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Abstract. Interacting dark energy models have been proposed as attractive alternatives
to ΛCDM. Forthcoming Stage-IV galaxy clustering surveys will constrain these models, but
they require accurate modelling of the galaxy power spectrum multipoles on mildly non-linear
scales. In this work we consider a dark scattering model with a simple 1-parameter extension
to wCDM – adding only A, which describes a pure momentum exchange between dark en-
ergy and dark matter. We then provide a comprehensive comparison of three approaches of
modeling non-linearities, while including the effects of this dark sector coupling. We base our
modeling of non-linearities on the two most popular perturbation theory approaches: TNS
and EFTofLSS. To test the validity and precision of the modelling, we perform an MCMC
analysis using simulated data corresponding to a ΛCDM fiducial cosmology and Stage-IV
surveys specifications in two redshift bins, z = 0.5 and z = 1. We find the most complex
EFTofLSS-based model studied to be better suited at both, describing the mock data up to
smaller scales, and extracting the most information. Using this model, we forecast uncertain-
ties on the dark energy equation of state, w, and on the interaction parameter, A, finding
σw = 0.06 and σA = 1.1 b/GeV for the analysis at z = 0.5 and σw = 0.06 and σA = 2.0
b/GeV for the analysis at z = 1. In addition, we show that a false detection of exotic dark
energy up to 3σ would occur should the non-linear modelling be incorrect, demonstrating the
importance of the validation stage for accurate interpretation of measurements.
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1 Introduction

Current and forthcoming large-scale structure (LSS) cosmological experiments such as the
Dark Energy Survey (DES)1 [1], the Dark Energy Spectroscopic Instrument (DESI)2 [2],
Euclid3 [3, 4], the Nancy Grace Roman Space Telescope4 [5], and the Vera C. Rubin Observa-
tory’s Legacy Survey of Space and Time (LSST)5 [6] are promising to deliver high precision
cosmological measurements, allowing to probe the nature of dark energy. The standard model
of cosmology, ΛCDM, has enjoyed immense success, having shown great consistency with a
wealth of cosmic microwave background (CMB) and LSS data [1, 7–14]. The model assumes
that General Relativity (GR) is the correct description of gravity on all scales, and that
dark matter and dark energy are uncoupled. Alongside the standard cosmological model, a
plethora of alternative models have been proposed. These include dark energy in the form of
quintessence, modified gravity, and coupled models of dark matter and dark energy [15–24].

Stage IV spectroscopic galaxy redshift surveys such as the Euclid satellite mission aim
to measure the logarithmic growth rate of structure f , which strongly depends on cosmology
and gravity [25]. This will be done by probing the redshift space distortion (RSD) signature
with summary statistics, such as the galaxy power spectrum or correlation function [3, 26–
30]. With the volume and number density of galaxies probed being large, observations will
no longer be limited by statistical errors, but by theoretical, sky, and instrumental systematic
uncertainties. The most important theoretical systematic is related to our ability to model
the non-linear scales of structure formation, and get precise and unbiased constraints on
cosmological parameters. This affects both main LSS probes, i.e., galaxy clustering and weak
gravitational lensing [31–38].

1https://www.darkenergysurvey.org/
2https://www.desi.lbl.gov/
3http://euclid-ec.org
4https://www.nasa.gov/roman
5https://www.lsst.org/
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In the context of ΛCDM and redshift-space galaxy clustering, the non-linear modelling
challenge has been most widely addressed by two competing perturbative models, the TNS
model [39] and the effective field theory of large scale structure (EFTofLSS) [40, 41]. Recent
analyses of the BOSS DR12 power spectrum multipoles [10] utilise both of these approaches
and find consistent results [12, 42, 43].

In order to constrain non-standard cosmologies with forthcoming data, we need to per-
form extensive non-linear modelling studies and validation tests against simulations. This
paper aims to do this for a phenomenologically interesting class of models that includes a
non-gravitational interaction (coupling) between dark energy and cold dark matter. Interact-
ing dark energy models have been gaining popularity recently due to their ability to alleviate
some cosmological tensions [44–46]. Recent local universe observations have shown mild to
large inconsistencies with the CMB observations (see [47–51] for recent reviews). In particu-
lar, discrepancies between the Planck CMB measurements of ΛCDM parameters [7] and late
time galaxy observations [26–28, 30, 52–56] have been uncovered. This tension lies in the
growth of structure, specifically the amplitude of density fluctuations, typically characterised
by the density fluctuations averaged over a sphere of 8h/Mpc radius, σ8. Late time measure-
ments consistently prefer less growth of structure than the prediction from a ΛCDM model
fit to the CMB.

One promising means of alleviating the σ8 tension is to allow for an interaction between
dark matter and dark energy. The most common interacting dark energy models, which
assume energy transfer at the background and linear perturbations level, fail to fit CMB data
and are severely constrained by data [57–60], except when the interaction is proportional
to the dark energy density [50]. However, the class of models we study in this work are
uncoupled in the background and only exhibit momentum exchange at the level of linear
perturbations, allowing them to fit both CMB and LSS data very well [61]. These models
have been formally described and parameterised in [24, 62, 63] using a Lagrangian approach,
and a phenomenological model called the ‘Dark Scattering’ model [64] has been incorporated
in N -body codes [65]. Other relevant works that have studied pure momentum exchange
models and their ability to alleviate the σ8 tension are [66–73].

In this work, we test the capability of three different perturbative models of constraining
momentum exchange in the dark sector by stage IV galaxy surveys. We work in the context
of the Dark Scattering model, allowing the growth of structure to be affected by the transfer
of momentum. We make use of a set of ΛCDM PICOLA simulations with which we compare
the theoretical models in a set of Markov Chain Monte Carlo (MCMC) analyses. We begin by
exploring how much data from the mildly non-linear scales we can include without incurring
in a significant bias on the measurement of the dark energy parameters. We do this for each
perturbative model to select the best one – the model which can explain the most data and
extract the most information about the parameters of interest. Finally, we use that model to
forecast constraints on the interaction parameter by stage IV surveys for the first time.

The paper is organised as follows. In Section 2, we describe the Dark Scattering model
which we study in this work, as well as the three perturbative models for the non-linearities,
whose performance we compare. In Section 3, we present the details of our MCMC analysis
and its set-up. Our results are shown in Sub-section 3.2. Finally, our conclusions are presented
in Section 4.

– 2 –



2 Modelling

The cosmological model being considered is an interacting dark energy model in which
dark energy exchanges momentum with dark matter without the accompanying energy ex-
change [64, 65, 68, 74]. This is a phenomenological model inspired by the Thomson interaction
between photons and charged particles, which is active in pre-recombination times. In that
case, the energy exchange is suppressed after e+e− annihilation because the typical energy
carried by photons at this time is much smaller than the electron mass. Similarly, in the case
under study it is the dark matter mass that is assumed to be much larger than the energy
transferred in typical interactions with the dark energy during the late Universe. This gives
rise to the following Euler equations for the velocity field of dark matter (c) and dark energy
(DE),

θ′c +Hθc +∇2φ = (1 + w)
ρDE

ρc
ancσD(θDE − θc) , (2.1)

θ′DE − 2HθDE −
1

1 + w
∇2δDE +∇2φ = ancσD(θc − θDE) , (2.2)

in which a prime denotes a derivative with respect to conformal time, θi are the velocity
divergences of species i, ρi are their energy densities, δi are their density contrasts, H = a′/a is
the conformal Hubble rate, a is the scale factor, φ is the gravitational potential (in Newtonian
gauge), w is the dark energy equation of state parameter, nc is the number density of dark
matter and σD is the cross-section of the interaction. Given that this model will be applied
only at late times and no energy transfer occurs, no other equations are modified by the
interaction. In addition to this, we employ the common approximation that dark energy
fluctuations are negligible with respect to all others, given the assumed sound speed of cs = 1.
Taking that into account, the resulting equations make it clear that the interaction introduces
only an additional drag force to cosmic expansion and, converting time variables to scale
factor, a, one finds

a∂aΘ +

(
2 + (1 + w)ξ

ρDE

H
+
a∂aH

H

)
Θ +

∇2φ

a2H2
= 0 , (2.3)

where the parameter ξ ≡ σD/mc was introduced, H = ȧ/a is the Hubble rate, with a dot
representing a derivative with respect to cosmic time, and Θ ≡ θc/aH.

This additional drag term is the only effect this model has at late times and is therefore
a simple extension to wCDM, adding only one extra parameter, ξ.

2.1 Evolution equations

We assume the late-time evolution of the Universe is described by a perturbed flat Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetime, whose metric, in Newtonian gauge, is given
by the line element

ds2 = −(1 + 2φ)dt2 + a2(1− 2ψ)δijdx
idxj , (2.4)

where ψ is the curvature perturbation and we have also neglected vector and tensor per-
turbations, which is a good approximation when predicting the power spectrum of density
fluctuations. See Ref. [75] for a review of cosmological perturbation theory.
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We assume the Universe to be composed only of dark matter and dark energy,6 with
the latter having a constant equation of state. The background evolution is thus given by the
Friedmann equation,

H2 = H2
0

(
Ωc,0a

−3 + ΩDE,0a
−3(1+w)

)
, (2.5)

where we have used the solution to the conservation of the background stress-energy tensors,

ρDE = ρDE,0 a
−3(1+w) , ρc = ρc,0 a

−3 . (2.6)

The gravitational equations are obtained by applying the Newtonian limit to GR, re-
sulting in

∇2φ =
3

2
a2H2Ωcδc , (2.7)

where we have assumed negligible anisotropic stress, implying that ψ = φ.
Dropping the subscript c, the full non-linear fluid equations for dark matter in Fourier

space are given by

a∂aδ(k) + Θ(k) = −
∫

d3k1d3k2

(2π)3
δ(3)(k− k1 − k2)α(k1,k2)Θ(k1)δ(k2) , (2.8)

a∂aΘ(k) +

(
2 + (1 + w)ξ

ρDE

H
+
a∂aH

H

)
Θ(k)−

(
k

aH

)2

φ(k) =

− 1

2

∫
d3k1d3k2

(2π)3
δ(3)(k− k1 − k2)β(k1,k2)Θ(k1)Θ(k2) , (2.9)

where the couplings α and β are given by

α(k1,k2) = 1 +
k1 · k2

|k1|2
, β(k1,k2) =

k1 · k2|k1 + k2|2
|k1|2|k2|2

. (2.10)

These equations can be solved perturbatively in terms of the kernels F̄n, Ḡn defined by

δ(k, a) =
∞∑
n=1

∫
d3k1 . . . d

3kn

(2π)3(n−1)
δ(3)(k− k1n)F̄n(k1, . . . ,kn, a)δ0(k1) . . . δ0(kn) , (2.11)

Θ(k, a) =

∞∑
n=1

∫
d3k1 . . . d

3kn

(2π)3(n−1)
δ(3)(k− k1n)Ḡn(k1, . . . ,kn, a)δ0(k1) . . . δ0(kn) , (2.12)

where δ0 is the initial density contrast for the growing mode solution defined deep in mat-
ter domination, k1n =

∑n
i=1 ki, and the kernels F̄n, Ḡn can be constructed with recursive

relations from the fundamental mode coupling functions (2.10) [76]. The first order density
kernel F̄1(a) is the growth factor, which we denote by D(a). We also define the growth rate
f ≡ d lnD/d ln a = −Ḡ1/F̄1, parameterising the linear growth of velocities. The higher order
kernels are computed order by order by using the Einstein-de Sitter (EdS) approximation,
i.e. they are calculated for a matter dominated Universe and then their time evolution is

6This approximation is likely to be slightly worse for this model than for ΛCDM, given that baryons are
not expected to interact with dark energy, implying we are slightly overestimating the effect of the additional
drag term. This is a small effect and only changes the effective value of the coupling. We leave a detailed
analysis for future work.

– 4 –



corrected by substituting the EdS growth factors by the linear growth factors computed in
the full wCDM interacting model. In particular, this implies, for n ≥ 2,

F̄n(k1, . . . ,kn, a) = DnFn(k1, . . . ,kn) , (2.13)
Ḡn(k1, . . . ,kn, a) = −fDnGn(k1, . . . ,kn) , (2.14)

with Fn and Gn being the time-independent EdS kernels [77]. This is a good approximation
given the scale-independent nature of the linear growth in this model. The approximation
has also been explicitly tested against the full solutions, and is found to be in sub-percent
agreement at the scales and redshifts of interest in this paper.

2.2 Dark matter power spectrum modelling

We study different models for the mildly non-linear scales that are based on perturbation
theory, which we construct here step-by-step. The first ingredient is the dark matter power
spectrum, whose first building blocks for all models under study are the standard perturbation
theory (SPT) 1-loop power spectra, given by

P 1−loop
ij (k; a) = Fij

[
D2PL(k) +D4P 22

ij (k) +D4P 13
ij (k)

]
, (2.15)

where i, j ∈ {δ,Θ} and Fδδ = 1, FδΘ = −f and FΘΘ = f2. PL denotes the power spectrum
of the initial density contrast and the remaining components are loop integrals over the EdS
kernels, which are given by

P 22
δδ (k) =

2

(2π)3

∫
d3qF2(k − q, q)2PL(|k − q|)PL(q), (2.16)

P 22
δΘ(k) =

2

(2π)3

∫
d3qF2(k − q, q)G2(k − q, q)PL(|k − q|)PL(q), (2.17)

P 22
ΘΘ(k) =

2

(2π)3

∫
d3qG2(k − q, q)2PL(|k − q|)PL(q), (2.18)

and

P 13
δδ (k) =

6

(2π)3

∫
d3qF3(k, q,−q)PL(q)PL(k), (2.19)

P 13
δΘ(k) =

3

(2π)3

∫
d3qG3(k, q,−q)PL(q)PL(k) + 3

∫
d3qF3(k, q,−q)PL(q)PL(k), (2.20)

P 13
ΘΘ(k) =

6

(2π)3

∫
d3qG3(k, q,−q)PL(|k − q|)PL(q). (2.21)

The validity of the 1-loop SPT power spectrum can be further extended in the non-linear
regime by adopting the EFTofLSS prescription. This formalism systematically accounts for
the impact of non-linearities on mildly non-linear scales via the introduction of effective
stresses in the equations of motion [40, 41]. This amounts to renormalising the fields under
consideration, such as δ and Θ, which results in the addition of counter-terms to the 1-loop
power spectrum:

PEFT
ij (k; a) = P 1−loop

ij (k; a)− 2D2cij(a)k2PL(k) , (2.22)
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with

cδδ(a) = c2|δ(a) ,

cδΘ(a) = −f
2

(c2|δ(a) + c2|Θ(a)) , (2.23)

cΘΘ(a) = f2c2|Θ(a) ,

where c2|δ and c2|Θ are the counter-terms used to renormalise the fields δ and Θ up to
O((k/kNL)2), kNL being the rough scale at which non-linearities become important.

2.3 Bias model

We consider a general bias expansion to relate the galaxy density field to the underlying dark
matter [78–80]:

δg = b1δ +
b2
2
δ2 + bγ2G2 + bΓ3Γ3 + b∇2δ∇2δ + ε, (2.24)

where b1 and b2 are the linear and quadratic bias, G2 and Γ3 are non-local operators, ∇2δ
is a higher derivative operator and ε is the stochastic contribution encoding deviations from
Poisson shot-noise. The latter contribution is uncorrelated with the other fields and we
approximate it to have a scale-independent power spectrum Pεε ≡ N , which is one of our
bias parameters. In this work we reduce the bias parameter space by setting bΓ3 to zero,
similarly to what was recently done in the re-analysis of BOSS data [43]. The higher derivative
contribution to the power spectrum given by b∇2δ should be important only for very biased
tracers [81], therefore we neglect it in our analysis. We also note that, for the EFTofLSS
models, its contribution is perfectly degenerate with the EFTofLSS counterterm. Those
models can therefore take into account also the b∇2δ contribution via a re-definition of the
c2|δ parameter. This results in the following power spectrum:

Pgg(k) = b21P
1−loop
δδ (k) +D4

[
2b1

(
b2 −

4

3
bγ2

)
Pb2,δ(k) + 4b1bγ2Pbs2,δ(k) +

32

45
b1bγ2σ

2
3(k)PL(k)

+

(
b2 −

4

3
bγ2

)2

Pb22(k) + 4

(
b2 −

4

3
bγ2

)
bγ2Pb2s2(k) + 4b2γ2Pbs22(k)

]
+N, (2.25)

PgΘ(k) = b1P
1−loop
δΘ (k)− fD4

[(
b2 −

4

3
bγ2

)
Pb2,Θ(k) + 2bγ2Pbs2,Θ(k)

+
16

45
bγ2σ

2
3(k)PL(k)

]
, (2.26)

in which the terms Pb... above are given by Eqs. (14) to (22) of [33]. The parameter space
can be further reduced by adopting the local-Lagrangian relation [82–85], given by

bγ2 = −2

7
(b1 − 1) , (2.27)

allowing us to write the real-space galaxy power spectrum as a function of only three time-
dependent bias parameters. We assume there is no velocity bias.

2.4 Redshift-space modelling

To model the redshift-space power spectrum of biased tracers, we make use of three different
models: the Taruya, Nishimici, Saito (TNS) model [39], and two EFT-based models: EFT-I,
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presented in [33] and based on the model of [86], and EFT-II, described in [87] and based on
the work of [88]. The TNS model adopts the local Lagrangian relation, Eq. (2.27), as does
the EFT-I model. The two EFTofLSS models share the same loop corrections, but adopt
different counterterms and prescriptions for the Fingers-of-God, which we describe in more
detail below.

The TNS power spectrum can be written as

PTNS(k, µ) =DFoG(µ2k2σ2
v)
[
Pgg(k)− 2µ2PgΘ(k) + µ4P 1−loop

ΘΘ (k)

+ b1A(k, µ) + b21B(k, µ) + C(k, µ)
]
, (2.28)

where µ = k̂ · n̂ is the cosine of the angle between the line of sight direction, n̂, and the
wave-vector, k. The terms A, B, C are redshift-space corrections from SPT, which are given
by Eqs. (11) to (13) of [33], with further details given in [39].

The key feature of this model is the overall factor DFoG, which encodes a phenomeno-
logical description of the Fingers-of-God (FoG) damping. This is a function of the velocity
dispersion, σv, which is taken to be a free parameter. We assume this function takes a
Lorentzian form so that

DFoG(k2µ2σ2
v) =

1

1 + (k2µ2σ2
v)/2

, (2.29)

which has been shown to be accurate at describing this effect [33]. Given this additional
parameter for the FoG damping, the full set of 4 nuisance parameters for this model is
{b1, b2, N, σv}.

The second model we study is based on the EFTofLSS and we name it EFT-I. The first
contribution is the full SPT power spectrum in redshift space, given by

PSPT(k, µ) =Pgg(k)− 2µ2PgΘ(k) + µ4P 1−loop
ΘΘ (k)

+ b1A(k, µ) + b21B(k, µ) + C(k, µ)−D4f2k2µ2σ̃2
v(b1 + fµ2)2PL(k) , (2.30)

with the SPT estimate for the velocity dispersion, σ̃v, given by

σ̃2
v =

1

6π2

∫
dqPL(q) . (2.31)

As was the case for the TNS model, this parameter and its corresponding term represent the
FoG damping, but in this case, it is fixed to the SPT prediction instead of being a model
parameter. Indeed, expanding Eq. (2.29) up to O(k2) reveals a very similar term to the last
term in Eq. (2.30), should one relate the two velocity dispersions via σ2

v = 2D2f2σ̃2
v .

We apply a re-summation procedure to model the non-linear damping of the BAO feature
in the power spectrum, following [86, 89]. We perform a decomposition of the linear power
spectrum between the smooth broadband (P nw) and wiggle (Pw) components as given by
Eq. (2.47) of [86], using the Eisenstein-Hu fitting function [90], and introduce a damping
factor

Σ̄2 =
1

2
[1 + f(f + 2)µ2]

D2

π2

1

q3
max − q3

min

∫ qmax

qmin

dqq2

∫ ∞
0

dkP nw
L (k) [1− j0(qk)] , (2.32)
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where j0 is the spherical Bessel function, qmax = (300 Mpc/h) and qmin = (10 Mpc/h), which
roughly delimit the region over which Pw is non-zero.

The re-summed next-to-leading order power spectrum is then given by

P re−sum
SPT = P nw

SPT + e−k
2Σ̄2

Pw
SPT +D2e−k

2Σ̄2
k2Σ̄2(b1 + fµ2)2Pw

L (k) . (2.33)

Finally, we add the EFTofLSS counter-terms encoding the effects of non-linearities,
which gives the final power spectrum for this model as

PEFT = P re−sum
SPT − 2D2PL(k)k2

[
c2
s,0 + c2

s,2µ
2 + c2

s,4µ
4 + µ6

(
f3c2

s,0 − f2c2
s,2 + fc2

s,4

) ]
, (2.34)

where the parameters c2
s,i are coefficients of an expansion in powers of µ2 and are combina-

tions of the EFTofLSS parameters of Eq. (2.23) with further parameters used to renormalize
composite operators required in redshift space. This set of 3 EFTofLSS parameters represents
a complete set of possible contributions at 1-loop order and up to order O((k/kNL)2). We do
not include stochastic counter-terms, as these are either degenerate with the stochastic term
included in the bias model or are effectively k4 contributions [86, 91], which we choose not to
include in this model. Given the above, this model has an additional 2 parameters than the
TNS model, resulting in a set of 6 nuisance parameters: {b1, b2, N, c2

s,0, c
2
s,2, c

2
s,4}.

The third and final model we consider is called here EFT-II and is the one described in
[43, 87], that assumes the Standard Perturbation Theory one-loop expression (see, e.g. [77])
with the addition of EFTofLSS counterterms. The loop corrections are computed from the
redshift-space kernels Z1(k), Z2(k1,k2), Z3(k1,k2,k3) (see [92] and Eq. (2.14) of [43] for a
derivation with the same bias basis we adopt). From these kernels, the redshift space galaxy
power spectrum at one-loop can be written as

Pgg(k) = Z2
1 (k)PL(k) + 2

∫
d3q [Z2(q,k − q)]2 PL(q)PL(|k − q|)

+ 6Z1(k)PL(k)

∫
d3qZ3(k, q,−q)PL(q) + Pctr(k) +N , (2.35)

where the loop integrals are computed over the IR-resummed linear power spectrum, defined
by the linear version of Eq. (2.33). The redshift-space loop corrections lead to 28 indepen-
dent integrals, which we compute using the Fast-PT algorithm [93, 94]. The EFTofLSS
counterterms for this model are

Pctr(k, µ) = −2c̃0k
2PL(k)− 2c̃2k

2fµ2PL(k)− 2c̃4k
2f2µ4PL(k) + Pctr,∇4δ(k, µ), (2.36)

with an additional counterterm proportional to µ4k4PL(k) to include higher-order contribu-
tions and model to some extent the FoG:

Pctr,∇4δ(k, µ) = c∇4δk
4f4µ4(b1 + fµ2)2PL(k). (2.37)

This model has therefore two more parameters than the EFT-I model, resulting in 8 nuisance
parameters: {b1, b2, bγ2 , N, c̃0, c̃2, c̃4, c∇4δ}.

To summarize, the main differences between the three models considered here are:
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• Perturbation theory prescription: The TNS model is based on standard perturba-
tion theory, while EFT-I and EFT-II are based on the EFTofLSS.

• Bias model: TNS and EFT-I assume the local Lagragian relation, Eq. (2.27), while the
EFT-II model does not. The simplest models therefore include 3 free bias parameters:
linear bias, b1, second-order bias, b2, and the amplitude of the stochastic noise spectrum,
N ; while the EFT-II model includes additionally the tidal bias, bγ2 .

• Fingers-of-God damping: TNS uses a phenomenological factor multiplying the entire
redshift-space power spectrum, EFT-I uses the 1-loop prediction from perturbation
theory and EFT-II uses an additional O(k4) counterterm for this purpose. The O(k2)
counterterms in both EFT models also somewhat contribute to the description of this
effect.

• Counterterms: TNS has no counterterms, both EFT models have 3 O(k2) countert-
erms, with EFT-I including contributions up to O(µ6), while EFT-II only going up to
O(µ4), but including an additional O(k4) counterterm.

All three models have been previously used in the literature in similar versions to the
ones described here. The TNS model has been used in the analysis of BOSS data [10, 28],
albeit using renormalised perturbation theory instead of SPT, without including the C term
and using a Gaussian prescription for the FoG damping, instead of the improved Lorentzian
one used here [33]. The EFT-I model has been used in [32, 33, 95], albeit using a partial
re-summation prescription. Both of these models were analysed in [96], with the TNS model
being similar to their SPT+Coevo model and the EFT-I model being similar to their EFT+Coevo
model. The EFT-II model has also been used to analyse the BOSS data in [43], as well as
in [42], but using a more comprehensive bias model, including higher order stochastic terms.
Those two versions of this model have been compared in [35] in a blinded challenge, which
showed good agreement and the ability of this model to accurately describe high precision
simulations.

3 MCMC analysis

We now present our MCMC analysis of the interacting dark energy model described in Sec-
tion 2. We compute forecasts for the the dark energy equation of state parameter, w, as well
as for the DM-DE interaction parameter, defined by

A ≡ ξ(1 + w) . (3.1)

We choose this combination of parameters instead of ξ as it more directly encodes the strength
of the effect of the interaction on the observables under consideration, as can be inferred from
Eq. (2.3).7 Indeed, it is possible to constrain this parameter even when w ≈ −1, whereas ξ
can take very large values in that scenario. Note that the two parameters of interest, w and
A, affect the evolution of the Universe in distinct ways, since w changes both the background
cosmology and the perturbations, whereas A can only affect the latter. It is this fact that
may allow this model to fit data very well and alleviate apparent cosmological tensions.

7A similar variable has been used in other interacting dark energy models in Ref. [97], for similar reasons.
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We base our forecasts on synthetic observations of the multipoles of the galaxy-galaxy
power spectrum in redshift space, defined as

P`(k) =
2`+ 1

2

∫ 1

−1
dµP (k, µ)P`(µ) , (3.2)

where P`(µ) are the Legendre polynomials of order ` and P (k, µ) is given by the theoretical
prediction from one of the models of Eq. (2.28), Eq. (2.34) or Eq. (2.35). In this analysis we
use the monopole (` = 0), quadrupole (` = 2) and hexadecapole (` = 4).

Our mock data is composed of four Parallel COmoving Lagrangian Acceleration (PI-
COLA) simulations [98, 99] of a ΛCDM cosmology with box length 1024 Mpc/h with 10243

dark matter particles evolved from initial redshift zini = 49. We use two snapshots at redshifts
z = 0.5 and z = 1. Given our focus on biased tracers, we use halo catalogs, built using the
friends-of-friends algorithm with a linking length of 0.2-times the mean particle separation.
We employ a mass cut of Mmin = 4× 1012 M�, chosen to fix the number density of halos to
nh = 10−3 h3/Mpc3. The combined volume of these simulations as well as the chosen number
density make this an appropriate set of mock data to approximate the properties of stage
IV surveys, such as Euclid and DESI [2, 3], for observations near the considered redshifts.
Measurements of the power spectrum multipoles from these simulations are made using the
distant observer approximation, and then averaged over three lines of sight as well as over
the four simulations. These are the same simulations used in the analysis of [32, 33].

Our ΛCDM simulations use the WMAP9 cosmology [100], with cosmological parameters
Ωm = 0.281, Ωb = 0.046, h = 0.697, ns = 0.971 and σ8(z = 0) = 0.844.8 Using these naturally
assumes fiducial values for the parameters of interest of w = −1 and A = 0 and allows us
to forecast the best constraints possible on these parameters should the true cosmology be
ΛCDM.

The main aim of this work is to produce accurate forecasts for the dark energy parame-
ters. This can only be done after a careful analysis of the modelling of the mildly non-linear
scales. Fortunately, our MCMC analysis allows us to do both. We will first test our modelling
via the TNS and EFTofLSS models presented above by measuring the bias in the measure-
ment of w or A with respect to the fiducial values of the simulations, since this is a clear
diagnostic of the accuracy of these models. This allows us to determine the maximum wave-
number, kmax, at which the models considered give sufficiently accurate descriptions of the
power spectrum multipoles. After this procedure, we are able to choose the most complete
model and the appropriate scales to include in order to obtain the best unbiased forecasts,
which will be our final result.

3.1 MCMC set-up

We now describe the set-up of our MCMC analysis. Our aim is to analyse the mock data at
redshifts z = 0.5 and z = 1 with the purpose of measuring the parameters of the interacting
dark energy model, w and A, leaving the nuisance parameters free to vary, but fixing the
other cosmological parameters to the simulation’s fiducial value.

8The reason for choosing this cosmology is due to the prompt availability of these simulations. We do not
expect that using a fiducial cosmology from a more recent survey would alter any of our results, given that
the changes in parameter values are relatively minor.
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We approximate the likelihood to be Gaussian and given by

− lnL ∝ χ2 =
∑

`,`′=0,2,4

k`,`
′

max∑
k=kmin

[
P dat
` (k)− Pmod

` (k)
]
Cov−1

`,`′(k)
[
P dat
`′ (k)− Pmod

`′ (k)
]
, (3.3)

where the minimum wave-number is kmin = 2π/Lbox = 0.006 h/Mpc and the maximum
wave-number considered is denoted as k`,`

′
max to make it explicit that it is multipole-dependent.

Here we take the same kmax for monopole and quadrupole, but assume different values for
the hexadecapole, as is done in real data analyses, such as those of the BOSS data (see, e.g.,
[10, 28, 42, 43]). We explore how the variation of both wave-numbers introduces a bias in the
best fit dark energy parameters with respect to the fiducial values. The covariance matrix,
Cov`,`′ , is calculated assuming the fluctuations to be Gaussian and based on the Kaiser power
spectrum calculated in the fiducial cosmology. In addition, we assume a number density of
n = 10−3 h3/Mpc3 and a survey volume of 4 Gpc3/h3 at both redshifts in the calculation of
the covariance matrix, matching the properties of our simulated data as well as those of stage
IV surveys.

Regarding priors, we place a positivity prior on the nuisance parameter σv of the TNS
model, as well as a prior on the dark energy parameters such that ξ = A/(1 + w) ≥ 0. This
is because the parameter ξ is the ratio of a cross section and a mass, both of which have to
be positive.

For each kmax, we perform a least-squares fit to find suitable parameter values to ini-
tialize the MCMC chains. This is repeated three times with random variations of the initial
conditions and the point with the smallest χ2 is chosen. MCMC chains are then run using
Goodman & Weare’s affine invariant sampler implemented in emcee [101]. We follow this
procedure for a range of k`=0,2

max ∈ [0.1, 0.3] h/Mpc and k`=4
max ∈ [0, k`=0,2

max ]9 to find the point at
which the bias on the dark energy parameters exceeds their standard deviation. We follow
a similar procedure to Refs. [37, 102, 103] and evaluate this via the so-called Figure-of-Bias
(FoB), defined as

FoB(θ) =
√

(θ̄ − θfid)TS−1(θ̄ − θfid) , (3.4)

where θ = [w,A] is a vector with the dark energy parameters, θ̄ is the mean of their posterior,
θfid = [−1, 0] is the fiducial parameter vector and S is the parameter covariance matrix,
calculated directly from the sampled posterior. This measure of bias is constructed from a re-
scaling of the 2D contours so that they are more symmetric and have a radius of order unity.
The FoB then measures how far from the centre of the contours the fiducial values are, in units
of their standard deviation. In particular, for an exactly Gaussian distribution, this re-scaling
is equivalent to the usual standardization and so the contours appear as an exact circle, and
the FoB would evaluate to 1.52 and 2.49 at the limits of the 68% and 95% confidence regions,
respectively, since these are the values obtained for a standardized 2D Gaussian. While our
posterior is not Gaussian, we will use these values to estimate the confidence intervals and
we set the threshold of acceptance of our modelling at the 68% confidence level.

In addition to this, we test the goodness of fit and quote the value of χ2/Ndof for the
best-fit point as a function of kmax, where the number of degrees of freedom, Ndof , is given

9We only explore the inclusion of scales for the hexadecapole that are larger than those included in the
monopole and quadrupole. This is because we expect the hexadecapole to be less well described by our
modelling than the lower order monopoles and therefore including a broader range of scales for it would only
bias results further. As we will see below, this is confirmed by our results.
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by
Ndof = Nk −Npar , (3.5)

with Nk the total number of k-bins, and Npar the effective number of free parameters in the
model. For the TNS model we always have Npar = 6, whereas for the EFTofLSS models, one
of the counterterms cannot be constrained unless the hexadecapole is included. Therefore, for
the analysis considering only the monopole and quadrupole, we have Npar = 7 for the EFT-I
model and Npar = 9 for the EFT-II model, whereas the analysis including all multipoles
has, respectively, Npar = 8 and Npar = 10. We use the expected standard deviation for the
normalized χ2 distribution (with mean equal to 1) given by σ =

√
2/Ndof to classify the

goodness of fit and set the threshold for acceptance at the 1σ level.
Finally, we aim to forecast the best constraints possible on the parameters of interest.

To quantify this, we use the figure-of-merit (FoM), given by

FoM(θ) =
1√

detS
. (3.6)

As shown in Figs. 1 and 3, we compute this also as a function of kmax in order to establish
the threshold after which no new information is gained from additional data.

3.2 Results

We show our results for the performance measures of the three models considered for z = 0.5
in Fig. 1. From these results, we can see that the different models have varying ranges of
validity, with EFT-I working well at small values of kmax, while TNS is the better model at
intermediate values and EFT-II having the largest reach, as well as figure-of-merit overall.
When we include only the monopole and quadrupole, the maximum values of k`=0,2

max for which
both the bias and the reduced chi-squared are within their 68% confidence intervals are given
in Table 1. While it is the model with the largest biases, the EFT-I model has a larger FoM

Model k`=0,2
max (h/Mpc)

TNS 0.22

EFT-I 0.18

EFT-II 0.27

Table 1. Maximum values of k`=0,2
max for which both the bias and the reduced chi-squared are within

their 68% confidence intervals, for each model for the analysis at z = 0.5.

than the TNS model for smaller k`=0,2
max . When selecting only the points for which the bias is

within the 68% confidence interval, the results are similar between the two models, reaching
a FoM of 8-10. The more complete EFT-II model can reach double that value, but at the
cost of degrading the quality of the fit. With a good fit, this model can reach FoM = 15.

It is clear from the plots for the monopole and quadrupole analysis (left panels of Fig. 1
and Fig. 3) that, as the bias increases beyond the 68% confidence level, the FoM begins
decreasing. This is due to a degeneracy between w and A that can be explained as follows.
In a wCDM cosmology, linear growth is enhanced for w < −1, since matter domination ends
later than in the corresponding ΛCDM cosmology, with the opposite happening for w > −1.
The additional effect of the interaction is to add (subtract) effective friction for A > 0 (A < 0)
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which decreases (increases) growth. Therefore, given that the sign of A is required to be the
same as the sign of (w + 1) these effects act in the same direction, and the effect of a very
negative w can be mimicked by a very negative A (and vice-versa). For this reason, these
two effects are hard to distinguish and lead to an enhancement of the uncertainty for cases in
which the posterior is sufficiently biased away from w = −1, A = 0. This can be clearly seen
in Fig. 5, in which the parameter bias is large. Similar effects have been previously found in
other interacting dark energy models [104, 105].
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Figure 1. Performance measures for all three models for z = 0.5. Left – neglecting the hexadecapole,
as a function of the maximum wave-number of the monopole and quadrupole. Right – including
the hexadecapole, as a function of its maximum wave-number, with the maximum wave-numbers for
monopole and quadrupole being kmax = 0.22 h/Mpc for the TNS model, kmax = 0.16 h/Mpc for EFT-I
and kmax = 0.25 h/Mpc for EFT-II. Confidence intervals shown for FoB are calculated from a two-
dimensional Gaussian distribution and occur at FoB = 1.52 and 2.49, for 68% and 95%, respectively.
Confidence intervals shown for the reduced-χ2 are estimated from the 1σ and 2σ distances away from
the mean, with σ =

√
2/Ndof resulting from the χ2 distribution. As Ndof varies with each model, we

chose to plot the broadest errors, corresponding to the EFT-II model for P0, P2 and to the EFT-I
model for P0, P2, P4.

Adding the hexadecapole, we see a marginal increase in the figure-of-merit for k`=4
max =

0.05 h/Mpc in the TNS model. For both EFT-based models, the hexadecapole only acts
to decrease the FoM, even though it does not bias the measurement substantially. The
maximum values of k`=4

max are quoted in Table 2. For the TNS model, the bias inverts sign

Model k`=0,2
max (h/Mpc) k`=4

max (h/Mpc)

TNS 0.22 0.10

EFT-I 0.16 0.16

EFT-II 0.25 0.25

Table 2. Maximum values of k`=4
max (with fixed k`=0,2

max ) for which both the bias and the reduced
chi-squared are within their 68% confidence intervals, for each model for the analysis at z = 0.5.
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after k`=4
max = 0.1 h/Mpc, as the hexadecapole data appears to prefer less growth than the

monopole and quadrupole data. It therefore appears to be possible to find less biased results
for k`=4

max = 0.14 h/Mpc, with a higher FoM. However, the price of this improvement is that the
fit is worsened substantially, with the reduced chi-squared deviating far beyond its expected
value due to the two types of data pushing the fit in different directions. That this phenomenon
occurs in the TNS model but not in the EFT-based models is a result of the existence of
the O(µ4) counterterm in the latter. This parameter is being used to fit the hexadecapole
data better and is unconstrained by the monopole and quadrupole. Additionally, it somewhat
alleviates the pressure on the cosmological parameters, hence pushing stronger biases to larger
k`=4

max in the EFT models. In the TNS model, there are also O(µ4) contributions from the DFoG

term, but these are constrained also by the monopole and quadrupole, since they depend on
the single parameter σv. Since it is clear that the modelling is failing for TNS at these larger
values of k`=4

max, we consider these settings unacceptable.
We show results for the posteriors of the dark energy parameters for all models at z = 0.5

in the triangle plot of Fig. 2 for the choices of kmax resulting in the tightest constraints and
acceptable bias. Their details are given in Table 3, in which we provide the FoM, the FoB as
well as the means of the parameters along with their forecasted 1σ errors. Note that, in these
and other contour plots, the 2D posterior for w −A is substantially non-Gaussian, given the
physical prior chosen for those parameters, i.e. sign(1 + w) = sign(A).

Model k`=0,2
max (h/Mpc) k`=4

max (h/Mpc) FoM FoB w A (b/GeV)

TNS 0.22 0.05 9.62 0.85 −1.047+0.068
−0.052 −1.1+1.6

−1.5

EFT-I 0.18 – 8.22 1.12 −1.064+0.074
−0.049 −1.4+1.6

−1.3

EFT-II 0.27 – 14.1 0.91 −1.039+0.059
−0.059 −0.9+1.2

−1.0

Table 3. Results for each model for the analysis at z = 0.5 for the best cases – obeying three
conditions: i) maximal figure-of-merit; ii) FoB within the 68% confidence interval range and iii)
χ2/Ndof within the 68% confidence interval range. An absent value for k`=4

max means the hexadecapole
is not included. The parameters w and A are presented as the mean and the limits of the 68%
confidence interval.

It is clear from all these results that the EFT-II model is the best at describing the small
scales at this redshift and is the one which allows for the retrieval of the most information
about the parameters of this dark energy model from the data, resulting in the forecasted
constraints below:

w = −1.039± 0.059 , A = −0.9+1.2
−1.0 b/GeV . (3.7)

For redshift z = 1, the results for the performance measures are shown in Fig. 3. This
case is similar to z = 0.5, having a smaller overall FoM. This is due to the fact that at
this redshift the effects of dark energy are smaller than at lower redshifts and the power
spectrum is therefore less sensitive to the parameters w and A. Still, since non-linearities are
not as developed at this higher redshift, there are slightly higher limiting values of kmax for
the monopole and quadrupole, which can be seen in Table 4. For the EFT-II model, it is
clear that the reach is likely to be larger than k`=0,2

max = 0.30 h/Mpc and our tests suggest a
maximum wave-number of k`=0,2

max = 0.35 h/Mpc. However, our PICOLA simulations are not
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Figure 2. Marginal posterior distributions for the dark energy parameters in all models for z = 0.5
in the best case scenarios of Table 3. The fact that the contour shows non-vanishing values for regions
forbidden by the prior (A > 0, w < −1 and A < 0, w > −1) is an artifact of the smoothing used for
plotting, as the MCMC samples no points in those regions.

Model k`=0,2
max (h/Mpc)

TNS 0.23

EFT-I 0.19

EFT-II >0.3

Table 4. Maximum values of k`=0,2
max for which both the bias and the reduced chi-squared are within

their 68% confidence intervals, for each model for the analysis at z = 1.

expected to be sufficiently accurate above k = 0.30 h/Mpc and we therefore prefer not to
trust those results. This is the reason we chose not to plot them in Fig. 3. Regardless of this,
the EFT-II model achieves a FoM of ∼ 10, considerably higher than the other two models,
which are again similar to each other when considering their best unbiased points.

Again here, when the hexadecapole is added, slight improvements of FoM are obtained
for k`=4

max ≤ 0.05 h/Mpc for the TNS model. For this model, including more hexadecapole
data either decreases the FoM or degrades the quality of the fit, similarly to the z = 0.5
case. For both EFT-based models, the hexadecapole does not add any new information, even
though it is still well described up to large values of k`=4

max, as can be seen in Table 5. We show
full contour plots showing the effect of the hexadecapole for all models in Figs. 7, 8 and 9 of
Appendix A.

The posteriors of the dark energy parameters, w and A for the analysis at z = 1 can
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Figure 3. Performance measures for all three models for z = 1. Left – neglecting the hexadecapole,
as a function of the maximum wave-number of the monopole and quadrupole. Right – including
the hexadecapole as a function of its maximum wave-number, with the maximum wave-numbers for
monopole and quadrupole being kmax = 0.22 h/Mpc for the TNS model, kmax = 0.19 h/Mpc for
EFT-I and kmax = 0.3 h/Mpc for EFT-II. Confidence intervals are computed in the way described in
Fig. 1.

Model k`=0,2
max (h/Mpc) k`=4

max (h/Mpc)

TNS 0.22 0.1

EFT-I 0.19 0.19

EFT-II 0.3 0.2

Table 5. Maximum values of k`=4
max for which both the bias and the reduced chi-squared are within

their 68% confidence intervals, for each model for the analysis at z = 1. The fixed values of k`=0,2
max are

also shown and are chosen to be the best points from the analysis of the monopole and quadrupole
for each model and therefore do not always correspond to those on Table 4, since the later can have
smaller FoM.

Model k`=0,2
max (h/Mpc) k`=4

max (h/Mpc) FoM FoB w A (b/GeV)

TNS 0.22 0.03 6.03 0.96 −1.065+0.085
−0.057 −1.6+2.0

−1.8

EFT-I 0.19 – 5.29 1.12 −1.075+0.082
−0.050 −1.9+2.0

−1.6

EFT-II 0.3 – 9.71 0.40 −1.022+0.070
−0.048 −0.0+1.7

−2.2

Table 6. Results for each model for the analysis at z = 1 for the best cases – obeying three conditions:
i) maximal figure-of-merit; ii) FoB within the 68% confidence interval range and iii) χ2/Ndof within
the 68% confidence interval range. An absent value for k`=4

max means the hexadecapole is not included.
The parameters w and A are presented as the mean and the limits of the 68% confidence interval.

be seen in the triangle plot in Fig. 4 for the choices of kmax leading to the best constraints
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in each model. Table 6 includes the detailed results for those scale choices. We can see once
again that the EFT-II model performs best in all regards, with the TNS model doing slightly
better than the EFT-I model. Our best marginalized forecasted errors at this redshift are,
therefore,

w = −1.022+0.070
−0.048 , A = −0.0+1.7

−2.2 b/GeV , (3.8)

which is slightly worse than our best results for z = 0.5.
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Figure 4. Marginal posterior distributions for the dark energy parameters in all models for z = 1 in
the best case scenarios of Table 6.

The results described so far can also be used to assess the error made if the chosen
value of kmax is outside the validity range of the model. This can be seen in Fig. 5, in which
we show the forecasts for all models for kmax = 0.3 h/Mpc. There it is clear that both the
TNS and the EFT-I models incur in substantial biases, which would lead to a false detection
of exotic dark energy effects. While the deviations from the expected values are greater for
z = 1, the uncertainties in the parameters are also larger in that case, which is why the
figure-of-bias is generically larger for z = 0.5, at which a stronger hint would be found for
the wrong cosmology. A similar false detection can also arise in the interacting dark energy
model studied in Ref. [106], albeit due to parameter degeneracies.

To better understand the reason behind the better performance of the EFT-II model,
we run an additional test with different assumptions on the set of nuisance parameters. In
this regard, there are two main differences between EFT-I and EFT-II. Firstly, the former
assumes the local-Lagrangian relation on bγ2 , Eq. (2.27), while the latter does not. Secondly,
EFT-II includes an additional counterterm: c∇4δ multiplying a term ∝ k4PL(k). To assess
the impact of these two extra parameters on the reach of the model we run four additional
MCMC chains at fixed k`=0,2

max = 0.25 h/Mpc and k`=4
max = 0.2 h/Mpc at z = 0.5, where EFT-II
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Figure 5. Marginal posterior distributions for the dark energy parameters in all models for z = 0.5
(left) and z = 1 (right) with k`=0,2

max = 0.3 h/Mpc for all models. The hexadecapole is not included.
Contrary to Figs. 2 and 4, here we include scales that are not accurately described by all models and
thus bias the measurement of the dark energy parameters.

still gives a good fit but the FoB for EFT-I is already outside the 2σ confidence level. We
adopt four different models:

• the baseline EFT-II, with bγ2 and c∇4δ free;

• a model with the local-Lagrangian relation bγ2(b1) and c∇4δ free;

• a model with c∇4δ = 0 and bγ2 free;

• a model with bγ2(b1) and c∇4δ = 0, more similar to EFT-I.

The results are shown in Fig. 6, where we plot the 2D contours for w −A marginalized
over the other nuisance parameters. In can be seen that all configurations other than the
baseline give biased results, similar to the ones shown in Fig. 5 for the EFT-I model, albeit
with smaller deviations from the fiducial values because of the lower kmax adopted for this
test. It is thus clear that keeping both bγ2 and c∇4δ as free parameters is key to increase the
validity range of the EFT-II model. Moreover, this suggests that including both parameters
in the EFT-I could extend its reach, making it similar to that of EFT-II. A full contour plot
with all parameters for the four settings considered is shown in Fig. 10 of Appendix A.

4 Conclusions

We have studied the predictions of the dark scattering model for the redshift-space power
spectrum of galaxies with the aim of forecasting the constraining power of stage-IV spectro-
scopic galaxy surveys for this model. We began by exploring different ways of modeling the
dark matter power spectrum, the galaxy bias and the redshift-space prescription, arriving
at three distinct models, which we labelled TNS, EFT-I and EFT-II. We then proceeded to
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Figure 6. Marginal posterior distributions for the dark energy parameters in the tested versions
of the EFT-II model for z = 0.5 with k`=0,2

max = 0.25 h/Mpc and k`=0,2
max = 0.2 h/Mpc. Filled green

contours: baseline EFT-II model, with c̃∇4δ anf bγ2 free, solid purple lines: model with c̃∇4δ = 0,
dashed red lines: model with the local-Lagrangian relation bγ2(b1), dot-dash blue lines: model with
c̃∇4δ = 0 and the local-Lagrangian relation.

compare them in terms of their ability to suitably extract the dark energy parameters, w
and A, without bias, before forecasting the uncertainties on those parameters achievable by
stage-IV surveys.

In order to achieve this, we performed an MCMC analysis, based on PICOLA simulations
of a ΛCDM cosmology at redshifts z = 0.5 and z = 1, with definitions mimicking DESI and
Euclid-like settings, respectively. We find that the model labelled as EFT-II performs better
than the other two models, as shown in Figs. 1 and 3, having both larger reach in the small
scales and extracting more information from the data, achieving a FoM approximately 50%
higher than the other models. This is the most complex model, with the largest number of
nuisance parameter (8), showing that for this particular analysis, complexity pays off. The
other two models, TNS and EFT-I perform similarly well to each other, but describe the
data accurately only up to smaller values of kmax, when compared to EFT-II. These models
therefore are not able to make optimal use of the range of data that will be available in
stage-IV surveys and generate weaker constraints on the parameters of interest. In addition,
using these models without taking their limitations into account can bias the measurement of
w and A by over 2σ, as seen in Fig. 5, possibly leading to false detection of interacting dark
energy. These biases due to the insufficient modelling of non-linearities are not particular of
exotic dark energy models and should also arise in any non-standard cosmology, as well as
with other probes, as exemplified by the work of [107] focusing on weak lensing. It is therefore
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crucial to validate the modelling of small scales to avoid false detections and fictitious tensions
appearing in future data analyses.

Similar analyses to this one had been performed, testing the reach of these models, such
as [32, 33, 95], comparing TNS and EFT-I. These works use the unbiased retrieval of the
growth rate, f , as a probe of the performance instead of the model parameters, w and A
used here. This choice is in effect a choice of the shape of the priors, as a flat prior on f
used in previous work is substantially different from the flat prior on w and A chosen here.
This is likely the natural choice of the model building community, which is more interested in
the details of fundamental parameters. We find similar results to [95] where TNS and EFT-I
were compared - that TNS does slightly better than EFT-I. In addition to that difference, we
do here a detailed comparison between EFT-II and the other two models, which had not yet
been done in the literature.

Having compared all three perturbation theory models, we then produced forecasts for
the dark energy parameters w and A. Contour plots with the forecasts in the best case
scenarios are shown in Fig. 2 for z = 0.5 and Fig. 4 for z = 1. For the best performing model,
the forecasted errors for the two parameters of interest are σw = 0.06, σA = 1.1 b/GeV for
the analysis at z = 0.5 and σw = 0.06, σA = 2 b/GeV for z = 1. These are the first detailed
forecasts for the interaction parameter, A, and show the power that stage-IV surveys will
have at constraining modifications to ΛCDM.
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A Full contours

In this appendix we show full contour plots, including all nuisance parameters for each model.
In Figs. 7, 8 and 9, we demonstrate the effect of the hexadecapole for TNS, EFT-I and EFT-II,
respectively. For TNS the effect is subtle as we only include scales up to k`=4

max = 0.05 h/Mpc,
but for the EFT-based models this small addition of hexadecapole data is sufficient break
the degeneracy between the EFT counterterms. As mentioned in the main text, this is
due to the existence of one combination of the three O(k2) counterterms that can only be
measured by the hexadecapole. It is this freedom that causes the EFT-based models to have
less biased results when adding hexadecapole data, but also what makes this additional data
uninformative in what concerns the other nuisance parameters, as it is only used to measure
this combination of counterterms.

Finally, in Fig. 10, we show the full contours for the different versions of the EFT-II
model, used to investigate the differences with EFT-I. As concluded in the main text, this
test shows that all free parameters used in the baseline EFT-II model are essential to its
success.
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