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The Nyquist frequency for irregularly spaced time-series:
a calculation formula
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ABSTRACT

Eyer & Bartholdi showed that the Nyquist frequency of irregularly sampled time-series can
be very high. In this paper, a calculation formula for the Nyquist frequency is presented. In
practice there is an upper limit of 0.5/� on this frequency, where � is the best accuracy with
which time is recorded.
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1 I N T RO D U C T I O N

Consider a time-series of measurements y1, y2, . . . , yN taken at times t1, t2, . . . , tN ; the ti are, in general, not regularly spaced, that is,

δ j = t j+1 − t j (1)

is not constant. The notation is simplified if it assumed that the mean of the yi is zero, hence this non-essential assumption is made. The
periodogram of the yi is defined as

I (ω) = 1

N

⎡⎣(
N∑

k=1

yk cos ωtk

)2

+
(

N∑
k=1

yk sin ωtk

)2
⎤⎦ , (2)

where ω = 2πν is the angular frequency.
It is instructive to first consider regularly spaced data, with the time-unit defined such that δ j ≡ 1 (j = 1, 2, . . . , N − 1); it is well

known that the Nyquist frequency in this case is 0.5. Fig. 1 shows the periodogram of the function yj = cos(0.6πj) + ej (j = 1, 2, . . . , 100),
the ej being Gaussian noise with standard deviation 1.5. The spectrum has been plotted at frequencies up to twice the Nyquist frequency.
A striking feature of the periodogram is its symmetry with respect to the Nyquist frequency. The entire pattern of Fig. 1 repeats at even
higher frequencies, that is, I(ω + 2Jπ) = I(ω), for integer J, as can be verified from (1). The Nyquist frequency thus constitutes an upper
limit to the frequency range over which the periodogram can be uniquely calculated. (Note though the choices of frequency intervals other
than [0, 0.5] are formally acceptable – and may in fact be preferred if there is information pointing to frequencies of interest not being in
[0, 0.5].)

We follow Eyer & Bartholdi (1999) in using this property of the periodogram – in particular, the symmetry about the Nyquist frequency
– as a basis for defining the Nyquist frequency in the case of irregularly spaced time-series. In the next section of this paper, a formula suitable
for calculation of the symmetry frequency is derived. Section 3 contains a few simulated and real-life examples.

2 A F O R M U L A F O R T H E C A L C U L AT I O N O F T H E N Y QU I S T F R E QU E N C Y

Equation (2) can be written in the equivalent form

I (ω) = 1

N

N∑
k,�=1

yk y� cos ω(tk − t�) (3)

which saves some algebra.
Setting

I (ω0 + ψ) = I (ω0 − ψ),
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it follows from (3) that

I (ω0 + ψ) − I (ω0 − ψ) = 1

N

N∑
k,�=1

yk y�[cos(ω0 + ψ)(tk − t�) − cos(ω0 − ψ)(tk − t�)]

= −2

N

N∑
k,�=1

yk y� sin ψ(tk − t�) sin ω0(tk − t�)

= −4

N

N−1∑
�=1

N∑
k=�+1

yk y� sin ψ(tk − t�)[sin ω0(tk − t�)]

= 0.

In order to have the last sum equal to zero for arbitrary yi , ti and ψ , it is sufficient that all terms of the form in square brackets vanish,
that is,

sin ω0(tk − t�) = 0 for all k, �. (4)

The last requirement can be written as a single equation for the unknown ν0 = ω0/2π:

SS(ν0) =
N−1∑
�=1

N∑
k=�+1

[sin 2πν0(tk − t�)]2 = 0. (5)

A few remarks:

(i) Let

δmin = min
k,�

(tk − t�) = min
j

(δ j )

(where δ j is defined in equation 1). Eyer & Bartholdi (1999) showed that the effect of irregular sampling is to increase the Nyquist frequency
over the value expected by analogy with the case of regular time-spacing, namely 0.5/δmin. In fact, in theory there may be no finite solution
for ν0.

(ii) In the statistics and signal processing literatures the effect is referred to under the heading ‘alias free spectrum estimation’–a recent
reference is Tarczyński & Qu (2005). Note that ‘aliasing’ here refers to the non-uniqueness of the spectrum discussed in Section 1, and not
to its usual meaning in the astronomy literature, which is cycle count ambiguity induced by data gaps; see Kurtz (1983).

(iii) If the observations are separated by integer multiples of some underlying time-unit δ∗, that is,

tk − t� = Mk�δ∗,

where Mk� is an integer, then

ν0 = 0.5

δ∗
(6)

satisfies (4).
(iv) Note that (6) will always apply in practice, since time is recorded to some finite precision �, hence implicitly defining δ∗. As an

example, if the Julian Day is recorded to five decimal places at best, and measurements are made at random times, then ν0 = 5 × 104 d−1 or
0.58 Hz. Of course, it may be possible to find smaller ν0 satisfying (5). In other words, equation (6) provides the upper limit to the Nyquist
frequency.

(v) In general it is only necessary to scrutinize (5) in a limited number of frequencies: this follows from (4). Focus on a particular pair tk , t�
of time-points. It is then required that ω0 be such that (4) is satisfied; this implies that a necessary condition for ω to be the Nyquist frequency
ω0 is

ω = Jπ

tk − t�
, (7)

where J is any integer. It is therefore only necessary to evaluate (5) for frequencies given by (7). In practice, it is advantageous to choose the
indices k and � so that π/(tk − t�) is as large as possible, that is to have tk − t� = δmin. Equation (5) then only needs to be evaluated in integer
multiples of 0.5/δmin.

(vi) As pointed out by Eyer & Bartholdi (1999) the effect of finite exposure times will also place a practical upper limit on highest
observable frequency.

3 E X A M P L E S

We return to the example of Section 1, and consider the same sinusoid defined on the time-interval (1, 100). It is again sampled 100 times,
but now at points randomly selected from a 0.0213 time-unit spacing over (0, 100). The periodogram of these data is plotted in Fig. 2, for the
same frequency interval as in Fig. 1. The symmetry properties are clearly different (see also the discussion in Deeming 1975).
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Figure 1. The periodogram of a sinusoid with frequency 0.3, with simulated noise superimposed. The 100 data elements are regularly spaced, one time-unit
apart. The plot extends over a frequency interval equal to twice the Nyquist frequency.
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Figure 2. The periodogram of a sinusoid with frequency 0.3, randomly sampled 100 times over a time interval 100 units long. Although the only difference
with Fig. 1 is that the time-sampling is no longer regular, the periodogram is no longer symmetrical about a frequency of 0.5.

The results of calculating the sum of squares (5) in the trial frequencies

ω0 = jπ
δmin

= jπ
0.1277

j = 1, 2, . . . , 20 (8)

are plotted in Fig. 3. The solutions are at multiples of ν0 = 23.5; confirmation that this is correct can be seen in Fig. 4 in which the periodogram
is plotted over the interval [0, 47]. By contrast, 0.5/δmin = 3.9154.

Fig. 5 shows plots of the function SS in (5) for two disparate data sets. Koen & Ishihara (2006) monitored a few fields in the young open
cluster IC 2391 for a few hours each. The intervals between observations for one of these runs, made up of 53 observations spanning 0.28 d
(6.8 h), is plotted in Fig. 6. There are slight irregularities in the intervals; these are spread over the interval [5.31, 5.61] × 10−3 d. This scatter
is sufficient to produce an alias-free (in the sense of Section 2, point ii) periodogram. The other data set consists of 177 Hipparcos brightness
measurements of the Cepheid pulsator V473 Lyr, taken over 1150 days. In both cases, the Nyquist frequency is equal to the upper limit of
50 000 d−1 (see points iii and iv of Section 2).

We close with a simulation aimed at persuading the disbelieving: a sinusoid with unit amplitude and frequency 17 280 d−1 (i.e. a period
of 5 s) is sampled with the time-spacing of the IC 2391 observations. For veracity Gaussian noise with a standard deviation of 1.5 is added to
each of the 53 simulated observations. The resulting periodogram can be seen in Fig. 7.
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Figure 3. The sum of squares SS (equation 5) for the simulated data giving rise to Fig. 2, calculated at multiples of 0.5/δ∗ (see text). The zeros occur at
multiples of 23.5, the Nyquist frequency.
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Figure 4. The periodogram of the data described in the caption of Fig. 2. Note the symmetry about the Nyquist frequency 23.5.
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Figure 5. The sum SS (equation 5) for one night of observations of a field in IC 2391 (top panel) and for 3 years’ Hipparcos coverage of V473 Lyr (bottom
panel).
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Figure 6. The lengths of the time-intervals between successive observations of a field in the cluster IC 2391.
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Figure 7. The periodogram of 53 simulated observations of a sinusoid with a period of 5 s (frequency 17 280 d−1). The ‘measurements’ are spread somewhat
unevenly (see Fig. 5) over 6.8 h.
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