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Abstract: In this paper, we present a numerical approach to solving singularly perturbed semilinear
convection-diffusion problems. The nonlinear part of the problem is linearized via the quasilineariza-
tion technique. We then design and implement a fitted operator finite difference method to solve the
sequence of linear singularly perturbed problems that emerges from the quasilinearization process.
We carry out a rigorous analysis to attest to the convergence of the proposed procedure and notice
that the method is first-order uniformly convergent. Some numerical evaluations are implemented on
model examples to confirm the proposed theoretical results and to show the efficiency of the method.
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1. Introduction

Differential problems in which a small parameter, often referred to as a perturbation
parameter, multiply the highest derivatives are called singularly perturbed differential
problems. These problems arise in different fields of study such as fluid dynamics, magne-
tohydrodynamics, aerodynamics, oceanography, quantum mechanics, plasma dynamics,
chemical reactions, and liquid crystal modeling [1–3]. As an example, the heat and mass
transport phenomena [4] are described by singularly perturbed differential equations in
which the diffusion coefficient is regarded as a perturbation parameter.

Classical numerical methods have often failed to solve singularly perturbed problems.
This is because one or more boundaries or interior layers may arise as the perturbation
parameter approaches zero, thereby give undesirable results. To overcome this problem,
constructed numerical methods such as finite difference methods, in the form of fitted mesh
and fitted operator finite difference methods, finite element methods, and spline methods
are adopted. These methods are used on layer-adapted meshes such as the Shishkin
mesh, which is easy to construct, the Bakhvalov mesh, which gives superior accuracy, the
Bakhvalov–Shishkin mesh, and the Vulanovic–Shishkin mesh (see [5–10]). In this paper,
we consider the singularly perturbed semilinear convection-diffusion problems

εy′′(x) + a(x)y′(x) + f (x, y(x)) = 0, x ∈ Ω := (0, 1), (1)

subject to the following boundary conditions:

y(0) = A, y(1) = B, (2)

where ε is the perturbation parameter such that 0 < ε << 1, A and B are given constants, and
the functions a(x) and f (x, y(x)) are sufficiently smooth in the intervals Ω and C2 (Ω× R),
respectively, satisfying

a(x) ≥ α > 0, ∀ x ∈ Ω, (3)
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where α is a positive constant.
We obtain the reduced problem of Equation (1) by setting ε to zero, given as

a(x)y′(x) + f (x, y(x)) = 0. (4)

Under these conditions, Equations (1) and (2) and the reduced problem in Equation (4)
have a unique solution. This unique solution to Equations (1) and (2) exhibits a boundary
layer at the origin of the interval Ω as the perturbation parameter ε approaches zero (i.e., at
x = 0) (see [11–14]).

Not much work has been conducted on convection-diffusion semilinear singularly
perturbed problems related to Equation (1). Cimen and Amiraliyev [15] constructed an
exponential finite difference scheme, which flourishes by the method of integral identities to
solve a singularly perturbed semilinear delay differential equation. They obtained a first-order
uniform convergence in the discrete maximum norm. Niijima and Stynes [16,17] separately
solved a singularly perturbed boundary value problem of the form in Equation (1). They
adopted the use of finite difference schemes, and each obtained an almost first-order
uniform accuracy in a discrete L1 norm. Cakir and Arslan [18] used a fitted mesh finite
difference scheme constructed on a Shishkin mesh to solve a singularly perturbed semilinear
problem with integral boundary conditions. Their proposed scheme was found to be first-
order uniformly convergent in the discrete maximum norm. Cakir and Amiraliyev [19]
constructed a uniform finite difference scheme on a Shishkin-type mesh to solve a singularly
perturbed semilinear convection-diffusion three-point boundary value problem. This
method was shown to be first-order uniform convergent in the discrete maximum norm.
Igor and Pack [20] solved a singularly perturbed semilinear convection-diffusion problem
with discontinuous data using a difference scheme on local Green’s functions. The authors
achieved a first-order uniform convergent scheme on arbitrary meshes.

Linß [21] constructed a fitted mesh finite difference scheme on a Shishkin mesh to
solve singularly perturbed convection-diffusion with a boundary layer of attractive turning
points. He achieved an almost first-order convergence. Shishkin and Shishkina [22]
examined a Dirichlet problem on a vertical strip for a singularly perturbed semilinear
convection-diffusion problem. The authors used an iterative monotone difference scheme
to solve the problem and obtained a first-order uniform convergent results. They then
improved the order of convergence to second-order uniform (and improved the accuracy)
using a Richardson scheme. Linß and Vulanović [23] solved a semilinear convection-
diffusion problem with attractive boundary turning points by constructing a fitted mesh
finite difference method on a Shishkin mesh type. This method was established to be of
first-order uniform convergence.

More recently, further works were completed on semilinear singularly perturbed
scalar boundary value problems [24], scalar parabolic problems [25], or on systems of such
problems [26–29]. Again, the methods adopted in these works are essentially the fitted
finite difference methods based on Shishkin meshes.

Based on the literature, we observed that authors have mostly exploited the fitted
mesh finite difference schemes as well as some other methods to solve singularly perturbed
semilinear convection-diffusion problems. However, none of them, to the best of our
knowledge, have proposed a numerical method in the framework of nonstandard finite
difference (NSFD) methods to solve such problems.

In this paper, we propose an NSFD scheme to solve singularly perturbed semilinear
convection-diffusion problems. This scheme falls under the category of fitted operator finite
difference methods (FOFDMs), as they are known in previously published works such
as [30–32]. We transform the semilinear problem into a sequence of linear equations via the
quasilinearization technique. We then construct a fitted operator finite difference scheme
on the transformed problem. We show that the proposed method is ε-uniform convergent
to the first order. Unlike its fitted mesh counterpart, not only do the fitted operator finite
difference methods provide a simpler platform for analysis owing to their use of a uniform
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mesh, but their error bounds are not adversely affected by a logarithmic factor, as pointed
out in [33].

The rest of this paper is structured as follows. In Section 2, we transform the semilinear
problem into a system of linear singularly perturbed problems by the quasilinearization
technique. In Section 3, we analyze some properties of the system of linear problems.
In Section 4, we construct a fitted operator finite difference scheme, which is analyzed in
Section 5. In Section 6, we present numerical examples to demonstrate the ε-uniformity of
the proposed method. Finally, we present the conclusion in Section 7.

2. Quasilinearization

We use the quasilinearization technique to transform the semilinear singularly per-
turbed convection-diffusion problem into a sequence of linear equations. We choose a
reliable initial approximation for the function y(x) in f (x, y(x)), and by a Taylor series, we
expand f (x, y(x)) around the chosen initial approximation and obtain

f (x, y(k+1)(x)) = f (x, y(k)(x)) + (y(k+1)(x)− y(k)(x))

(
∂ f (k)

∂y

)
(x,y(0))

+ . . . (5)

By putting Equation (5) into Equations (1) and (2), we have

εy′′(k+1)(x) + a(x)y′(k+1)(x) +

(
∂ f (k)

∂y

)
y(k+1) = − f (x, y(k)(x)) +

(
∂ f (k)

∂y

)
y(k)(x), (6)

y(k+1)(0) = A, y(k+1)(1) = B, (7)

for the iteration index k = 0, 1, 2 . . . .
Notice that Equation (6) is linear in y(k+1). Therefore, we solve the sequence of linear

Equations (6) and (7) in place of the semilinear problem in Equations (1) and (2) by the fitted
operator finite difference method that will be introduced in Section 4.

For the solution of the semilinear boundary value problem, we require that

max
k→∞

y(k)(x) = y∗(x), (8)

where y∗(x) is the solution of the semilinear problem. Numerically, we require that

|y(k+1)(x)− y(k)(x)| < λ, (9)

where λ is a small tolerance chosen by us. Then, y(k+1) is the approximate solution of the
semilinear problem.

3. Some Properties of the Linear Problem

We rewrite Equations (6) and (7) as

εu′′(x) + a(x)u′(x) + b(x)u(x) = F(x), (10)

where

b(x) =
∂ f (k)

∂y
, F(x) = − f (x, y(k)(x)) +

∂ f (k)

∂y
y(k)(x),

and y(k+1)(x) = u(x) such that

u(0) = A, u(1) = B. (11)

We present some important properties for the solution of Equations (10) and (11) which
will be useful in the subsequent section for the analysis of relevant numerical solutions.
Without a loss of generality, we assume that f is a decreasing function of y:
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Lemma 1. Continuous minimum principle: Assume that ν(x) is a sufficiently smooth function which
satisfies ν(0) ≥ 0 and ν(1) ≥ 0. Then, Lν(x) ≤ 0, ∀x ∈ Ω implies that ν(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Let ν be a value such that ν(x∗) = minx∈Ω ν(x), and assume that ν(x∗) < 0. Clearly,
x∗ /∈ {0, 1}, and therefore ν′(x∗) = 0 and ν′′(x∗) ≥ 0. Moreover, there is

Lν(x∗) = εν′′(x∗) + a(x∗)ν′(x∗) + b(x∗)ν(x∗) ≥ 0,

which is a contradiction. It follows that ν(x∗) ≥ 0, and thus ν(x) ≥ 0, ∀ x ∈ Ω.

Lemma 2. Uniform stability estimate: Let u(x) be the solution of Equations (10) and (11). Then,
we have

||u(x)|| ≤ α−1||F||+ max(|A|, |B|), ∀ x ∈ Ω. (12)

Proof. We construct two barrier functions Ψ± defined by

Ψ±(x) = α−1||F||+ max(|A|, |B|)± u(x).

Then, it can be said that

Ψ±(0) = α−1||F||+ max(|A|, |B|)± u(0)

= α−1||F||+ max(|A|, |B|)± A

≥ 0;

Ψ±(1) = α−1||F‖|+ max(|A|, |B|)± u(1)

= α−1||F||+ max(|A|, |B|)± B

≥ 0.

It follows that

LΨ±(x) = ε(Ψ±(x))′′ + a(x)(Ψ±(x))′ + b(x)Ψ±(x)

= b(x)[α−1||F||+ max(|A|, |B|)±Lu(x)]

= b(x)[α−1||F||+ max(|A|, |B|)± f (x)]

≥ b(x)[α−1||F||+ max(|A|, |B|)]
≥ 0, since ||F|| ≥ F(x).

Through Lemma 1, we obtain Ψ±(x) ≥ 0, ∀ x ∈ Ω.

Lemma 3. By letting u(x) be the solution of Equations (10) and (11) and a(x), b(x), and F(x) be
smooth functions, then

|v(i)(x)| ≤ C(1 + ε−ie−αx/ε), i = 1, . . . 4, x ∈ (0, 1), (13)

where α and C are positive constants independent of ε.

The proof can be seen in [7].

4. Construction of the FOFDM

In this section, we design a fitted operator finite different scheme base on the Mickens
rules [34,35]. We denote the approximations of uj at the grid point xj by the unknown Uj.
We partitioned the domain Ω := [0, 1] into N subintervals of a length h such that

xo = 0, xj = xo + jh, j = 1(1)N − 1, hj = xj − xj−1, xN = 1.
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We denote the set of these mesh points by ΩN . We then discretized Equations (10)
and (11) as

εδ2Uj + ajD+Uj + bjUj = Fj, j = 1, . . . N − 1, (14)

with the boundary condition

U0 = A, UN = B, (15)

where

D+Uj =
Uj+1 −Uj

h
, δ2Uj =

Uj+1 − 2Uj + Uj−1

φ2
j

,

and φ2
j is the denominator function given by

φ2
j =

εh
aj

(
exp

( ajh
ε

)
− 1
)

. (16)

The difference equations consist of N− 1 equations for N + 1 unknowns U0, U1, . . . , UN ,
where U0 and UN are given boundary conditions. We write Equations (14) and (15) in
matrix form as

AU = G

where U = [U1, U2, . . ., UN−1]
T and A is a tridiagonal matrix whose entries are of the form

Aij = r−j , i = j + 1, j = 1, . . . , N − 2, (17)

Aij = rc
j , i = j, j = 1, . . . , N − 1, (18)

Aij = r+j , i = j− 1, j = 2, . . . , N − 1, (19)

where
r−j =

ε

φ2
j

, rc
j = −

2ε

φ2
j
−

aj

h
+ bj, r+j =

ε

φ2
j
+

aj

h
,

and G is obtained as

G1 = F1 −
(
r−1
)
U0, (20)

Gj = Fj, j = 2, . . . , N − 2, (21)

GN−1 = FN−1 −
(
r+N−1

)
UN . (22)

Thus, the unknown U1, U2, . . . UN−1 is solved. The following lemma are relevant in
the convergence analysis of this method:

Lemma 4. Discrete minimum principle: Let ηj be a discrete function defined on ΩN and satisfying
ηo ≥ 0, ηN ≥ 0. Then, LNηj ≤ 0, ∀ 1 ≤ j ≤ N − 1 implies ηj ≥ 0, ∀ 0 ≤ j ≤ N.

Proof. Let k be a value such that ηk = minx∈ΩN ηj, and assume ηk < 0. Clearly, k 6= 0,
k 6= N, ηk+1 − ηk ≥ 0, and ηk − ηk−1 ≤ 0. It follows that

LNηj =
ε

φ2
k
(ηk+1 − 2ηk + ηk−1) +

ak
h
(ηk+1 − ηk) + bkηk (23)

=
ε

φ2
k
[(ηk+1 − ηk)− (ηk − ηk−1)] +

ak
h
(ηk+1 − ηk) + bkηk ≥ 0 (24)

Thus, LNηj ≤ 0, 1 ≤ k ≤ N − 1, which is a contradiction. Hence, ηj ≥ 0, ∀ x ∈ Ω.
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Lemma 5. Uniform stability estimate: If µi is in any mesh function such that µo = µN = 0, then

|µi| ≤
1
α

max
1≤j≤N−1

|LNµj|, 0 ≤ i ≤ N. (25)

Proof. Put Zi =
1
α max1≤j≤N−1 |LNµi| for 1 ≤ i ≤ N − 1. Introduce two mesh functions

ψ± defined by
ψ±i = Zxi±µi

Clearly, ψ±o = 0, ψ±N = 0 and ∀ 1 ≤ i ≤ N − 1:

LNψ±i = Zai + LNµi ≤ 0.

Since ai > α, Lemma 4 implies that ψ±i ≥ 0, ∀ 0 ≤ i ≤ N, and this completes
the proof.

5. Convergence Analysis

In this section, we analyze the convergence property of the proposed method described
in the previous section. The truncation error at the grid point xi is

Lh(u−U)i = (L−Lh)ui (26)

= εu′′i + aiu′i −
ε

φ2
i
(ui+1 − 2ui + ui−1)−

ai
h
(ui+1 − ui). (27)

By taking the Taylor series expansion of ui+1 and ui−1 and the truncated Taylor series

expansion of φ−2
i =

1
h2 +

ai
2εh
−

a2
i

12ε2 , we obtain

Lh(u−U)i = εu′′i −
(

h2u′′i +
h4

12
uiv

i (ξi)

)
×
(

ε

h2 +
ai
2h
−

a2
i

12ε

)
−ai

(
h
2

u′′i

)

= εu′′i −
(

h2u′′i +
h4

12
uiv

i (ξi)

)
×
(

ε

h2 +
1
2

(
ai+1 − ai

h

)
−

a2
i

12ε

)
−ai

(
h
2

u′′i

)

= − aihu′′

2
+

(
εuiv

12
(ξi)−

a2
i u′′

12ε
+

ai(x)u′′

2

)
h2+

(
ai(x)uiv

24
(ξi)−

a2
i uiv

144ε
(ξi)

)
h4,

where ξi ∈ (xi−1, xi+1). By applying the boundary of the solution and its derivative (see
Lemma 3) along with Lemma 5.2 in [36], we obtain

Lh(u−U)i ≤ −
aih
2

+

(
ε

12
−

a2
i

12ε
+

ai(x)

2

)
h2 +

(
ai(x)

24
−

a2
i

144ε

)
h4.

From the relation h > h2 > h4 , we have

|Lh(u−U)i| ≤ Ch.

By applying the uniform stability estimate (Lemma 5), we obtain

max
0≤j≤N

|(u−U)i| ≤ Ch. (28)

Theorem 1. Let u(x) be the solution of Equations (10) and (11) and U(x) be the numerical
approximation of Equations (14) and (15). If a(x), b(x) and F(x) are sufficiently smooth functions,
then the truncation error is given by

max
0≤j≤N

|(u−U)j| ≤ Ch, (29)
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where C is a constant independent of ε and h. This establishes that the numerical method developed
is first-order uniformly convergent.

6. Numerical Results

In this section, we consider four test examples of singularly perturbed semilinear
convection-diffusion problems to confirm our theoretical findings and to illustrate the
performance of the proposed method in practice. We compute the maximum error and
the rate of convergence and display the results in tables for different values of N and ε.
Because the exact solution of Example 3 does not behave well for ε values close to 1, we
chose N = 2i and ε = 10−j for i ≥ 4 and j ≥ 2. In the case where the exact solution is
known, the point-wise maximum error is given by

EN,ε = max
0≤j≤N

|uj −Uj|, (30)

where U is the approximate solution and u is the exact solution. In cases where the exact
solution is unknown, we compute the maximum point-wise error using the double mesh
principle [37]:

EN,ε = max
0≤j≤N

|Uε,N
j −Uε,2N

2j |, (31)

where UN and U2N are the numerical solutions computed on the meshes ΩN and
Ω2N , respectively.

The rates of convergence are computed using the formula

RN,ε = log2(ENk /E2Nk ), (32)

In the iteration process, the initial guess is U(0)
N = (A, 0, 0, . . . , 0, B), and the stopping

criterion is
max

k
|U(k+1) −U(k)| ≤ 10−10 , k = 1, 2, . . . (33)

Example 1. Consider the following singularly perturbed semilinear problem [38]:

εu′′ + 2u′ + exp(u) = 0, x ∈ [0, 1],

u(0) = 0, u(1) = − ln 2
exp(2/ε)

.

The exact solution is

u(x) = ln
(

2
1 + x

)
− exp

(
−2x

ε

)
ln 2.

In this case, the exact value is known, the maximum error, and the rate of convergence
are obtained with the formula described in Equations (30) and (32).

The quasilinearization process equations are

εu′′(k+1)(x) + 2u′(k+1)(x) + exp(u(k)(x))u(k+1)(x) = exp(u(k)(x))(u(k)(x)− 1), (34)

u(k)(0) = 0, u(k)(1) = 0.

Example 2. Consider the following singularly perturbed semilinear problem [39]:

εu′′ + u′ + u2 = 0, x ∈ [0, 1],

u(0) = 0, u(1) = 1/2.
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In this case, the exact value is unknown, and mthe aximum error and rate of conver-
gence are obtained with the formula describe in Equations (31) and (32). The quasilineariza-
tion process equations are

εu′′(k+1)(x) + u′(k+1)(x) + 2u(k)(x)u(k+1)(x) = (u(k)(x))2, (35)

u(k)(0) = 0, u(k)(1) = 1/2.

Example 3. Consider the following singularly perturbed semilinear problem [40]:

εu′′ + (2x + 1)u′ + u2 = 0, x ∈ [0, 1],

u(0) = 1, u(1) = 1.

The exact value is unknown, and the maximum error and rate of convergence are
obtained with the formula described in Equations (31) and (32). The quasilinearization
process equations are

εu′′(k+1)(x) + (2x + 1)u′(k+1)(x) + 2u(k)(x)u(k+1)(x) = (u(k)(x))2, (36)

u(k)(0) = 1, u(k)(1) = 1.

Example 4. Consider the following singularly perturbed semilinear problem [41]:

εu′′ + u′ = u exp(u), x ∈ [0, 1],

u(0) = 1, u(1) = 0.

The exact value is unknown, and the maximum error and rate of convergence are also
obtained with the formula described in Equations (31) and (32). The quasilinear process
equations are

εu′′(k+1)(x) + u′(k+1)(x) + exp(u(k)(x))(uk(x) + 1)(x)u(k+1)(x) = (u(k)(x)) exp(u(k)(x)), (37)

u(k)(0) = 1, u(k)(1) = 0.

In each of the four examples, the solution has a boundary layer at the left side of the
interval Ω. Tables 1–4 present the point-wise maximum error EN and the rate of convergence
RN for different values of ε and N. The results shown in the tables reveal that the proposed
method is of first-order uniform convergence, as projected by the theoretical analysis.
Figure 1 provides the plots of the exact and numerical solutions of Example 1 for ε = 10−2

and N = 512, intuitively showing that this numerical solution is a “good” approximation
of the exact solution. In Figure 2, for the fixed number of subintervals N = 256, we plot the
numerical solution for Example 1 for different values of ε, showing that the impact of ε on
the numerical solution disappears as ε approaches 0, thus confirming the ε-uniform aspect
of the proposed method. These conclusions were arrived at when observing the tabulated
results. When ε is small, the nodal maximum errors and the rate of convergence remain
unaffected by the change in value of this parameter.
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Table 1. Results for Example 1: maximum errors and convergence rates for FOFDM.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.60 × 10−2 9.36 × 10−3 5.37 × 10−3 3.82 × 10−3 3.37 × 10−3 3.25 × 10−3 3.22 × 10−3

0.77 0.80 0.49 0.18 0.05 0.01
10−3 1.60 × 10−2 9.33 × 10−3 5.03 × 10−3 2.61 × 10−3 1.33 × 10−3 6.95 × 10−4 4.45 × 10−4

0.78 0.89 0.95 0.97 0.94 0.64
10−4 1.60 × 10−2 9.33 × 10−3 5.03 × 10−3 2.61 × 10−3 1.33 × 10−3 6.71 × 10−4 3.37 × 10−4

0.78 0.89 0.95 0.97 0.99 0.99
10−4 1.60 × 10−2 9.33 × 10−3 5.03 × 10−3 2.61 × 10−3 1.33 × 10−3 6.71 × 10−4 3.37 × 10−4

...
...

...
...

...
...

...
...

10−20 1.60 × 10−2 9.33 × 10−3 5.03 × 10−3 2.61 × 10−3 1.33 × 10−3 6.71 × 10−4 3.37 × 10−4

0.78 0.89 0.95 0.97 0.99 0.99

EN 1.60 × 10−2 9.33 × 10−3 5.03 × 10−3 2.61 × 10−3 1.33 × 10−3 6.71 × 10−4 3.37 × 10−4

RN 0.78 0.89 0.95 0.97 0.99 0.99

Table 2. Results for Example 2: maximum errors and convergence rate for FOFDM.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 4.03 × 10−2 1.85 × 10−2 5.58 × 10−3 1.10 × 10−3 1.71 × 10−4 3.52 × 10−5 7.68 × 10−6

1.13 1.72 2.35 2.68 2.28 2.20
10−3 4.01 × 10−2 2.03 × 10−2 1.02 × 10−2 5.12 × 10−3 2.48 × 10−3 8.71 × 10−4 1.93 × 10−4

0.98 0.99 0.99 1.05 1.51 2.18
10−4 4.01 × 10−2 2.03 × 10−2 1.02 × 10−2 5.10 × 10−3 2.55 × 10−3 1.28 × 10−3 6.39 × 10−4

0.98 0.99 1.00 1.00 1.00 1.00
10−5 4.01 × 10−2 2.03 × 10−2 1.02 × 10−2 5.10 × 10−3 2.55 × 10−3 1.28 × 10−3 6.38 × 10−4

0.98 0.99 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

10−20 4.01 × 10−2 2.03 × 10−2 1.02 × 10−2 5.10 × 10−3 2.55 × 10−3 1.28 × 10−3 6.38 × 10−4

0.98 0.99 1.00 1.00 1.00 1.00

EN 4.01 × 10−2 2.03 × 10−2 1.02 × 10−2 5.10 × 10−3 2.55 × 10−3 1.28 × 10−3 6.38 × 10−4

RN 0.98 0.99 1.00 1.00 1.00 1.00

Table 3. Results for Example 3: maximum errors and convergence rate for FOFDM.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 2.39 × 10−2 1.16 × 10−2 6.45 × 10−2 1.24 × 10−1 1.14 × 10−1 7.52 × 10−2 4.29 × 10−2

1.04 −2.47 −0.95 0.13 0.60 0.81
10−3 2.38 × 10−2 1.11 × 10−2 5.38 × 10−3 2.65 × 10−3 1.33 × 10−3 3.29 × 10−2 1.09 × 10−1

1.10 1.05 1.02 0.99 −4.62 −1.72
10−4 2.38 × 10−2 1.11 × 10−2 5.38 × 10−3 2.65 × 10−3 1.31 × 10−3 6.54 × 10−4 3.26 × 10−4

1.10 1.05 1.02 1.01 1.01 1.00
10−5 2.38 × 10−2 1.11 × 10−2 5.38 × 10−3 2.65 × 10−3 1.31 × 10−3 6.54 × 10−4 3.26 × 10−4

1.10 1.05 1.02 1.01 1.01 1.00
...

...
...

...
...

...
...

...

10−20 2.38 × 10−2 1.11 × 10−2 5.38 × 10−3 2.65 × 10−3 1.31 × 10−3 6.54 × 10−4 3.26 × 10−4

1.10 1.05 1.02 1.01 1.01 1.00

EN 2.38 × 10−2 1.11 × 10−2 5.38 × 10−3 2.65 × 10−3 1.31 × 10−3 6.54 × 10−4 3.26 × 10−4

RN 1.10 1.05 1.02 1.01 1.01 1.00
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Table 4. Results for Example 4: maximum errors and convergence rates for FOFDM.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 2.36 × 10−1 7.94 × 10−2 2.04 × 10−2 3.67 × 10−3 9.17 × 10−4 3.31 × 10−4 1.43 × 10−4

1.51 1.96 2.47 2.00 1.47 1.21
10−3 2.43 × 10−1 9.97 × 10−2 4.58 × 10−2 2.17 × 10−2 9.48 × 10−3 3.05 × 10−3 6.41 × 10−4

1.28 1.12 1.08 1.20 1.63 2.25
10−4 2.43 × 10−1 9.97 × 10−2 4.58 × 10−2 2.20 × 10−2 1.08 × 10−2 5.36 × 10−3 2.65 × 10−3

1.28 1.12 1.06 1.03 1.01 1.01
10−5 2.43 × 10−1 9.97 × 10−2 4.58 × 10−2 2.20 × 10−2 1.08 × 10−2 5.36 × 10−3 2.67 × 10−3

1.28 1.12 1.06 1.03 1.01 1.01
...

...
...

...
...

...
...

...

10−20 2.43 × 10−1 9.97 × 10−2 4.58 × 10−2 2.20 × 10−2 1.08 × 10−2 5.36 × 10−3 2.67 × 10−3

1.28 1.12 1.06 1.03 1.01 1.01

EN 2.43 × 10−1 9.97 × 10−2 4.58 × 10−2 2.20 × 10−2 1.08 × 10−2 5.36 × 10−3 2.67 × 10−3

RN 1.28 1.12 1.06 1.03 1.01 1.01

Figure 1. Comparison of the exact and approximate solutions of Example 1 for ε = 10−2 and N = 512.
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(a)

(b)

Figure 2. Cont.
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(c)

(d)

Figure 2. Plots of the approximate solution of Example 1 for (a) ε = 10−1, (b) ε = 10−2, (c) ε = 10−4,
and (d) ε = 10−6 with N = 256.
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7. Conclusions

We designed a fitted operator finite difference method for the numerical solution of a
singularly perturbed semilinear convection-diffusion problem. The semilinear problem is
transformed into a system of linear problems via the quasilinearization technique. The anal-
ysis and the numerical illustration conform to an agreement of a first-order ε-uniform
convergence rate independent of the perturbation parameter. We present the maximum
error and rate of convergence for different values of ε and N in tables. This work presents
an alternative to numerical approaches for this class of problems. This is, to the best of our
knowledge, the first time that singularly perturbed semilinear convection-diffusion two-
point boundary value problems are solved using fitted operator finite difference methods.

The few previous works on singularly perturbed semilinear problems considered
majorly fitted mesh methods based on Shishkin meshes. Although uniformly convergent,
these methods suffer the drawback of presenting error bounds that depend on a logarithmic
factor. This factor contributes to lowering both the accuracy and the rate of convergence.
A further advantage of fitted operator finite difference methods is the simplicity of their
analysis due to their use of uniform meshes.
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