding.

5.1.1. T0 stable compactification
We consider the T0 epireflector (R, r) on Top. By Proposition 12 and Lemma 15, the composition RU

forms a monad on Top. As shown in Section 3, RU ∼= Σ. In fact, there is a unique monad morphism 
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λ : R ◦U → S such that λ · rU = α, where α is as defined in Proposition 10. With BUT, it can be shown 
as in Proposition 11 that λ is an homeomorphism. We make the following additional observations. (See 
[31–33].)

Proposition 29. For each continuous map f : X → Y where (Y, τ, π) is an U-algebra, there is a unique map 
ϕ : UX → Y in TopU such that ϕ · η = f .

Proposition 30. For each continuous map f : X → Y where (Y, τ) is stably compact, there is a unique proper 
map ϕ : RUX → Y such that ϕ · (rU · η) = f . The unit rU · η is a dense embedding if and only if X is a T0
space.

Proposition 31. Rη is not an epimorphism in Top0.

Proof. Since the inclusion Stb → Top0 is not full, Stb is not reflective5 in Top0. �
5.1.2. Prime closed filter compactification

This method of compactification was the object of a thorough investigation by Bentley and Herrlich 
in the article [5]. The reader can consult [1], [8], [30] and [35], as well as the bibliography of [5] for an 
exhaustive reference. As we shall see here, the resulting construction is essentially that of Simmons’ prime 
open filter monad. The monadic aspect of this construction was not explored in [5] and this is manifested 
in the absence of any attempt to define the multiplication.

Following [5], let BX denote the collection of all closed subsets of a space X. A closed filter on X is a 
proper filter F on X such that F ⊆ BX , and F is said to be a prime closed filter if F is a closed filter and 
for any union of closed subsets H ∪ G ∈ F , either H ∈ F or G ∈ F . The set of all prime closed filters on 
X shall be denoted by PX and P induces a monad P = (P, n, d) on Top in the following manner: a base 
for closed sets on PX is the collection {H× | H ∈ BX}, with H× = {F ∈ PX | H ∈ F}. The natural 
transformations n and d are respectively defined by

nX(X) = {H ∈ BX \ {∅} | H× ∈ X} and dX(x) = {C ∈ BX | x ∈ C}.

For each continuous map f : X → Y , we have Pf(F) = {B ∈ BY | f−1(B) ∈ F}.
As shown in [5, Proposition 3] we have a surjective map α : UX → PX given by F �→ F ∩ BX . (BUT is 

assumed.) This map is continuous for each space X and is a monad morphism (Proposition 10). Now, since 
PX is T0 ([5, Remarks 2.1]), there is a unique morphism of monads λ : R ◦U → P such that λ · rU = α. 
(Here R = (R, r) is still the T0 epireflector.) As in the previous case, λ becomes an homeomorphism. This 
can be made more transparent as follows.

Lemma 32. If (R, r) is the T0 epireflector and r : X → RX a T0 quotient map, then for any pair of points 
x and y, we have r(x) = r(y) if and only if for any closed set C, x ∈ C whenever y ∈ C and vice versa. In 
particular rU(F) = rU(G) if and only if F ∩ BX = G ∩ BX .

Proposition 33. Granted that BUT holds, there is a monad isomorphism between the prime open filter monad 
S and the prime closed filter monad P .

5.1.3. Čech-Stone compactification
In Top, we consider the full subcategories Haus of Hausdorff spaces and CHaus of compact Hausdorff 

spaces. The epireflector onto Haus shall be denoted by (H, h).

5 At the end of the subsection, a different proof is given.
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Lemma 34. Hη is an epimorphism in Haus.

Proof. In the diagram hU · η = Hη · h, hU and h are surjective and η is dense. Consequently Hη is dense, 
i.e. it is an epimorphism in Haus. �
Lemma 35. The reflection HUX of UX is compact and Hausdorff.

Since any compact and Hausdorff space is stably compact, the space HUX is then a U -algebra. It follows 
from Theorem 20, Corollary 21 and Proposition 24 that

Proposition 36. HU is a reflector that is left adjoint to the full inclusion CHaus → Top. Furthermore 
CHaus is reflective in Haus and TopU .

Now, consider the prime open filter monad S. It is straightforward to check that He is an epimorphism 
in Haus and that the reflection HΣX of ΣX is compact and Hausdorff. Consequently

Proposition 37. CHaus is reflective in Stb.

The well-known fact that any continuous map in CHaus must be proper is represented through the 
factorisation CHaus → Stb → Top. With Lemma 7, we conclude that CHaus is simultaneously reflective 
and coreflective in Stb. (The localic version of this is discussed by Escardó in [12].) The fact that CHaus
is reflective in Stb is shown in [23, Section 5.6] in the context of lax algebras. That HU ∼= HΣ is an 
application of Theorem 27. Thus HU represents the Čech-Stone compactification β. In the absence of BUT, 
it can be concluded that there are morphisms of monads that arise from different separation of U, making 
the following diagram commutative.

Σ

U RU β

P

Remarks about sobriety Let (S, s) : Top → Top be the sobrification reflector. Since UX is weakly sober 
for each space X, one has SUX ∼= RUX where (R, r) is the T0 reflector. Thus S does not improve U in a 
way that is different from R. The functor S may be better understood as a completion than a separation 
condition, especially in the context of T0 spaces. (See [21] and [17].) The embedding s : X → SX is b-dense 
hence an epimorphism in Top0. Note that since SX is naturally isomorphic to the set of completely prime 
open filters on X with an appropriate topology ([19]), ΣX � SX. This also shows Proposition 31: that 
e : X → ΣX is not b-dense hence not an epimorphism in Top0, for otherwise ΣX would act as a sobrification 
of X. (See explanation in [17, Proposition 3.1.2].)

5.2. Quasi-uniform spaces and completion monad

We denote by QUnif the category of quasi-uniform spaces and quasi-uniformly continuous maps. Fol-
lowing Salbany ([29]), we consider the set CX of all Cauchy filters on a quasi-uniform space (X, U) and 
endow it with the quasi-uniformity U∗ having as a basis the set {U∗ | U ∈ U} where (F , G) ∈ U∗ if and 
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only if there are (A, B) ∈ F × G such that A ×B ⊆ U . For each Cauchy filter F , Cf(F) has as a basis the 
set {G | f−1(G) ∈ F}. Thus C becomes an endofunctor on QUnif that induces a monad C = (C, μ, η) with

μX(X) = {G | G∗ ∈ X} and ηX(x) = {A | x ∈ A},

and where x ∈ X, X ∈ CCX and G∗ = {F | G ∈ F}. Apart from [29], this monad has also been discussed 
by Wyler in [34]. We consider the “separation” epireflector (R, r) : QUnif → QUNif with R(QUnif ) =
QUnif0. (See [29].) We gather from [29] that η(X) is dense with respect to the topology induced by 
U∗ ∨ (U∗)−1 and that the algebras QUnifC are the complete quasi-uniform spaces.

Lemma 38. The monad C is not idempotent.

Proof. Note first that epimorphisms in QUnif are precisely the surjective quasi-uniformly continuous maps 
([10]). The unit η, which is a monomorphism, fails to be surjective in general. �
Lemma 39. Rη is an epimorphism in QUnif0 and RC(X, U) is a separated complete quasi-uniform space 
for each quasi-uniform space (X, U).

Proof. As indicated previously ([29]), η is dense with respect to U∗ ∨ (U∗)−1. Therefore the compositions 
in the diagram rC · η = Rη · r are dense. This shows that Rη is dense with respect to (U∗)s ∨ ((U∗)s)−1, 
hence an epimorphism in QUnif0. �

Consequently RC is a reflector and the complete separated quasi-uniform spaces form a reflective subcat-
egory of QUnif , QUnif0 and QUnifC. These facts which are indicated or shown in [29] have substantially 
motivated the study of separation with respect to a monad. The separated completion monad RC is also 
investigated in [9] where quasi-uniform spaces are viewed as lax proalgebras. Various epimorphisms were 
studied by Dikranjan and Künzi in relation to the different conditions of separation in QUnif . These various 
separation conditions could not be considered here due to the author’s limited expertise.

5.3. Frames and ideal functor

We refer the reader to [19], [1] and [2,3] for general background on frames and the ideal functor. A 
complete lattice L is a frame if a ∧ (

∨
I bi) =

∨
I(a ∧ bi) for any a ∈ L and {bi | i ∈ I} ⊆ L. A map 

f : L → M is a frame homomorphism if it preserves arbitrary joins and finite meets. We denote by Frm
the category of frames and frame homomorphisms. The symbol I will denote the ideal functor that takes 
each frame L to its set of ideals IL which is a frame, and takes each frame homomorphism f : L → M

to a frame homomorphism If : IL → IM : I �→
⋃

↓ {f(a) | a ∈ I} = {b ≤ f(a) | a ∈ I}. The 
functor I is part of a comonad I = (I, c, σ) on Frm where σL : IL → L : I �→

∨
I for all I ∈ IL, and 

cL : IL → IIL : J �→ {I ∈ IL | σL(I) ∈ J}.
The way below relation 	 is defined as for stably compact spaces: a 	 b if any arbitrary subset whose 

join is above b admits a finite subset whose join is above a. A frame L is stably continuous if the way 
below relation 	 is continuous ([3,14,19]), i.e. a =

∨
{b | b 	 a} for all a ∈ L, and finitely multiplicative. 

(Hence L is compact.) For a comprehensive analysis of continuous lattices in general, we invite the reader 
to consult [14]. A frame homomorphism is proper if it preserves the way below relation. The category of 
stably continuous frames together with proper frame maps is denoted by SCont.

Although it is shown in [3] that I is induced from stably continuous frames in a sense that FrmI ∼= SCont, 
the co-unit σ and co-multiplication c can be described independently as above by only using the ambient 
category Frm. Our objective is to give an alternative description of the regular - and consequently completely 
regular, compactification of frames.
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A frame L is said to be regular if for all a ∈ L, a =
∨
{c | c ≺ a}, where a ≺ b if b ∨ a∗ = 1 with 

a∗ =
∨
{x ∈ L | x ∧ a = 0}. If RegL is the largest regular subframe of L and rL : RegL → L the inclusion 

frame homomorphism, then (Reg, r) : Frm → Frm is a monocoreflector.

Lemma 40. For each frame L, the coreflection RegIL is compact and regular, hence stably continuous. Regσ

is a monomorphism in the category of regular frames Reg(Frm) = RegFrm.

Proof. The first statement is trivial. Monomorphisms in RegFrm are precisely the dense frame homomor-
phisms, i.e. those frame homomorphisms that reflect 0. Let us first note that if σL(I) = 0 where I ∈ IL, 
then 

∨
I = 0 and so I = {0}. Therefore σ is dense. As in the previous cases (Lemma 34 and Lemma 39), 

since the compositions rL ·Regσ = σL · rI are dense and rL is a monomorphism, Regσ is dense. �
It then follows that RegI is a coreflector (idempotent comonad), i.e. the category of compact regular 

frames and frame homomorphisms KRegFrm is coreflective in Frm, SCont and RegFrm. The fact that 
any frame homomorphism between compact regular frames is proper is syntactically encoded through the 
factorisation KRegFrm → Stb → Frm. Here also KRegFrm is simultaneously reflective and coreflective 
in SCont. (See [12].) We end with a final observation.

Proposition 41. The functor I preserves monomorphisms. Consequently if (R, r) is a monocoreflector on 
Frm such that RI is a comonad, then any comonad morphism γ : T → I with T (Frm) ⊆ R(Frm) factors 
uniquely through a comonad morphism λ : T → RI.
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