
Citation: Wu, H.; Cheng, S.; Xin, K.;

Ma, N.; Chen, J.; Tao, L.; Gao, M.

Water Quality Prediction Based on

Multi-Task Learning. Int. J. Environ.

Res. Public Health 2022, 19, 9699.

https://doi.org/10.3390/

ijerph19159699

Received: 30 June 2022

Accepted: 3 August 2022

Published: 6 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Water Quality Prediction Based on Multi-Task Learning
Huan Wu 1,2 , Shuiping Cheng 1,* , Kunlun Xin 1, Nian Ma 2,3, Jie Chen 2,4, Liang Tao 2 and Min Gao 5

1 College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2 T.Y.Lin International Engineering Consulting (China) Co., Ltd., Chongqing 401121, China
3 Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
4 College of Environment and Ecology, Chongqing University, Chongqing 400030, China
5 School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China
* Correspondence: shpcheng@tongji.edu.cn

Abstract: Water pollution seriously endangers people’s lives and restricts the sustainable develop-
ment of the economy. Water quality prediction is essential for early warning and prevention of
water pollution. However, the nonlinear characteristics of water quality data make it challenging
to accurately predicted by traditional methods. Recently, the methods based on deep learning can
better deal with nonlinear characteristics, which improves the prediction performance. Still, they
rarely consider the relationship between multiple prediction indicators of water quality. The rela-
tionship between multiple indicators is crucial for the prediction because they can provide more
associated auxiliary information. To this end, we propose a prediction method based on exploring the
correlation of water quality multi-indicator prediction tasks in this paper. We explore four sharing
structures for the multi-indicator prediction to train the deep neural network models for constructing
the highly complex nonlinear characteristics of water quality data. Experiments on the datasets of
more than 120 water quality monitoring sites in China show that the proposed models outperform
the state-of-the-art baselines.

Keywords: multi-task learning; water quality prediction; multiple indicator prediction

1. Introduction

The excessive exploitation and utilization of water resources have caused a series
of problems, such as deterioration of water quality, damage to water functional areas,
and degradation of river ecosystem structures, which seriously endanger the social and
economic development and the safety of people. Water quality prediction is essential for
water pollution prevention and treatment, which can help fully understand the dynamic
trend of the surface water ecological environment and warn of possible pollution incidents.

However, it is difficult to predict water quality because of the nonlinear characteristics
of water-related data [1]. Traditional statistical analysis methods lack nonlinear approxi-
mation and self-learning abilities and cannot fully consider the complex impact of various
environmental factors. With the rapid development of machine learning technology, schol-
ars have begun to explore water quality prediction based on machine learning. They have
achieved better water quality prediction performance by establishing nonlinear learning
cognitive models from historical data, summarizing and discovering knowledge, and pre-
dicting system behavior. Olyaie et al. (2017) applied linear genetic programming and a
support vector machine (SVM) to predict dissolved oxygen (DO) in the Delaware River in
Trenton, USA [2]. Li et al. (2017) proposed a method that combines ensemble empirical
mode decomposition (EEMD) [3–5] and least-squares SVR (support vector regression) to
predict DO concentration [6]. Leong et al. (2021) applied SVM [7–9] and least squares
support vector models to the Perak River in Malaysia [10]. The performance of these
methods depends not only on the models but also on the features selected for training.
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More and more researchers have recently applied deep learning methods to water
quality prediction because deep learning (DL) [11,12] can efficiently train and abstract
multi-level features of multi-dimensional training data. Banejad et al. (2011) applied a
basic neural network to predict biochemical oxygen demand (BOD) and DO of the Morad
River in Iran [13]. They verified that the deep learning technology can reliably, efficiently,
and accurately extract the nonlinear characteristics of water quality data. Subsequently,
Heddam et al. (2014, 2016) and Liu et al. (2020) successively proposed models based on
GRNN (generalized regression neural network) and MLP (multilayer perceptron), which
were applied to different rivers in the United States and lakes in China [14–16]. Zhou et al.
(2019) proposed a deep cascade forest (DCF) that uses several random forests based on en-
semble learning, performing well on large and even small-scale data [17]. Wang et al. (2019)
proposed a hybrid CNN-LSTM (convolutional neural network- long short-term memory)
deep learning algorithm for a dynamic chemical oxygen demand (COD) prediction model
of urban sewage [18]. Zou et al. (2020) proposed a water quality prediction method based
on the Bi-LSTM (Bidirectional LSTM) model with multiple time scales [19]. Niu et al. (2021)
also developed a pixel-based deep neural network regression model and a patch-based
deep neural network regression model, to estimate seven optically inactive water quality
parameters [20]. Yang et al. (2021) proposed a mixed model named CNN-LSTM with
Attention (CLA), combining CNN, LSTM, and Attention mechanisms to predict water
quality [21]. Guo et al. (2022) use progressively decreasing deep neural network and
multimodal deep learning (MDL) models without well-handled input features, to estimate
long-term water indicators and explore the contribution of each feature by quantifying [22].

However, these models are constructed to optimize a single prediction indicator such
as the potential of hydrogen (pH), dissolved oxygen (DO), chemical oxygen demand-Mn
(CODMn), and Ammonia Nitrogen (NH3-N, NHN for short), etc., which cannot guarantee
the high efficiency and accuracy of the models in predicting other water quality indica-
tors. The correlation between multiple prediction indicators can provide more correlation
auxiliary information, which helps improve the prediction performance. To this end, we
propose a water quality prediction model based on multi-task learning by learning the
highly complex nonlinear characteristics of time series data and exploring the correlation
of multi-indicator prediction.

The main contributions of this paper are as follows:
(1) We propose a multi-indicator prediction model of surface water quality based on

deep learning, which excavates the highly complex nonlinear characteristics of surface
water ecological environment water quality data and explores the correlation of multiple
water quality prediction indicators.

(2) We propose four water quality prediction frameworks, named hard parameter
sharing structure (Multi-Task-Hard), soft parameter sharing structure (Multi-Task-Soft),
gated parameter sharing structure (Multi-Task-Gate), and gated hidden parameters sharing
structure (Multi-Task-GH), based on different multi-task learning structures and combine
the frameworks with various mainstream deep learning models to form different water
quality prediction models.

(3) We conducted experiments to predict four water quality indicators, including pH,
DO, CODMn, and NH3-N, on real data from more than 120 water quality monitoring sites
in seven river systems and lakes in China. The experimental results demonstrate that
the proposed water quality multi-task learning prediction framework outperforms the
state-of-the-art single-indicator prediction models.

2. Methodology

The existing deep learning-based water quality prediction models rarely consider
the relationship between multiple indicators of water quality. The relationship between
multiple indicators is crucial for the prediction because they can provide more associated
auxiliary information. To this end, we propose a prediction method based on exploring the
correlation of water quality multi-indicator prediction tasks in this section. We first define
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the water quality prediction and explore four sharing structures for the multi-indictor
prediction to train the deep neural network models for constructing the highly complex
nonlinear characteristics of water quality data.

2.1. Definition of Water Quality Prediction

Following previous work [19,23,24], we choose four water quality indicators, including
pH, DO, CODMn, and NH3-N, as our prediction targets. Compared with other indicators,
these indicators can predict that six water quality levels perform significantly better, reflect-
ing the water quality better [23].

The water quality prediction is a time series prediction. We give the mathematical
definitions for single-task prediction and multi-task prediction.

Single-task water quality prediction: X → Y . Given water quality prediction indi-
cators at known past times (x1, . . . , xi) ∈ X, analyze the change patterns and predict the
water quality indicator at the future time interval [11], denoted as yi+1 ∈ Y.

Multi-task water quality prediction: (X1, . . . , XN)→ (Y1, . . . , YN) . Given N water qual-
ity prediction indicators of the past i times {(x11, . . . , xi1) , . . . , (x1N , . . . , xiN)} ∈ (X1, . . . , XN),
analyze the change patterns of N indicators at the same time, and predict multiple water
quality indicators at the future time interval, denoted as (y1, . . . , yN) ∈ (Y1, . . . , YN).

For the four common water quality prediction indicators, pH, CODMn, DO, and NH3-N,
the multi-task water quality prediction task can be defined as, given the numerical changes
of pH, DO, CODMn, NH3-N at the past i time intervals

{
(xpH1, . . . , xpHi), (xDO1, . . . , xDOi) ,

(xCOD1, . . . , xCODi), (xNHN1, . . . , xNHNi)} ∈ (XpH , XCO, XCOD, XNHN), analyze the change
patterns and predict the corresponding water quality indicators at the future time interval,
denoted as

(
ypH , yDO, yCOD, yNHN

)
∈
(
YpH , YDO, YCOD, YNHN

)
.

2.2. Architecture of Water Quality Prediction Model Based on Multi-Task Learning

Frameworks for multi-task learning are often based on sharing the same bottom
structure [25–27]. The model of multiple tasks can be transformed into a basic bottom
model and multiple separate models. For single-task learning, the input and output of
each task correspond to a separate model, and new models need to be built for new tasks,
although the structure of the models is sometimes the same. For multi-task learning, the
common structure of the model is unified into a basic model. Then, several separate
models are introduced to realize the learning of multiple different tasks. Figure 1 is a
basic framework for multi-task learning, in which the blue part represents the shared
parameter layer, and the orange and yellow parts represent models for different tasks
forming the tower layer. This framework structure saves the parameter space of multiple
water quality prediction models and reduces the risk of over-fitting. We propose a multi-
task learning framework for water quality prediction based on different structures [28,29].
The framework can be developed into four forms: hard parameter sharing structure (Multi-
Task-Hard), soft parameter sharing structure (Multi-Task-Soft), gated parameter sharing
structure (Multi-Task-Gate), and gated hidden parameters sharing structure (Multi-Task-
GH). The differences between the four structures are described in detail in Section 2.3.
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2.3. Multi-Task Learning Structures
2.3.1. Hard Parameter Sharing Structure of Multi-Indicator Water Quality Prediction
(Multi-Task-Hard)

The hard parameter sharing structure is the basic structure of the shared bottom
structure in multi-task learning. As shown in Figure 2, it is mainly divided into four parts.
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The first part is the input layer (X1, . . . , XN), which contains the time sequence infor-
mation of each water quality indicator at the past time intervals.

The second part is the shared parameter layer, which is designed as a fully connected
layer. This part takes the information transmitted by the input layer and extracts a shared
implicit vector outshared.

The third part is the tower layer, which is carefully designed for a task and will output
the prediction results required by the corresponding task, which reflects the flexibility of
the multi-task learning framework. The output of the second layer will be transmitted to
the tower layer for different tasks simultaneously. Because of the differences between the
indicators, it is necessary to design specific models for different water quality indicators in
this layer. To put it simply, one task corresponds to one tower.

The fourth part is the output layer, which contains the outputs: YpH , YDO, YCOD, YNHN
as the prediction.

The algorithm is shown in Algorithm 1, and the MLP is selected for processing in the
shared layer.

Algorithm 1: Multi-indicator water quality prediction based on hard parameter sharing
multi-task learning

Input: water quality prediction indicators at the past time intervals (X1, . . . , XN)
1 : outshared ← MLP([X1, . . . , XN ])
2 : (Y1, . . . , YN)← Tower1,...,N(outshared)
Output: water quality indicators at the future time intervals (Y1, . . . , YN)

We introduce the specific structure of the hard parameter sharing structure with pH,
DO, CODMn, and NH3-N as the prediction target. As shown in Figure 2, all indicators
from the input layer to the shared parameter layer have the same structure. Take the pH
value part as an example. We input data (pH1, . . . , pHt−1) in the input layer, which will
be transmitted to the shared parameter layer and converted into the output vector by the
fully connected neural network. Similarly, the inputs of DO, CODMn, and NH3-N will
also be converted to output vectors outDO, outCOD, outNHN accordingly. The equation is as
Equation (1). All input data will be dealt with by MLP and ReLU (rectified linear unit).

outpH = ReLU(MLP(pH1, . . . pHt−1))
outDO = ReLU(MLP(DO1, . . . DOt−1))

outCOD = ReLU(MLP(CODMn1, . . . CODMnt−1))
outNHN = ReLU(MLP(NHN1, . . . NHNt−1))

(1)
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where ReLU is a nonlinear function used to add nonlinearity to the model. Compared
with sigmoid, ReLU can effectively alleviate the problems of gradient disappearance and
gradient explosion in deep neural networks. The formula of ReLU is shown in Equation (2):

ReLU(x) =
{

x, i f x > 0
0, i f x ≤ 0

(2)

We use the multilayer perceptron (MLP) to extract the deeply hidden features of the
water quality time series. MLP can simply and efficiently represent the global features of
time series, which helps the subsequent tower layer extract the deep local features for dif-
ferent water quality indicators. The formulation of MLP is shown in Equations (3) and (4),
where x denotes the input, W denotes the weight matrix wi, b denotes the bias term, and y
denotes the final output.

z =
n

∑
i=1

wixi + b (3)

y = ReLU(z) (4)

The MLP model consists of three parts: input layer, hidden layer, and output layer.
The number of hidden layers in the MLP can be adjusted as a hyperparameter. The number
of neurons in the output layer is the number of the water quality prediction indicators. We
train the MLP model with the BP (Back Propagation) algorithm, whose loss propagates
back from the top layer to the bottom layer.

The last layer of the network is the output layer, and the loss function is defined as
Equation (5), where Ln represents all neurons of the layer, y(j)

n represents the output of the
j-th neuron, t denotes the predicted value corresponding to ( ˆpHt, D̂Ot, ̂CODMnt, N̂HNt),
and y denotes the real value corresponding to (pHt, DOt, CODMnt, NHNt).

Loss =
1
2 ∑

j∈Ln

(t(j) − y(j)
n )

2
(5)

The variables w and b are obtained by gradient descent to minimize the loss function,
we show Equations (6)–(8) below to show the calculation of w and b’s gradient:

∂Loss

∂w(ji)
l

=
∂Loss

∂y(j)
l

∂y(j)
l

∂w(ji)
l

=
∂Loss

∂y(j)
l

∂y(j)
l

∂z(j)
l

∂z(j)
l

∂w(ji)
l

= δ
(j)
l y(i)l−1 (6)

∂Loss

∂b(j)
l

=
∂Loss

∂y(j)
l

∂y(j)
l

∂b(j)
l

=
∂Loss

∂y(j)
l

∂y(j)
l

∂z(j)
l

∂z(j)
l

∂b(j)
l

= δ
(j)
l (7)

δ
(j)
l =

∂Loss

∂y(j)
l

f ′(z(j)
l ) = f ′(z(j)

l ) ∑
k∈Ll+1

δk
l+1w(kj)

l+1 (8)

Wl ←Wl − η
∂Loss
∂Wl

= Wl − ηδlyT
l−1 (9)

bl ← bl − η
∂Loss

∂b
= bl − η δl (10)

outshared = concat
(
outpH , outDO, outCOD, outNHN

)
(11)

p̂Ht = ReLU(MLPpH(outshared)),
D̂Ot = ReLU(MLPDO(outshared)),

̂CODMnt = ReLU(MLPCOD(outshared)),
N̂HNt = ReLU(MLPNHN(outshared)).

(12)
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Loss =

√√√√ 1
N

N

∑
i=1

(
pHti − p̂Hti

)2
+
(

DOti − D̂Oti

)2
+
(

CODti − ĈODti

)2
+
(

NHNti − N̂HNti

)2
(13)

The parameters update formulas of each layer are expressed in matrix forms, as shown
in Equations (9) and (10):

The well-trained model consists of updated w and b finally, and the output of Equation (1)
can be obtained. Concatenating the four output vectors of Equation (1) to obtain, as shown
in Equation (11), we can obtain the outshared.

outshared is the input of different tower layers (pH, DO, CODMn, and NH3-N corre-
spond to different towers) to generate corresponding prediction. Due to the different
prediction targets, the tower layer structure can be different. Although the input outshared is
the same for all towers, the output of each tower layer is different. The formulas are shown
in Equation (12):

Finally, the Root Mean Square Error (RMSE) between the predicted values
( p̂Ht, D̂Ot, ̂CODMnt, N̂HNt) and the real values (pHt, DOt, CODMnt, NHNt) is calcu-
lated as the loss (see Equation (13)), where N is the number of samples. The loss is
backpropagated to update the model parameters until the model converges.

All tasks share a shared parameter layer in the hard parameter sharing structure, and
different tower layers are built for different tasks. Such structure reduces the complexity
of the model structure and parameters. It ensures the model’s flexibility since the model
is required to learn a general implicit embedding in the sharing layer to make each task
perform better, thus reducing the risk of overfitting.

2.3.2. Soft Parameter Sharing Structure of Multi-Indicator Water Quality Prediction
(Multi-Task-Soft)

The shared parameter layer of Multi-Task-Hard cannot reflect the relationship between
different tasks well and cannot guarantee the stable performance of the model. Therefore,
we propose a soft parameter sharing structure-based multi-indicator water quality predic-
tion (Multi-Task-Soft), which is based on Multi-Task-Hard. In the Multi-Task-Soft, data will
be input to modules of different tasks to extract different features. Different tasks jointly
maintain an implicit vector to learn the correlation between different indicators.

The architecture of Multi-Task-Soft is similar to that of the Multi-Task-Hard, as shown
in Figure 3, which is also composed of four parts. Their main difference is the design of
the shared parameter layer. Different from the single parameter sharing layer of Multi-
Task-Hard, Multi-Task-Soft inputs the data to modules of different tasks to obtain different
outputs. The structure also maintains an implicit vector to learn the correlation between
different indicators. The implicit vector is merged with the outputs corresponding to the
underlying structures of each task, and the merged results are input to the tower layer.
Finally, each tower model will output the prediction results required by the corresponding
task. The model process is shown in Algorithm 2.
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Algorithm 2: Multi-indicator water quality prediction based on soft parameter sharing
multi-task learning

Input: water quality prediction indicators at the past time intervals (X1, . . . , XN)
1 : hiddenshared ← MLPhidden([X1, . . . , XN ])
2 : (out1, . . . , outn)← MLP1,...,n(X1, . . . , XN)
3 : (Y1, . . . , Yn)← Tow1,...,n([out1,...,n, outshared])
Output: water quality indicators at the future time intervals (Y1, . . . , YN)

Input (pH1, . . . , pHt−1) ∈ XpH , (DO1, . . . , DOt−1) ∈ XDO,
(
CODMn1 , . . . , CODMnt−1

)
∈ XCOD, and (NHN1, . . . , HNHt−1) ∈ XNHN to the model. The data is passed through
the fully connected neural network (as shown in Equation (1)) to obtain the output vectors
(outpH , outDO, outCOD, outNHN), respectively.

Meanwhile, (XpH , XDO, XCOD, XNHN) is also used as the input of another fully con-
nected neural network to obtain the output vector hiddenshared, as shown in Equation (14):

hiddenshared = ReLU(MLP(XpH , XDO, XCOD, XNHN)). (14)

Concatenate output vectors and hiddenshared to obtain corresponding vectors vpH , vDO,
vCOD, vNHN .

vpH = concat
(
outpH , hiddenshared

)
,

vDO = concat(outDO, hiddenshared),
vCOD = concat(outCOD, hiddenshared),
vNHN = concat(outNHN , hiddenshared).

(15)

Then, we input the vectors to the corresponding tower layer. Similar to Multi-Task-
Hard, pH, DO, CODMn, and NH3-N correspond to different towers, and the tower layer
can be any neural network structure model. For different prediction indicators, the tower
layer structure is different, which makes the corresponding output different. Taking MLP
as an example, the predictions are shown as Equation (16):

p̂Ht = ReLU(MLPpH(vpH)),
D̂Ot = ReLU(MLPDO(vDO)),

ĈODt = ReLU(MLPCOD(vCOD)),
N̂HNt = ReLU(MLPNHN(vNHN)).

(16)

Finally, the RMSE between the predicted and real values is calculated as the loss, and the
model parameters are updated by the backpropagation method until the model converges.

In this structure, the association between different indicators is obtained by learning an
implicit public vector, and each task has its unique learning module. Finally, the individual
learning and joint learning results are merged to achieve better prediction results.

2.3.3. Gating Parameter Sharing Structure of Multi-Indicator Water Quality Prediction
(Multi-Task-Gate)

To better learn the relative weight of different indicators for the task, we further add
the gating module in the parameter sharing layer. As shown in Figure 4, the input is
processed by different modules to obtain different implicit features. The implicit features
obtain the weight of the current task through SoftMax. According to the weight, different
implicit vectors are weighted and summed to obtain the tower layer input of each task.
Finally, each tower model outputs the prediction results of the corresponding task. The
model process is shown as Algorithm 3.
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The design of the shared parameter layer is similar to Multi-Task-Hard, and the
data (pH1, . . . , pHt−1) ∈ XpH , (DO1, . . . , DOt−1) ∈ XDO, (CODMn1 , . . . , CODMnt−1) ∈
XCOD, (NHN1, . . . , HNHt−1) ∈ XNHN is input separately to the fully connected neural net-
work of the shared parameter layer to obtain the output vectors outpH , outDO, outCOD, outNHN ,
respectively. It is shown as Equation (1).

Unlike Multi-Task-Hard, the module calculates the importance of different output
vectors to predict the pH instead of concatenating them and feeding them to the tower
layer. Taking the prediction of pH as an example, we obtain the relative weights of different
indicators in the prediction of pH through softmax. Softmax can map relative weights
(wpH , wDO, wCOD, wNHN) from 0 to 1. The relative weights show the corresponding results
of different indicators, as shown in Equation (17):

(wpH , wDO, wCOD, wNHN)= softmax
(

MLPph
(
outpH , outDO, outCOD, outNHN

)
. (17)

Meanwhile, the output vectors (outpH , outDO, outCOD, outNHN) are mapped through
an MLP to

(
hiddenpH , hiddenDO, hiddenCOD, hiddenNHN

)
, as shown in Equation (18):

hiddenpH , hiddenDO, hiddenCOD, hiddenNHN = MLPhidden
(
outpH , outDO, outCOD, outNHN

)
. (18)

The vector input of the tower layer is obtained by weighted fusion, as shown in
Equation (19):

vpH = WpH × hiddenpH + WCOD × hiddenCOD + WDO × hiddenDO+
WNHN × hiddenNHN .

(19)

Similarly, the tower layers of DO, CODMn, and NH3-N also obtain the corresponding
inputs, and the tower layers are designed as MLP. For different prediction indicators, the
tower layer structure and output can be different. Taking MLP as an example, the formula
is shown as Equation (16) in Section 2.3.2.

Finally, the RMSE between the predicted value and the real value is calculated as
the loss, and the model parameters are updated by the backpropagation method until the
model converges.

The gating parameter sharing structure does not learn the implicit vectors to extract the
connection between tasks but learns the importance and connection of different indicators rel-
ative to a single task through the gating mechanism, which improves prediction performance.
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Algorithm 3: Multi-task Learning of Gating Parameter Sharing Structure for Multi-indicator
Water Quality Prediction

Input: water quality prediction indicators at the past time intervals (X1, . . . , XN)
1 : (hidden1, . . . , hiddenn)← MLP1,...,n([X1, . . . , XN ])
2 : (wi1, . . . , win) ∈Wi ← Softmax(MLPi

shared(hidden1, . . . , hiddenn))
3 : (Y1, . . . , Yn)← Towi([∑n

i Wi × hiddeni])
Output: water quality indicators at the future time intervals (Y1, . . . , YN)

2.3.4. Gated Hidden Parameter Sharing Structure of Multi-Indicator Water Quality
Prediction (Multi-Task-GH)

This section proposes a multi-task learning structure, which combines the advantages
of the soft parameter sharing structure and the gated parameter sharing structure. As
shown in Figure 5, the structure of the gated hidden parameter sharing structure (Multi-
Task-GH) is similar to the Multi-Task-Gate, except that there is a model for learning an
intermediate hidden vector in the parameter sharing layer. This intermediate implicit
vector is similar to the Multi-Task-Soft design, which is combined with all other implicit
vectors. The output results will be input to the tower layer through the gating mechanism.
Finally, each tower model outputs the prediction results of the corresponding task. The
model algorithm process is shown in Algorithm 4. Figure 6 shows an example of the kind
of time series for each indicator.
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Algorithm 4: Gated Hidden Parameter Sharing Structure Multi-Task Learning for Multi-indicator
Water Quality Prediction

Input: water quality prediction indicators at the past time intervals (X1, . . . , XN)
1 : hiddenshared ← MLPhidden([X1, . . . , XN ])
2 : (out1, . . . , outn)← MLP1,...,n(X1, . . . , XN)
3 : (wi1, . . . , win) ∈Wi ← Softmax(MLPi

shared([outi, hiddenshared]))
4 : (Y1, . . . , Yn)← Towi([∑n

i Wi ∗ [outi, hiddenshared]])
Output: water quality indicators at the future time intervals (Y1, . . . , YN)

The design of the shared parameter layer is similar to Multi-Task-Soft, and data
is input separately to the input layer: (pH1, . . . , pHt−1) ∈ XpH , (DO1, . . . , DOt−1) ∈
XDO, (CODMn1 , . . . , CODMnt−1) ∈ XCOD, and (NHN1, . . . , HNHt−1) ∈ XNHN . The data
is passed to MLP of the shared parameter layer to obtain the output vectors, respectively. It
is shown in Equation (1).

We then input (XpH , XDO, XCOD, XNHN) to another implicit vector MLP to obtain the
output vector hiddenshared. As shown in Equation (20):

hiddenshared = ReLU
(
MLP

(
XpH , XDO, XCOD, XNHN

))
(20)

Unlike Multi-Task-Soft, the module calculates the importance of different vectors
outpH , outDO, outcod and outnhn for the prediction target together with hiddenshared, respec-
tively. The relative weight of the predicted target is obtained through Softmax, as shown in
Equation (21):

(wpH , whidden)= Softmax
(
MLPpH

(
outpH , hiddenshared

))
,

(wDO, whidden)= Softmax (MLPDO(outDO, hiddenshared)),
(wCOD, whidden)= Softmax (MLPCOD(outCOD, hiddenshared)),
(wNHN , whidden)= Softmax (MLPNHN(outNHN , hiddenshared)).

(21)

Meanwhile, the output vectors are mapped through a fully connected neural network
to (hiddenpH , hiddenDO, hiddenCOD, hiddenNHN):

hiddenpH = ReLU
(
MLPhidden

(
outpH , hiddenshared

))
,

hiddenDO = ReLU(MLPhidden(outDO, hiddenshared)),
hiddenCOD= ReLU(MLPhidden(outCOD, hiddenshared)),

hiddenNHN = ReLU(MLPhidden(outNHN , hiddenshared)).

(22)

The vector input of the tower layer is obtained by weighted fusion:

vpH = WpH × hiddenpH + Whidden × hiddenpH ,
vDO = WDO × hiddenDO + Whidden × hiddenDO,

vCOD = WCOD × hiddenCOD + Whidden × hiddenCOD,
vNHN = WNHN × hiddenNHN + Whidden × hiddenNHN .

(23)

We then input vDO, vCOD and vNHN into the corresponding tower layers. For different
prediction indicators, the tower layer structure and output are different. Taking MLP as
an example, the formula is shown as Equation (16) in Section 2.3.2. Finally, the RMSE
between the predicted and real values is calculated as the loss, and the model parameters
are updated by the backpropagation method until the model converges.

2.3.5. Summary of Four Water Quality Prediction Models

The structure of the proposed four water quality prediction models is summarized in
Table 1. The input layer and output are not listed in the table due to their similarity and
simplicity. For more details, please refer to Appendix A.
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Table 1. The structure of the proposed four water quality prediction models.

Name Layer Design

Mt-Hard

Shared parameter layer 1 × (MLP + Relu)

Tower layer

pH: 3 × (MLP + ReLU)
DO: 3 × (MLP + ReLU)

CODMn: 2 × (MLP + ReLU)
NH3-N: 2 × (MLP + ReLU)

Mt-Soft

Shared parameter layer pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU)
Hidden: 2 × (MLP + ReLU)

Tower layer

pH: 3 × (MLP + ReLU)
DO: 3 × (MLP + ReLU)

CODMn: 2 × (MLP + ReLU)
NH3-N: 2 × (MLP + ReLU)

Mt-Gate

Shared parameter layer pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU)

Tower layer

pH: Softmax + 3 × (MLP + ReLU)
DO: Softmax + 3 × (MLP + ReLU)

CODMn: Softmax + 2 × (MLP + ReLU)
NH3-N: Softmax + 2 × (MLP + ReLU)

Mt-GH

Shared parameter layer pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU)
Hidden: 2 × (MLP + ReLU)

Tower layer

pH: Softmax + 3 × (MLP + ReLU)
DO: Softmax + 3 × (MLP + ReLU)

CODMn: Softmax + 2 × (MLP + ReLU)
NH3-N: Softmax + 2 × (MLP + ReLU)

3. Experiment Setup

This section introduces the datasets, evaluation metrics, baseline models, and model
settings for the evaluation.

3.1. Datasets

The experiment datasets come from 147 water quality monitoring stations set up by
China National Environmental Monitoring Station in China’s seven river systems and lakes.
Each station’s monitoring water quality indicators include pH, DO, CODMn, and NH3-N.
We have two datasets: D-s (Dataset-short) from 2013 to 2015 and D-l (Dataset-long) from
2012 to 2018. We select 120 stations with relatively complete data as the experiment dataset.
Among them, there are 7 monitoring stations in the Pearl River, 22 in the Yangtze River, 11
in the Songhua River, 7 in the Liaohe River, 12 in the Yellow River, 26 in the Huaihe River, 6
in the Haihe River, 6 in the Taihu Lake, 4 in Poyang Lake, and 18 in other large lakes and
rivers. Detailed statistics of the dataset are shown in Table 2.

Table 2. Dataset statistics.

Name Number of Sites
D-s D-l

Time Time

Total data set 120 2013.1–2015.2 2012.6–2018.4
Pearl River 8 2013.1–2015.2 2012.6–2018.4

The Yangtze River 22 2013.1–2015.2 2012.6–2018.4
Songhua River 11 2013.1–2015.2 2012.6–2018.4
Liaohe River 7 2013.1–2015.2 2012.6–2018.4

The Yellow River 12 2013.1–2015.2 2012.6–2018.4
Huaihe River 26 2013.1–2015.2 2012.6–2018.4
Haihe River 6 2013.1–2015.2 2012.6–2018.4
Taihu Lake 6 2013.1–2015.2 2012.6–2018.4

Poyang Lake 4 2013.1–2015.2 2012.6–2018.4
Other 18 2013.1–2015.2 2012.6–2018.4
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3.2. Evaluation Metrics

We select Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Mean Absolute Error (MAE) as the evaluation metrics, which are widely used in time
series prediction models [29]. Note that the lower the values of RMSE, MAPE, and MAE,
the better the performance. The RMSE, MAE, and MAPE are calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (24)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (25)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (26)

where yi indicates the i-th real value, ŷi indicates the i-th predicted value, and N is the
number of data samples. These three metrics are used to measure the error between the
predicted values and the real values. MAPE reflects the relative error between the predicted
values and the real values, while MAE is a simple superposition of the absolute error.
Therefore, MAPE can more accurately reflect the deviation degree of the predicted values.
At the same time, RMSE first squares the error values. If the dispersion of errors is high, the
RMSE is magnified. Therefore, RMSE is more affected by outliers than MAE and MAPE,
but they are at the same data level [30].

3.3. Baselines

The baselines for comparison are as follows: Linear model [16], XGBoost model [31,32], MLP
model [33], CNN model [34], LSTM model [19], GRU (Gated Recurrent Unit) model [35],
and ATTENTION model (ATT for short) [36,37]. Our proposed models are Mt-Hard
(Multi-Task-Hard), Mt-Soft (Multi-Task-Soft), Mt-Gate (Multi-Task-Gate), and Mt-GH
(Multi-Task-GH).

3.4. Model Setting

For model learning, the input space node number is 120, the sequence length is 10,
and the dimension of each time point is 4, representing four water quality indicators (pH,
DO, CODMn, and NH3-N). For prediction, the output space node number is also 120, the
sequence length is set to 1, and the water quality indicators at each time point are also pH,
DO, CODMn, and NH3-N. The first 60% of the data is used for training, 20% is used for
validation, and the last 20% is used for testing. The prediction time step is set to 1. In other
words, the historical water quality values of 120 monitoring stations in the previous ten
weeks are used to predict their values in the next week. We compare the proposed models
with other models to verify the effectiveness of the proposed models.

For all deep learning models, Adam is used as the optimizer, which combines the
advantages of AdaGrad (adaptive gradient) and RMSProp (root mean square propaga-
tion) to update the step size by comprehensively considering the first-moment estimation
(i.e., the mean value of the gradient) and the second-moment estimation (i.e., the variance
of the gradient). The learning rate can be automatically adjusted, and the fluctuation range
of the adjustment is not too large [29]. The hyperparameters are highly interpretable and
usually only need to be fine-tuned or even not need to be adjusted, which is suitable for
large-scale data and parameter scenarios. We choose RMSE as the loss function. The
learning rate is set to 0.001, and the epochs and batch sizes are set to 100 and 5, respectively.

4. Results and Discussion

In this section, we compare the proposed method with baselines on the prediction
performance of the single-indicator and multi-indicator. We then compare the influence
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of different tower layers on the model to verify the proposed methods’ robustness and
analyze the models’ predictive performance for different rivers and lakes. We also show
the training loss and validation loss of the best multi-task water quality prediction model.

4.1. Comparison of Prediction Performance for Single-Indicator

In this section, we compare the overall prediction performance of four multi-task
learning models with seven baselines for single-indicator. The experimental results are
shown in Table 3. In the table, the bold numbers are the best, and the numbers with asterisk
are the second best.

Table 3. Comparison of the overall performance of prediction for single-indicator on D-s dataset.

Model
pH DO CODMn NH3-N

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Linear [16] 0.560 0.413 0.054 2.657 1.978 0.299 2.793 1.236 0.354 1.366 0.423 0.948
XGB [31] 0.327 0.245 0.032 1.594 1.135 0.121 1.732 0.614 0.179 0.487 0.182 0.335
MLP [33] 0.299 0.211 0.028 1.218 * 0.828 0.910 1.485 0.588 0.178 0.474 0.164 * 0.317
CNN [34] 0.429 0.327 0.043 2.066 1.506 0.167 2.541 1.197 0.350 0.718 0.347 0.702
LSTM [19] 0.294 0.208 0.027 1.396 0.956 0.103 1.658 0.617 0.174 0.467 0.171 0.444
GRU [35] 0.282 * 0.206 * 0.027 * 1.230 0.821 * 0.087 * 1.742 0.610 0.169 0.457 * 0.172 0.434
ATT [37] 0.478 0.387 0.050 1.672 1.079 0.106 2.035 0.618 0.168 * 0.681 0.193 0.416
Mt-Hard 0.270 0.217 0.028 1.273 0.869 0.094 1.535 0.602 0.169 0.432 0.244 0.640
Mt-Soft 0.293 0.209 0.028 1.186 0.801 0.087 1.534 0.597 0.178 0.430 0.168 0.386
Mt-Gate 0.292 0.211 0.027 1.235 0.851 0.091 1.547 0.585 0.166 0.448 0.178 0.386
Mt-GH 0.262 0.181 0.024 1.182 0.796 0.086 1.515 0.592 0.173 0.403 0.154 0.331

Improv. 7.1% 12.1% 11.1% 3.0% 3.0% 1.1 - - 1.6% 11.7% 6.3% -

* In the table, the bold numbers are the best, and the numbers with asterisk are the second best.

(1) For pH, the hard parameter sharing structure (Multi-Task-Hard), soft parameter
sharing structure (Multi-Task-Soft), gated parameter sharing structure (Multi-Task-Gate),
and gated hidden parameter sharing structure (Multi-Task-GH) achieve better performance
in all the metrics. Multi-Task-GH achieves the best performance, which means the pH
predicted by Multi-Task-GH is closer to the real values.

(2) For DO, the four multi-task learning models also achieve better performance.
Among the four multi-task learning models, the performance of Multi-Task-Hard is worse
than other multi-task models (Multi-Task-Soft, Multi-Task-Gate, and Multi-Task-GH) and
even worse than some traditional deep learning models (MLP and GRU). The Multi-Task-
GH still achieves the best performance.

(3) For CODMn, the MLP model achieves the best performance in RMSE and MAE.
Only Multi-Task-Gate achieves the best performance in MAPE among the four multi-
task learning models. The prediction performance of the three soft parameter sharing
models, Multi-Task-Soft, Multi-Task-Gate, and Multi-Task-GH, is almost the same as that
of MLP, which means that the predicted CODMn of MLP is closer to the observed values.
However, the multi-task learning model with three soft parameters shared can still achieve
close results.

(4) For NH3-N, MLP achieves the best performance in only MAPE, while Multi-Task-
GH achieves the best results in both RMSE and MAE. This means that the NH3-N predicted
by the Multi-Task-GH model is closer to the real values in most cases.

As shown in Table 4, we further validate the proposed models on the dataset D-l. In
the table, the bold numbers are the best. Similar to the results on D-s, the results also show
that the multi-task learning models achieve better performance than other models in most
cases and Multi-Task-GH achieves the best results in most.
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Table 4. Comparison of the overall performance of prediction for single-indicator on D-l dataset.

Model
pH DO CODMn NH3-N

RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE

CNN 0.456 0.047 0.357 2.049 0.192 1.547 1.487 0.346 1.051 0.323 0.946 0.188
LSTM 0.268 0.025 0.195 1.198 0.110 0.828 0.939 0.189 0.582 0.238 0.430 0.118
GRU 0.242 0.022 0.168 1.200 0.107 0.813 0.944 0.190 0.579 0.219 0.510 0.116

Mt-Soft 0.252 0.023 0.178 1.196 0.106 0.823 0.949 0.188 0.577 0.222 0.395 0.114
Mt-Gate 0.251 0.023 0.178 1.197 0.108 0.823 0.939 0.194 0.582 0.217 0.415 0.109
Mt-GH 0.256 0.023 0.181 1.196 0.106 0.824 0.932 0.185 0.574 0.214 0.407 0.105
Mt-GH 0.256 0.023 0.181 1.196 0.106 0.824 0.932 0.185 0.574 0.214 0.407 0.105

4.2. Comparison of Four Indicators and Three Indicators Multi-Task Learning Models

It is worth mentioning that we have conducted experiments on three indicators of
multi-task learning models. The experimental results show a similar conclusion, but the
whole performance is weaker than the four ones. The results are shown in Table 5, where
4-task means four indicator multi-task learning model, 3-tasks are three indicator multi-task
learning models that include (pH, DO, CODMn), and (DO, CODMn, NH3-N), (pH, DO,
NH3-N), and (pH, CODMn, NH3-N) multi-task learning models. In the table, the bold
numbers are the best. The results on D-s have similar trends.

Table 5. Comparison of four indicators and three indicators multi-task learning models on D-l.

pH DO CODMn NH3-N
RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE

4-task 0.256 0.023 0.181 1.196 0.106 0.824 0.932 0.185 0.574 0.214 0.407 0.105
3-task1 0.324 0.031 0.235 1.248 0.116 0.877 0.959 0.194 0.592 — — —
3-task2 — — — 1.277 0.116 0.892 0.965 0.193 0.594 0.234 0.514 0.136
3-task3 0.316 0.030 0.226 1.242 0.111 0.861 — — — 0.222 0.650 0.127
3-task4 0.342 0.033 0.255 — — — 0.977 0.189 0.596 0.221 0.440 0.107

4.3. Comparison of Prediction Performance for Multi-Indicators

Table 6 shows the average prediction performance of seven baselines and four multi-
task learning models for multi-indicators on D-s. In the table, the bold numbers are the best,
and the numbers with asterisk are the second best. For the space limitation, we only put
the results on D-s in the following sections because the results on D-s and D-l have similar
trends. Among the models, the Multi-Task-GH model achieves the best on all the metrics.
Although the single-task learning models may achieve the best effect in predicting one
target water quality indicator in some cases, the prediction accuracy will decrease when
predicting other water quality indicators. Therefore, when the same model structure is
used to simultaneously predict multiple target water quality indicators (pH, DO, CODMn,
and NH3-N), the Multi-Task-GH model can accomplish this task well and achieve the best
performance in most indicators. This means that the Multi-Task-GH model can accurately
predict multi-indicator.

4.4. Tower Layer Analysis

This paper also analyzes the impact of different tower types on the prediction perfor-
mance of the Multi-task-GH model, as shown in Table 7. In the table, the bold numbers are
the best. The five deep learning structures of LSTM, GRU, CNN, ATTENTION, and MLP
are used as the tower layer of the Multi-Task-GH model to train the model and predict the
water quality indicators. The results show that the Multi-Task-GH model with MLP as the
tower layer achieves the best performance in most cases. The robustness of the model is the
best, and there is no sharp drop in the prediction accuracy when predicting different water
quality indicators. For example, when the ATTENTION-based deep learning structure is
used as the tower layer of the Multi-Task-GH model, the prediction results of DO, CODMn,
and NH3-N are good, while the prediction results of pH are greatly reduced, which achieve
the worst performance among the five structures. This shows that the ATTENTION-based
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deep learning structure is not well compatible with the simultaneous prediction of four
water quality indicators.

Table 6. Comparison of the overall performance of prediction for multi-indicator.

Model RMSE MAE MAPE

Linear [16] 7.376 4.052 1.656
XGB [31] 4.139 2.177 0.667
MLP [33] 3.476 * 1.792 * 0.615 *
CNN [34] 5.753 3.377 1.262
LSTM [19] 3.814 1.952 0.748
GRU [35] 3.709 1.809 0.716
ATT [37] 4.866 2.277 0.730
Mt-Hard 3.511 1.932 0.930
Mt-Soft 3.443 1.775 0.679
Mt-Gate 3.523 1.823 0.670
Mt-GH 3.362 1.723 0.614

Improv. 3.3% 3.8% 1.6%
* In the table, the bold numbers are the best, and the numbers with asterisk are the second best.

Table 7. The performance comparison of tower structures in the Multi-Task-GH model.

Tower
Type

pH DO CODMn NH3-N
RMSE MAE MAPE RMSE MAE MAPE RMSE MAPE MAE RMSE MAPE MAE

LSTM 7.009 6.975 0.904 9.178 8.872 0.919 4.523 0.735 2.978 1.080 0.515 0.343
GRU 0.847 0.396 0.051 2.311 1.642 0.172 2.705 0.369 1.313 1.120 0.627 0.423
CNN 0.464 0.359 0.046 1.949 1.407 0.154 2.576 0.371 1.304 0.950 0.896 0.367
ATT 7.725 7.708 1.0 1.459 0.952 0.098 1.987 0.162 0.614 0.474 0.430 0.186
MLP 0.262 0.181 0.024 1.182 0.796 0.086 1.515 0.173 0.592 0.403 0.331 0.154

4.5. The Difference of Predictions and Real Data

To show the ability of the Multi-Task-GH model, we the difference between predictions
and the real measured data, as shown in Figure 7. The curves of both present similar trends,
which prove the Multi-Task-GH model can predict the indicator change.
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4.6. Model Training Loss and Validation Loss

We train the baselines and the proposed four multi-task learning models with fixed
hyperparameters. As shown in Figure 8, the two curves are the training loss and validation
loss change curves of the Multi-Task-GH model. The two-loss curves converge after about
ten epochs of training.
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4.7. Related Work Analysis

With the rapid development of machine learning, scholars have begun to explore
water quality prediction methods based on machine learning, such as the support vector
machine, genetic algorithm, and clustering algorithm. Recently, some researchers have
proposed deep learning methods for water quality prediction, mainly aimed at predicting
a single indicator. These models are based on single-task learning, and the representative
models are as follows:

Avila et al. [16] adopted the ridge regression method to predict water quality. Lu et al. [31]
used PCA to assess water quality. Chen et al. [32] used a machine learning algorithm with
an integrated boosting method. Ahmed et al. [33] stacked multiple fully connected layers
to predict water quality. Barzegar et al. [34] employed one convolution layer and LSTM
layers for water quality parameter prediction. Yang et al. [21] incorporated one LSTM
and two fully connected layers for prediction, which can extract short-term and long-
term correlations of water quality and avoid gradient disappearance. Shrestha et al. [35]
incorporated one GRU and two fully connected layers for water quality prediction.

Vaswani et al. and Jaderberg et al. [36,37] stacked three self-attention layers and two
fully connected layers to mine the sequential relationship of water quality data. The input
sequence is first converted to embedding through the first fully connected layer. The
converted embedding then completes the information aggregation on the time step through
the three-layer self-attention mechanism. Finally, it generates the water quality prediction
through a fully connected layer.

Prediction methods based on deep learning can well extract the complex nonlinear
characteristics and time-dependent relationship of water quality data, which achieves good
prediction performance, but they still have some problems.

(1) Unable to predict multiple indicators with one model. The trained model often only
performs well in the one prediction indicator. If the model is used to predict other indicators
without changing the model’s structure and parameters, the performance will be greatly
reduced. Therefore, it is necessary to train different models to predict multiple indicators,
which will lead to extended training and prediction time and large model storage space.
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(2) Unable to consider the impact correlations between multiple indicators. When
the water quality of the same water area becomes better or worse, there may be a certain
correlation between different indicators. The single-indicator prediction model is difficult
to deal with the correlations between multiple indicators.

This paper proposes water quality prediction models based on multi-task learning to
solve the above problems. The model based on multi-task learning improves the prediction
performance of each task, which learns the relevance between different tasks. The multi-
task learning also saves parameter space and prediction time consumption by sharing part
of the model [38,39].

5. Conclusions

This paper proposed a multi-task-learning-based prediction method to solve the short-
comings and challenges of the single-task learning model for water quality prediction. Four
multi-task learning structures are proposed based on the idea of sharing bottom structures:
hard parameter sharing structure, soft parameter sharing structure, gated parameter shar-
ing structure, and gated hidden parameters sharing structure. Sufficient experiments are
designed and implemented to demonstrate the effectiveness of the proposed method.

However, there is still room for improving the proposed method. The training gradient
losses of different tasks in reverse gradient propagations show a magnitude gap, leading to
unstable training. It is hard to train a large number of water quality indicators in multi-task
learning because the balance of four indicators will be out of control.

In this paper, we did not take the data distributions and importance of different tasks
into consideration explicitly because the Multi-task-GH can implicitly learn the unique and
shared joint weights of each subtask through the gate network, and it can also implicitly
reflect the different effects of data distributions. However, if the data distributions and
importance of different tasks can be explicitly taken into consideration, e.g., as constraints
of loss function or regularization, the models would have better performance. In the future,
we will conduct more data analysis and design more reasonable losses for the tasks.
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Appendix A. Hyper-Parameters

In our proposed framework, there are many hyper-parameters. For MLP, we tune the
number of hidden layers in a range of {1, 2, 3} and tune the number of hidden units in a
range of {16, 32, 64}. Without specific mention, we set hidden units of the first MLP layer as
64, the second MLP layer as 32, and the third MLP layer as 16. We further tune the number
of epochs for the training process in a range of {100, 200, 400}, the number of batch size is 8,

http://envi.ckcest.cn/environment/special/special_list.jsp?specialId=108
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and the learning rate is 0.001. The input space node number is 120, the sequence length is
10, and the dimension of each time point is 4, representing four water quality indicators:
pH, DO, CODMn, and NH3-N. All the information is summarized in Table A1.

Table A1. Hyper-parameters.

Name Experimental Set

MLP layer
1, 2, 3
6.97

0.904

MLP hidden unit units
16, 32, 64

0.396
0.051

Epoch
100, 200, 400

0.359
0.046

Batch size
8

7.708
1.0

Learning rate
0.001
0.181
0.024

node number 120
Sequence length 10

Prediction targets 4

Table A2 shows the details of input-output parameters.

Table A2. The details of input-output parameters.

Inputs Outputs Time
Windows Size Mean Standard

Variance Maximum Minimum

pH pH 10 7.240 0.330 7.950 6.390
DO DO 10 7.340 0.640 10.000 6.200

CODMn CODMn 10 1.820 0.450 3.300 0.800
NH3-N NH3-N 10 0.194 0.045 0.340 0.110
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