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Abstract: Groundwater contributions towards improved food security and human health depend on
the level of contaminants in groundwater resources. Many people in rural areas use groundwater for
drinking purposes without treatment and knowledge of contaminant levels in such waters, owing to
parachute research in which research outputs are not shared with communities. This study argues
that parachute research exposes groundwater users to health hazards and threatens the food security
of communities. Concentration levels of contaminants were measured to ascertain suitability of
groundwater for drinking and irrigation purposes. A total of 124 groundwater quality samples
from 12 boreholes and 2 springs with physiochemical data from 1995 to 2017 were assessed. This
study found high concentration levels of contaminants, such as F−, NO3

−, Cl−, and total dissolved
solids, in certain parts of the studied area. In general, groundwater was deemed suitable for drinking
purposes in most parts of the studied area. Combined calculated values of sodium adsorption ratios,
Na%, magnesium hazards, the permeability index, residual sodium carbonate, and total dissolved
solids determined that groundwater was suitable for irrigation purposes. The discussion in this paper
shows that scientific knowledge generated on groundwater quality is not aimed at developing skills
and outputs for improved human health and food security but rather for scientific publication and
record keeping, leaving communities where such data has been gathered devoid of knowledge about
groundwater quality. In this study, it is recommended that research outputs on groundwater quality
should be shared with groundwater users through various initiatives.

Keywords: contaminants; groundwater quality; parachute research; human health

1. Introduction

Availability of water in general is declining, owing to climatic variations such as
drought in arid and semi-arid regions, and it is increasing in demand, owing to socio-
economic activities. Groundwater has become the main or only source of freshwater
for various activities, such as irrigation and domestic uses across the world [1–4], and
this is especially common in rural areas where there is a lack of or no alternative water
supply. Increasing reliance on groundwater can lead to other ecological factors, such as
decreasing groundwater level, pollution, and deterioration of water quality [5]. Globally, it
is being reported that groundwater that was previously considered fresh is increasingly
being contaminated or polluted, and this can have a negative impact on the livelihood
of vulnerable people relying on groundwater for various uses [6,7]. There are various
factors that influence groundwater quality and that determine the concentration levels of
contaminants in rural areas, including anthropogenic activities (irrigation and pit-latrines),
leaching, regional geology, as well as climatic conditions [8–11]. High concentration levels
of some contaminants in groundwater result from natural geological processes [12]. The
authors of [12,13] show the role of geogenic pollution on groundwater resources. For
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groundwater to contribute towards food security and improved rural livelihood through
irrigation and domestic use, concentration levels of contaminants should be determined
to ensure groundwater is suitable for various uses. The challenge is that a majority of
groundwater users in many rural areas, such as the Soutpansberg, use groundwater without
treatment or knowledge of the concentration levels of contaminants, a situation which poses
a huge threat to food security, human health, and their livelihoods. Understanding and
communicating concentration levels of contaminants and groundwater quality in general
are important, as they ensure that people use groundwater that is safe for consumption [14].
Various studies globally [1,2] and regionally [15–19] assessed groundwater quality data to
determine suitability for human consumption. They evaluated major cations (Ca2+, Mg2+,
Na+, K+) and anions (Cl−, HCO3

−, SO4
2−, F−). These studies compared groundwater

quality data with drinking water standards, such as in [20], and with various local standards,
such as in [21] in South Africa. Suitability of groundwater for irrigation contributes
towards food security [22]. Groundwater that is not suitable for irrigation may reduce crop
yields and damage soil structure [23]. Studies conducted by the authors of [9,17,24–27]
assessed the suitability of groundwater for irrigation purposes, using methods such as
SAR, PI, RSC, Na%, and MH, and they found contrasting results from the applied methods.
Using a combined multiple parameters and hydro-chemical characterisation approach
is an advantage when evaluating potential pollutants in groundwater and suitability for
irrigation and drinking purposes, as has been illustrated in studies such as [28–30] in China.
Contaminants are input of foreign and possibly toxic materials into the environment, and
pollutants are described as substances that are anthropogenically introduced that may be
harmful to the environment [31]. It is not simple to distinguish between contaminants
and pollutants, as it is not always possible to define the concentration level at which
contaminants become pollutants [31]. However, it has become a norm with various authors
to compare concentration levels of contaminants in groundwater to various standards that
are largely for surface water or drinking water to determine if contaminants in groundwater
are pollutants. This practice may be misleading, as some aquifers are highly concentrated
in some contaminants in nature and are not polluted. This study taps into the subject of
comparing contaminants in groundwater to various international and local standards. The
purpose of this study is to determine the concentration levels and spatial distributions of
contaminants and to evaluate the suitability of groundwater for domestic and irrigation
purposes using long-term data. This study also discusses parachute research that does not
share output and skills on groundwater quality with affected communities.

2. Description of the Study Area

The Soutpansberg region is in the far northern part of the Limpopo Province in South
Africa (Figure 1). The total area of the region is about 3099.6 km2 and lies between 250
to 1719 m above mean sea level. There are 12 boreholes and 2 springs that are part of the
groundwater quality monitoring programme in the area. In terms of groundwater level,
19 groundwater monitoring boreholes indicated that groundwater levels ranged from 1.5
to 36 m below ground level. There are 994 registered groundwater users, with an allocation
of 148.3 Mm3/a for various uses in the area. Although this study focuses on groundwater,
other main waterbodies include rivers such as the Sandsloot and Mutamba, which are in
the western side of the Soutpansberg region. In the central part, there are rivers such as
the Mutshedzi, Nzhelele, and Nwanedi. The Mutshindudi, Luvuvhu, Mutale, Mbodi, and
Shisha rivers are in the eastern side of the Soutpansberg region. There are also several dams
in the Soutpansberg region, such as the Nzhelele, Nwanedi, Mutshedzi, and Vondo. The
Soutpansberg region covers towns such as Louis Trichardt, Makhado, and Thohoyandou
(Figure 1). In terms of land coverage in the Soutpansberg region, 27.5% of the area is
covered by woodlands, cultivated land covers about 25.5%, 25.3% is covered by bushland,
13% is covered with forest plantation, 7.4% is covered by residential/ built-up area, water
bodies cover 0.9%, and 0.4% is covered by natural rocks and soils. The spatial distribution
of land cover is provided as supplementary material.
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Belt about 1800 million years ago [32,33]. The Soutpansberg basin was formed between 
the Limpopo belt in the north and the Kaapvaal craton in the south. This volcanic–sedi-
mentary Soutpansberg Group mainly outcrops in the Soutpansberg Mountains, stretching 
from Punda Maria at the eastern side to Vivo at the western side [34,35]. The Soutpansberg 
Group is subdivided into five formations (Figure 1), which are the Tshifhefhe, Sibasa, 
Fundudzi, Wyllie’s Poort, and Nzhelele Formations [36]. The dominant aquifer type in the 
Soutpansberg region is the fractured aquifer, with an average borehole yield ranging be-
tween 0 and 0.5 l/s. Some small part of this fractured aquifer average borehole yield can 
reach 2 l/s. The southern part of the Soutpansberg is underlain by intergranular and frac-
tured aquifers, with an average borehole yield between 0 and 0.2 l/s. 
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prising 12 boreholes and 2 geothermal springs where sampling has been taking place since 
1995 twice a year (wet and dry seasons). The monitoring network was designed to monitor 
any influence on groundwater resources in the Soutpansberg region. The monitoring 

Figure 1. Locality and geological map of the Soutpansberg region with existing groundwater moni-
toring stations.

In terms of climatic condition, the area is in an arid region, with an average mini-
mum temperature of 11 ◦C and an average maximum temperature of 32 ◦C, based on
the seven South African Weather Services (SAWS) stations with data from 1980 to 2020.
The Soutpansberg region experiences dry winter seasons (May–August) and wet summer
seasons (December–February) with an average precipitation of 497.7 mm/a. The dominant
geology that supports groundwater is the volcanic–sedimentary unit of the Soutpansberg
Group, deposited as an east-west-gravitating asymmetrical rift beside the Palala Shear Belt
about 1800 million years ago [32,33]. The Soutpansberg basin was formed between the
Limpopo belt in the north and the Kaapvaal craton in the south. This volcanic–sedimentary
Soutpansberg Group mainly outcrops in the Soutpansberg Mountains, stretching from
Punda Maria at the eastern side to Vivo at the western side [34,35]. The Soutpansberg
Group is subdivided into five formations (Figure 1), which are the Tshifhefhe, Sibasa,
Fundudzi, Wyllie’s Poort, and Nzhelele Formations [36]. The dominant aquifer type in
the Soutpansberg region is the fractured aquifer, with an average borehole yield ranging
between 0 and 0.5 l/s. Some small part of this fractured aquifer average borehole yield
can reach 2 l/s. The southern part of the Soutpansberg is underlain by intergranular and
fractured aquifers, with an average borehole yield between 0 and 0.2 l/s.

3. Material and Methods
3.1. Sampling

There is an active groundwater quality monitoring network in the study area, com-
prising 12 boreholes and 2 geothermal springs where sampling has been taking place since
1995 twice a year (wet and dry seasons). The monitoring network was designed to monitor
any influence on groundwater resources in the Soutpansberg region. The monitoring points
are spatially distributed in the region. To evaluate the concentration levels of contaminants
in the groundwater, 124 samples of physio-chemical parameters were analysed. These
parameters include magnesium (Mg2+), calcium (Ca2+), sodium (Na+), potassium (K+),
bicarbonate (HCO3

−), chloride (Cl−), nitrate (NO3
−), sulphate (SO4

2−), and fluoride (F−).
Total dissolved solids (TDS) were calculated based on in situ measurements of electrical
conductivity (EC) using Equation (1) [37]. In situ measurements of pH and temperature
were taken at each sampling point using a handheld multi-parameter probe. Groundwater
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samples were collected using the methods proposed by [37], by which samples were col-
lected after purging the borehole until electrical conductivity (EC), pH, and temperature
stabilised. Purging of the borehole is important, as it allows a representative sample of the
aquifer to be collected. Groundwater from the spring was collected directly from the eye of
the spring. The groundwater was collected using 500 mL polyethylene sampling bottles.
The samples between 1995 and 2017 (124 samples) were analysed at the Department of
Water and Sanitation laboratory. Cations were analysed using Inductively Coupled Plasma
Mass Spectrometry (ICP-MS), and anions were analysed using Ion Chromatography. The
results are available as records reviewed from the Department of Water and Sanitation’s
Water Management System database. To ensure that there are no uncertainties with the
data, ion balance error was determined to be between 0.0 and 9%, which is lower than the
allowable range of 10% [38].

TDS = 6.3 × EC
(

mS
m

)
(1)

3.2. Evaluation of the Chemical Composition of Groundwater

The analysed 124 samples of major ions and physical parameters were statistically
assessed using Microsoft Excel to determine the concentration levels of contaminants in
the Soutpansberg region. The statistical analysis tool was used to determine the mean,
minimum, maximum, and standard deviation of various contaminants. The ArcGis inverse
distance weighting (IDW) tool was used to map the spatial distribution of the concentra-
tion levels of contaminants. The determined concentration levels of contaminants in the
groundwater were used to compare ambient groundwater quality to various standards.
Mean values from the 14 monitoring sites were used to plot Piper tri-linear diagrams [39]
to understand the water type and hydro-geochemical facies in the Soutpansberg region.

3.3. Evaluation of Groundwater Quality for Domestic and Irrigation Purposes

To evaluate the suitability of groundwater for domestic use in the Soutpansberg region,
124 samples of major ions and physical parameters were compared to [20,21] drinking
water standards. The suitability of groundwater for irrigation purposes was evaluated by
using Equations (2)–(6), which are expressed below. The sodium adsorption ratio (SAR),
sodium percentage (Na%), permeability index (PI), residual sodium carbonate (RSC), and
magnesium hazard (MH) were calculated in meq/L from the 124 samples. The subject of
parachute research and the sharing of knowledge with groundwater users was discussed
based on the outcome of these methods.

SAR = Na+/
√(

Ca2+ + Mg2+
)

/2 (2)

Na% = [(Na+ + K+)/(Ca2+ + Mg2+ + Na+ + K+)] × 100 (3)

PI = [(Na+ + HCO3
−)/(Ca2+ + Mg2+ + Na+)] × 100 (4)

RSC =
(

CO2−
3 + HCO−

3

)
−
(

Ca2+ + Mg2+
)

(5)

MH = (Mg2+ × 100)/(Ca2+ + Mg2+) (6)

4. Results and Discussions
4.1. Chemical Composition of Groundwater

The descriptive statistical analysis of chemical constituents of the 124 samples of
the Soutpansberg region is presented in Table 1 and Figure 2. The correlation matrix of
the parameters is tabulated in Table 2. It is commonly accepted that pH is the primary
parameter that is used to measure water quality in nature if it is acidic (pH < 7), Neutral
(pH = 7), or alkaline (pH > 7) [40]. Groundwater in the Soutpansberg region is slightly
acidic to alkaline, as the pH ranges from 6.7 to 9.6. The mean pH in groundwater of the area
is 8.4, which indicates that groundwater is more alkaline (Table 1). High alkalinity in the



Water 2022, 14, 1354 5 of 16

Soutpansberg area is linked with high concentrations of sodium, magnesium, calcium, and
bicarbonate ions, owing to the mafic–ultramafic igneous rocks dominant in the area. These
ions are commonly known to increase the value of pH [41]. In terms of seasonal variation,
there is not much difference in pH between dry and wet seasons in the Soutpansberg region.

Table 1. Descriptive statistical analysis of physiochemical parameters.

pH TDS Ca2+ Mg2+ Na+ K+ Cl− HCO3− NO3− F− SO42−

Wet Season N = 29
Min 6.7 33 1 1 3 0.2 5 6 0.01 0.03 1
Max 9.4 1869 83 137 460 10 755 455 18.8 2.8 71

Mean 8.4 415 19 20 76 2 99 141 2.5 0.8 15
SD 1.4 969 43 74 246 5 408 231 10.2 1.4 37

Dry Season N = 95
Min 7.1 80 1 1 3 1 7 5 0.01 0.03 1
Max 9.6 1856 99 154 415 10 646 612 37 3 68

Mean 8.4 430 23 24 61 2 68 178 4 1 14
SD 1.3 941 51 83 223 5 352 313 20 2 36

All Seasons N = 124
Mean 8.4 372 22 23 65 2 75 170 4 1 14
WHO
(2011) 6.5–8.5 1000 200 100 200 12 250 500 10

SANS 241
(2015) 5–9.7 1200 150 70 200 50 300 11 1.5 250

All units expressed in mg/L except pH. SD: standard deviation.
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Table 2. Correlation coefficients of major physiochemical parameters in the Soutpansberg region.

pH EC TDS Ca2+ Mg2+ Na+ K+ Cl− SO42− HCO3− F− NO3−

pH 1
EC −0.2 1

TDS −0.1 1.0 1
Ca2+ −0.2 0.9 0.9 1
Mg2+ −0.1 0.8 0.8 0.8 1
Na+ −0.2 0.9 0.9 0.8 0.6 1
K+ 0.0 0.6 0.6 0.6 0.9 0.3 1
Cl− −0.2 1.0 1.0 0.9 0.7 1.0 0.4 1

SO4
2− 0.2 0.6 0.7 0.6 0.8 0.4 0.9 0.5 1

HCO3
− −0.1 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 1

F− 0.2 −0.1 −0.1 −0.2 −0.2 0.01 0.05 −0.1 0.03 −0.1 1
NO3

2− −0.2 0.3 0.4 0.3 0.7 0.1 0.8 0.2 0.6 0.4 −0.3 1
Bold = strong correlation (r > 0.7).

Salinity as TDS in the region ranged from 32 to 1808 mg/L, with a mean of 327 mg/L.
The spatial distribution of TDS is presented in Figure 3, where mean concentrations of
1418 and 1784 mg/L at Maebane and Punda Maria villages were recorded, respectively.
Groundwater in these areas is considered to be brackish, according to TDS classification in
Table 3 [42]. There is a strong correlation between the spatial distributions of Cl− and TDS
(Figures 3 and 4), and this suggests that salinity in the groundwater is high in the Maebane
and Punda Maria villages. There is a correlation between salinity and human settlements
(including irrigated area) in the Soutpansberg region, and this observation is common, as
activities in such areas are associated with various types of anthropogenic factors such
as fertilisers and pit-latrines. Geogenic sources can also contribute to high salinity in
groundwater. A study by the authors of [43] found that spatial variation of groundwater
quality correlates with agricultural activities. Seasonal variation does not affect salinity
in the area, as there is no difference between wet (378 mg/L) and dry (372 mg/L) season
mean TDS. In general, 91.1% of groundwater in the Soutpansberg region is classified as
fresh, and 8.9% is classified as brackish (Table 3). The classification of groundwater based
on TDS in this study is similar to findings made by the author of [17], who determined that
groundwater in the Soutpansberg region is fresh to brackish.
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Table 3. Classification of groundwater based on TDS [42].

Classification TDS (mg/L) Range No. of Samples (%)

Fresh <1000 113 (91.1%)
Brackish 1000–10,000 11 (8.9%)

Saline 10,000–100,000 0
Brine >100,000 0

Water 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. Spatial distribution of TDS in the Soutpansberg region. 

 
Figure 4. Spatial distribution of chloride in the Soutpansberg region. 

The concentration levels of various contaminants are presented in Table 1, where the 
cation dominance order is Na+ > Mg2+ > Ca2+ > K+, and that of the anions is HCO3− > Cl− > 
SO42−> NO3− > F−. In terms of water types classified by a Piper diagram [39], a study by the 
authors of [43] used this diagram to deduce anthropogenic and geogenic sources of con-
taminants in groundwater. The dominant water types in the Soutpansberg were Ca-HCO3 
(35.7%) and mixed Ca-Mg-Cl (35.7%), as presented in Figure 8. Ca-HCO3 is classified as 
typical shallow, fresh, and recently recharged water. Bicarbonate ion (HCO3−) concentra-
tions in groundwater ranged from 5 to 612 mg/L, with a mean of 170 mg/L. In terms of 
seasonal variation, a mean HCO3− concentration of 141 and 178 mg/L were recorded in 
wet and dry seasons, respectively, indicating a seasonal variation difference of 37 mg/L 
(20.8%). The majority of samples and mean concentrations of HCO3− are within the [20,21] 
standards (in the absence of groundwater quality standards). Concentration levels of Cl− 
ranged from 5 to 755 mg/L, with a mean of 75 mg/L. The spatial distribution of mean Cl− 
concentrations in groundwater of the Soutpansberg region indicates that it is highly con-
centrated where TDS concentrations are high (Figure 4). The mean concentrations of Cl− 
in groundwater are slightly higher in the wet season (99 mg/L) compared to those in the 
dry the season (68 mg/L). Monitoring sites with high salinity were associated with mixed 

Figure 4. Spatial distribution of chloride in the Soutpansberg region.

The concentration levels of various contaminants are presented in Table 1, where the
cation dominance order is Na+ > Mg2+ > Ca2+ > K+, and that of the anions is HCO3

− > Cl−

> SO4
2−> NO3

− > F−. In terms of water types classified by a Piper diagram [39], a study by
the authors of [43] used this diagram to deduce anthropogenic and geogenic sources of con-
taminants in groundwater. The dominant water types in the Soutpansberg were Ca-HCO3
(35.7%) and mixed Ca-Mg-Cl (35.7%), as presented in Figure 8. Ca-HCO3 is classified as
typical shallow, fresh, and recently recharged water. Bicarbonate ion (HCO3

−) concentra-
tions in groundwater ranged from 5 to 612 mg/L, with a mean of 170 mg/L. In terms of
seasonal variation, a mean HCO3

− concentration of 141 and 178 mg/L were recorded in
wet and dry seasons, respectively, indicating a seasonal variation difference of 37 mg/L
(20.8%). The majority of samples and mean concentrations of HCO3

− are within the [20,21]
standards (in the absence of groundwater quality standards). Concentration levels of Cl−

ranged from 5 to 755 mg/L, with a mean of 75 mg/L. The spatial distribution of mean Cl−

concentrations in groundwater of the Soutpansberg region indicates that it is highly con-
centrated where TDS concentrations are high (Figure 4). The mean concentrations of Cl− in
groundwater are slightly higher in the wet season (99 mg/L) compared to those in the dry
the season (68 mg/L). Monitoring sites with high salinity were associated with mixed Ca-
Mg-Cl (ZQMMBI1-Maebane) and Na-Cl (ZQMPMA1- Punda Maria) water types (Figure 8),
indicating possibilities of mixing between fresh and recently recharged water with saline
water. Mean concentration levels of SO4

2− in groundwater in the wet season (15 mg/L)
were slightly above the dry season (14 mg/L) concentrations. NO3

− concentration levels in
groundwater of the area ranged between 0.01 and 37 mg/L, with a mean of 4 mg/L. NO3

−

is highly concentrated in villages, such as Maebane (22.3 mg/L), Gogogo (15 mg/L), and
Tshitavha Sambandou (15 mg/L), as presented in Figure 5. Water from these villages where
NO3

− concentration levels were high was classified as mixed Ca-Mg-Cl types. A study by
the authors of [24] found that NO3

− levels were 8.8 times the recommended limit, and they
stated that NO3

− occurrences and distributions in groundwater are mostly associated with
applications of fertilisers, leakage from septic tanks/sewage, and leachate from landfill sites.
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In the Soutpansberg area, high NO3
− concentration levels can be associated with leaching

from pit-latrines and applications of fertilisers in the fractured aquifer. There is a difference
of 1.5 mg/L in mean NO3

− concentrations in groundwater between the wet (2.5 mg/L) and
dry (4 mg/L) seasons. NO3

− concentration is 67% higher in the dry season as compared
to that of the wet season. Spatial distributions of F− are presented in Figure 6, showing
where it is highly concentrated around the Nzhelele (ZQMSOU1) area, with a mean of
2.5 mg/L. The mean concentration levels of F− in the Nzhelele area are over the prescribed
limit of 1.5 mg/L [20,21]. Groundwater from the geothermal spring in the Nzhelele is
highly concentrated with F−. The range of F− concentration levels in the groundwater of
the Soutpansberg region was from 0.03 to 2.9 mg/L, with a mean of 0.7 mg/L. Seasonal
variation did not have any impact on F− concentrations of groundwater, as geothermal
springs are associated with deep ancient groundwater. The determined concentration of F−

is similar with the findings of [44], which indicates that mean F− in the Nzhelele (Siloam)
is above allowable standards [20,21]. The source of F− in groundwater in this area results
from the fluorite mineral associated with sedimentary and igneous rocks that are found in
the Soutpansberg area [45,46]. In groundwater of Na-HCO3 type, dissolution of fluorite
and precipitation of calcite result in the enrichment of F− in groundwater [46]. Water from
this geothermal spring was classified as Ca-Na-HCO3, indicating possibilities of mixing
between fresh water and deep ancient water influenced by ion exchange (Figure 8).
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In the absence of defined groundwater quality guidelines, a majority of samples
contain cation concentration levels that are within the [20,21] prescribed limits for drinking
water. High concentration levels of various parameters do not necessarily mean the aquifer
is polluted, as it could be the quality of natural ambient groundwater. Mean wet and
dry season concentration levels of cations are below the prescribed limit (Table 1). Cation
concentration levels in groundwater of the Soutpansberg region are not highly influenced or
affected by seasonal variations, as there is a slight difference in concentration levels between
wet and dry season samples. Concentration levels of Na+, being the dominant cation,
ranged from 3 to 440 mg/L, with a mean concentration of 65 mg/L. Na+ concentration is
slightly higher in the wet season (76 mg/L) than in the dry season (61 mg/L). Na+ is highly
concentrated in Maebane and Punda Maria, where concentrations of TDS and Cl− are high.
Salinity in groundwater seems to be a problem in these areas due to high concentrations
of TDS, Cl−, and Na+. Salinity in the Maebane and Punda Maria settlements is high in
all seasons. Mg2+ concentration levels in groundwater ranged from 1 to 154 mg/L, with
a mean of 23 mg/L. The spatial distribution of Mg2+ concentrations in groundwater is
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presented in Figure 7, showing that it is highly concentrated in the Maebane and Gogogo
villages. Mean Mg2+ concentration levels of 77 and 118 mg/L were measured in the
Gogogo and Maebane villages, respectively, and these concentration levels are above the
prescribed limit of 70 mg/L [20,21]. Concentration levels of Ca2+ in groundwater of the
Soutpansberg region ranged from 1 to 99 mg/L, with a mean of 22 mg/L. In terms of
seasonal variation, mean Ca2+ concentration levels of 19 and 23 mg/L were recorded
in wet and dry seasons, respectively. Concentration levels of K+ as the least dominant
cation ranged from 0.2 to 10 mg/L with a mean of 2 mg/L, which is within the prescribed
limit [20,21]. Comparing ambient groundwater with standards designed largely for surface
and treated water such as in [21] can be misleading, as it may be perceived that the
groundwater resource is polluted. For instance, TDS in the Maebane area have been
over 1500 mg/L since 1994, and it has been steady at that concentration level for over
22 years. Some contaminants in groundwater are naturally high, owing to the geochemistry
and geological setting (geogenic source) of the host aquifer, so there is a need to develop
groundwater quality standards guided by historical data and geochemistry of aquifers
(Figure 8). In cases where anthropogenic activities are determined to be contaminating a
groundwater resource, sharing concentration levels of contaminants and research outcomes
can assist communities to manage and protect the resource.
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4.2. Suitability of Groundwater for Drinking Purposes

Groundwater should be free from pathogens and toxic chemicals in order to be deemed
suitable for domestic uses, such as cooking and drinking [17]. Concentrations of various
parameters from the 124 samples are compared with [20,21] standards in Table 1. These
samples are also compared to TDS classifications [42] in Table 3 and [47] in Table 4. In terms
of seasonal variations, 62.1% of the wet season and 74.7% of the dry season samples were
suitable for drinking purposes in the Soutpansberg region. Even though there is no major
difference in concentration levels, groundwater seems to be more suitable for drinking
purposes in the dry season. This can be associated with the lack of mechanisms to enhance
leaching/transport of contaminants in the dry season. Overall, groundwater in 73.4% of
the samples was deemed suitable for drinking purposes, as all parameters were within
the prescribed limits [20,21]. According to the Department of Water and Sanitation’s Water
Authorization and Registration Management System (WARMS), 3.7 Mm3/a of groundwater
is allocated for drinking purposes in the Soutpansberg region. This can become a challenge,
as groundwater in 26.6% (37.9% and 25.3% in wet and dry seasons, respectively) of the
samples was deemed not suitable for drinking purposes due to high concentrations of F−,
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NO3
−, Mg2+, and salinity (TDS and Cl−) in areas such as Maebane, Punda Maria, Tshitavha

Sambandou, Gogogo, Nzhelele, and surrounding villages as presented in Figures 3–7. These
contaminants are high in boreholes/springs in residential settlements and irrigated areas.
A majority of groundwater users in the Soutpansberg region are most likely not aware of
the type of groundwater they are drinking on a daily basis. It is a basic human right to
drink safe water to ensure good health [48]. The authors of [49] estimated that almost 80%
of diseases result from polluted water and poor sanitation. For instance, concentrations
of TDS in Punda Maria (ZQMPMA1) and Maebane (ZQMMBI1) areas were recorded
at 1784 mg/L and 1418 mg/L, respectively, and, according to [50], water with elevated
dissolved solids has the potential to affect individuals suffering from heart and kidney
diseases as well to cause constipation and laxative effects. NO3

−, as one of the common
disease-causing contaminants, can expose infants to baby blue syndrome [20,21]. F−, which
is highly concentrated in the Nzhelele area (Siloam), can cause dental fluorosis, according
to [20]. A study by the authors of [45] found that, of the 87% of households that use
groundwater for drinking purposes in the Siloam area, 85% of the members already have
mottled teeth/ dental fluorosis. Based on the TDS classification by Freeze and Cherry [42],
91.1% of the samples were classified as fresh water, and 8.9% of the samples were classified
as brackish (Table 3). Classification of TDS by [47] indicates that 72.6% of groundwater
samples were desirable for drinking purpose. Additionally, 18.5% of groundwater samples
in the Soutpansberg region were permissible for drinking purposes. Only 8.9% of the
samples were not suitable for drinking purposes (Table 4). The main challenge is how
the status of groundwater with respect to suitability for drinking purposes can be shared
with groundwater users. Communicating with users that groundwater is not suitable
for drinking purposes without treatment can protect them from possible water-borne
diseases, improving their health and livelihood. For instance, rainfall and temperature
are forecasted by weather services globally as an early warning system and are shared on
various digital and print media. Groundwater custodians should start sharing groundwater
quality statuses with groundwater users through various digital and print platforms and
also with traditional authorities in rural areas. The situation discussed in [45], in which 85%
of groundwater users had dental fluorosis in the Siloam area, can be avoided by sharing
research outcomes with users while also accelerating the achievement of SDG 3 dealing
with good health and well-being.
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Table 4. Groundwater classification based on TDS [47].

TDS (mg/L) Classification No. of Samples (%)

<500 Desirable for drinking 90 (72.6%)
500–1000 Permissible for drinking 23 (18.5%)
1000–3000 Useful for irrigation 11 (8.9%)

>3000 Unfit for drinking and irrigation 0

4.3. Suitability of Groundwater for Irrigation Purposes

High concentrations of salt in irrigation water can increase solution osmotic pressure
and can also negatively affect the structure of soils, aeration, and permeability rate [51,52].
The suitability of groundwater of the Soutpansberg region for irrigation was assessed by
estimating a number of parameters, such as Na%, SAR, MH, PI, RSC (Table 5), and TDS
(Table 4). The major ions used are expressed in milliequivalents per litre (meq/L).

4.3.1. Alkali and Salinity Hazard (SAR)

The sodium adsorption ratio (SAR) is useful for determining the suitability of ground-
water for irrigation purposes, as it measures both sodium and alkali hazards for plants [23].
High concentrations of sodium in irrigation water may have harmful effects in most soils as
hardness is increased and permeability is reduced [53]. High concentrations of bicarbonate
and relatively low calcium are also hazardous for irrigation water [54]. A high content of
sodium relative to calcium and magnesium may cause sodicity in irrigation water. SAR
calculations (Equation (2)) in the Soutpansberg region indicate that 75% of the samples
were classified as excellent to good for irrigation purposes (Table 5). Additionally, 24.2%
of the samples were doubtful, and 0.8% of the samples were unsuitable for irrigation pur-
poses. Groundwater from Tshipise (geothermal spring) and Punda Maria were doubtful for
irrigation purposes, as presented in Figure 9. Samples that were unsuitable for irrigation
purposes (0.8%) are from the Tshipise geothermal spring (ZQMTPS2), where low mean
concentrations of Ca2+ (2 mg/L) and Mg2+ in relation to Na+ (66 mg/L) are responsible
for the unsuitability of groundwater for irrigation purposes, as low calcium is hazardous



Water 2022, 14, 1354 12 of 16

for irrigation [54]. Similar to suitability for drinking status, the communities and farmers
that are using groundwater for irrigation purposes are deprived of this information, as
most researchers and custodians of water publish research outputs and do not share them
with the affected communities, which can have a negative impact on livelihood and food
security in general.

Table 5. Classification of groundwater samples for suitability for irrigation.

Parameter Range Water Class No. of Samples (%)

Na% <20 Excellent 4 3.2
20–40 Good 42 33.9
40–60 Permissible 43 34.7
60–80 Doubtful 6 4.8
>80 Unsuitable 29 23.4

SAR (meq/L) <2 Excellent 57 46
2–8 Good 36 29
8–15 Doubtful 30 24.2
>15 Unsuitable 1 0.8

MH (%) <50 Suitable 30 24.2
>50 Unsuitable 94 75.8

PI (%) Class I (>75) Good 3 2.4
Class II (75–50) Permissible 106 85.5
Class III (<25) Unsuitable 15 12.1

RSC (meq/L) <2.5 Suitable 124 100
>2.5 Unsuitable 0 0
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4.3.2. Sodium Percentage (Na%)

Concentrations of sodium in groundwater are important in the classification of ir-
rigation water. Na% was calculated using Equation (3), and results are presented in
Table 5. The majority of groundwater samples in the study area were classified as excellent
(3.2%), good (33.9%), and permissible (34.7%) for irrigation purposes. A Na% of over
60 can cause destruction of the structures of soil and negatively affects the growth of
plants [53]. In the Soutpansberg region, 4.8% of the samples were doubtful (Na% = 60–80),
and 23.4% (Na% > 80) were unsuitable for irrigation purposes. Samples with a Na% > 80
contain very low concentrations of Ca2+ (<3 mg/L), and this is hazardous for irrigation
water according to [54]. Groundwater from the Tshipise geothermal spring is not suitable
for irrigation purposes due to a low Ca2+ concentration.
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4.3.3. Magnesium Hazard (MH)

Magnesium in groundwater influences the quality of soil by making it alkaline and
reducing crop yield [55]. The magnesium hazard is calculated using Equation (6), as pro-
posed by [56]. An MH of above 50 is deemed to be unsuitable for irrigation purposes.
Groundwater in 75.8% of the samples was unsuitable for irrigation, as the MH was calcu-
lated to be over 50 (Table 5). The unsuitability of groundwater based on MH is a concerning
issue, as 125.4 Mm3/a has been allocated for irrigation use in the Soutpansberg region. The
MH in groundwater was below 50 in 24.2% of the samples, which are mostly from Tshipise
(geothermal spring: ZQMTPS2). Samples that were not suitable for irrigation purposes
based on MH resulted from a Ca2+ > Mg2+ ratio. Therefore, groundwater in most parts of
the Soutpansberg region is not suitable for irrigation purposes based on magnesium hazard.
To ensure food security, this information should be shared with the farming community and
everyone using groundwater for irrigation purposes. Various digital and media platforms
can be used to share the status of groundwater for irrigation uses; therefore, precautions
can be taken before irrigating.

4.3.4. Permeability Index (PI)

The permeability index is based on Equation (4) and is used to classify irrigation water,
as proposed by [57]. Water from class I (PI > 75) and class II (PI 75–25) is considered to be
suitable for irrigation, whereas class III is considered to be unsuitable. The PI results from
the study area are tabulated in Table 5, in which 2.4% of the samples are good (Class I) and
85.5% of the samples are permissible (Class II) for irrigation purposes. Only 12.1% of the
samples were not suitable (Class III, PI < 25), resulting from high concentrations of HCO3

−

and relatively low Ca2+ concentrations in groundwater, which is hazardous for irrigation
water [54].

4.3.5. Residual Sodium Carbonate (RSC)

High concentrations of carbonate and bicarbonate ions relative to calcium and magne-
sium (alkaline earth) can result in the complete precipitation of calcium and magnesium [58].
Residual sodium carbonate (RSC) calculated using Equation (5) was measured in the Sout-
pansberg region to understand the effects of bicarbonate and carbonate on groundwater.
High RSC values in water result in an increase of adsorption of sodium in soil [59]. Water
with RSC of less than 2.5 is considered suitable for irrigation purposes. All 124 groundwater
samples were suitable for irrigation purposes, as the RSC was less than 2.5 (Table 5).

4.3.6. Total Dissolved Solids (TDS)

Suitability of groundwater for irrigation can be determined by using [47] TDS clas-
sification (Table 4). Irrigation water with TDS of less than 3000 mg/l is considered suit-
able/useful for irrigation purposes. TDS concentration levels in groundwater ranged from
32 to 1808 mg/L, which is within the useful limit for irrigation. Therefore, groundwater in
the Soutpansberg region is suitable for irrigation based on TDS.

5. Conclusions

Groundwater in the Soutpansberg region was slightly acidic to alkaline and was clas-
sified as fresh to brackish in nature. Concentration levels of parameters such as F−, NO3

−,
Cl−, and TDS were high and above the prescribed limit in various areas and villages in the
study area. Seasonal variation did not influence the concentration levels of the parameters
identified, as there is no significant difference in both wet and dry season samples. There is
a correlation between high concentration levels of contaminants such as NO3

− and TDS
and human settlements areas. Concentration levels of these contaminants were high in
settlements such as Gogogo, Maebane, Nzhelele, Punda Maria, and Tshitavha Sambandou,
where groundwater was not suitable for drinking purposes. Overall groundwater was
suitable for drinking purposes in most parts of the Soutpansberg region based on the phys-
iochemical analysis. Various methods used to determine the suitability of groundwater for
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irrigation purposes gave contrasting results. TDS, Na%, SAR, PI, and RSC determined that
groundwater was suitable for irrigation purposes. MH determined that groundwater was
not suitable for irrigation purposes due to low Ca2+ in the groundwater. Considering all
methods combined, groundwater seemed suitable for irrigation purposes in the Soutpans-
berg region. The presence of contaminants such as F−, NO3

−, and salinity in groundwater
poses a health risk to communities using groundwater for drinking purposes without
any form of treatment. This study recommends that the status of groundwater quality
in relation to suitability for drinking and irrigation purposes should be shared on digital
and print media and, if possible, to community leaders by researchers and custodians of
groundwater. Sharing information with affected communities is important, as it can stop
parachute research. There is also a need to develop groundwater quality guidelines for var-
ious aquifers to avoid comparing groundwater quality with treated water standards. This
study further recommends that there is a need to determine hydro-geochemical-influencing
groundwater quality in the Soutpansberg region. There is also a need to monitor groundwa-
ter for biological parameters in the area due to excessive usage of pit-latrines and livestock
farming. Consequently, proper management of groundwater and remediation should be
considered before utilizing groundwater for drinking purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
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