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A B S T R A C T 

We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, 
low redshift H I intensity mapping, and present an open-source PYTHON toolkit for doing so. We use MeerKAT and SKA1-MID- 
like simulations of 21 cm foregrounds (including polarization leakage), H I cosmological signal, and instrumental noise. We find 

that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to 

reco v er the H I power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at 
reco v ering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are 
worse at reco v ering the transv erse power spectrum, since the y rely on frequenc y-only co variance information. When halving 

our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It 
performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent 
fore ground remo val option for the case of single-dish, low-redshift H I intensity mapping in the absence of missing frequency 

channels. Our PYTHON toolkit GPR4IM and the data used in this analysis are publicly available on GitHub. 

Key words: methods: data analysis – cosmology: observations – large-scale structure of Universe – radio lines: general. 
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 I N T RO D U C T I O N  

eutral hydrogen (H I ) intensity mapping (IM) is a no v el probe able
o trace the large-scale structure (LSS) of the Universe using the
1cm hyperfine transition of hydrogen (Bharadwaj, Nath & Sethi
001 ; Battye, Davies & Weller 2004 ; Chang et al. 2008 ). After
eionization, most of the neutral hydrogen in the interstellar medium
ecame ionized, and most of the remaining neutral hydrogen can be
ound inside of self-shielding galaxies. Hence, H I is a good probe
or the distribution of matter in the Universe. Instead of using H I to
race individual galaxies, IM uses the combined emission of H I from
umerous galaxies to probe how much structure is in a given area
f the sky. As such, it can map large areas of the sk y v ery quickly,
osing an advantage o v er traditional spectroscopic galaxy surv e ys.
ee Ko v etz et al. ( 2017 ) and Liu & Shaw ( 2020 ) for re vie ws on the
ubject. 

For single-dish IM (Battye et al. 2013 ), several telescope dishes
an be used in autocorrelation mode, probing large areas of the sky
ery quickly (Bull et al. 2015 ; Santos et al. 2017 ; Wang et al. 2020 ).
hile fast, single-dish IM suffers from low angular resolution, since

ny structure smaller than the angular resolution of the telescope
ill not be resolved. This has the effect of damping small-scale

tructure. Despite this, studies have found that it is possible to probe
osmological parameters to significant precision with future H I IM
ingle-dish surv e ys (e.g. Chang et al. 2008 ; Peterson et al. 2009 ; Seo
t al. 2010 ; Ansari et al. 2012 ; Battye et al. 2013 ; Bull et al. 2015 ;
 E-mail: p.s.soares@qmul.ac.uk 

f  

e  

s  

Pub
 illaescusa-Navarro, Alonso & V iel 2016 ; Pourtsidou, Bacon &
rittenden 2017 ; Kennedy & Bull 2021 ; Soares et al. 2021 ). 
In order to access the cosmological H I IM signal, systematic,

nd instrumental effects must be addressed, of which astrophysical
oregrounds pose a particular problem. These foregrounds emit in
he same radio frequencies at which we observe the H I signal, and
re several orders of magnitude brighter. Howev er, the y vary slowly
n frequency (i.e. their spectrum looks very smooth), while the H I

ignal is tracing the large-scale structure of the Universe and so is
ot smooth in frequency. 
We can exploit the spectral smoothness of the foregrounds to

eparate them from the cosmological signal (Chang et al. 2010 ;
iu & Tegmark 2011 ; Alonso et al. 2014b ; Bigot-Sazy et al. 2015 ;
li v ari, Remazeilles & Dickinson 2015 ; Switzer et al. 2015 ; Wolz

t al. 2015 ). Blind fore ground remo val methods such as principal
omponent analysis (PCA) do not require previous knowledge of
hat the foregrounds look like, using the fact that they should be

tatistically separable from our H I signal (for a study into some of
he main fore ground remo val methods for H I IM, see Cunnington
t al. 2021 ). Ho we ver, it is dif ficult to a v oid also removing some of
he H I signal in the process, leading to biased cosmological parameter
stimates (Wolz et al. 2015 ; Cunnington, Camera & Pourtsidou
020b ; Soares et al. 2021 ). 
In reality, foreground signals are not perfectly smooth in frequency,

ince telescope effects such as polarization leakage can introduce
tructure that is difficult to mitigate, posing further complications to
ore ground remo val (Jelic et al. 2008 , 2010 ; Moore et al. 2013 ; Liao
t al. 2016 ; Carucci, Irfan & Bobin 2020 ). While it is possible to try to
imulate polarization leakage effects, it is important to keep in mind
© 2021 The Author(s) 
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hat, in the absence of end-to-end simulations, current foreground 
imulations are considered o v erly idealized. Real data analyses of H I

M experiments conduct much more aggressive foreground cleaning 
han simulations require. In fact, an autocorrelation H I IM detection 
s yet to be observed, with current detections relying on cross-
orrelation with optical galaxy surv e ys. Since optical galaxy surv e ys
ave different systematic effects than H I IM surv e ys, these drop out in
ross-correlation, making a detection achie v able (Masui et al. 2013 ;
witzer et al. 2013 ; Wolz et al. 2016 ; Anderson et al. 2018 ; Wolz
t al. 2021 ). 

In the realm of higher redshift ( z > 6), interferometric H I

xperiments, the aim is to probe the Epoch of Reionization (EoR) and
osmic Dawn, learning about the first stars and the Universe before 

eionization. While some instrumental and systematic effects differ 
etween this and our low redshift, single-dish H I IM case, both are
ubject to astrophysical foreground contamination. Gaussian Process 
egression (GPR; Rasmussen & Williams 2006 ) has been used as
 fore ground remo val technique in the conte xt of EoR (Mertens,
hosh & Koopmans 2018 ; hereafter M18), and has been found to
ork well for both simulations and real data (Gehlot et al. 2019 ;
ffringa, Mertens & Koopmans 2019 ; Ghosh et al. 2020 ; Hothi

t al. 2020 ; Kern & Liu 2020 ; Mertens et al. 2020 ). GPR, like other
ore ground remo val methods such as PCA, can also lead to H I signal
oss. Recent studies have looked at how to correct for this signal
oss within GPR (Kern & Liu 2020 ; Mertens et al. 2020 ), and in
his paper we will consider the method proposed in Mertens et al.
 2020 ). 

In this paper, we aim to apply GPR for the first time as a foreground
emoval technique in the context of single-dish, low redshift H I IM.
ur analysis follows on from Cunnington et al. ( 2021 ) (hereafter
21), which used MeerKAT and SKA1-MID-like H I IM simulations, 

ncluding H I cosmological signal, smooth foregrounds, polarized 
oregrounds, and instrumental noise, to thoroughly investigate and 
ompare different foreground removal techniques. We use these 
imulations to determine how GPR would perform in our case, 
nd compare it to the widely used foreground removal technique 
CA. 
We aim to investigate first if it is possible to perform GPR as

 fore ground remo val technique in our case, and if yes, we aim to
xplore the following questions: How well does it perform compared 
o PCA? What are its advantages? What are its limitations? How does
t perform in the context of different instrumental and systematic 
ffects? What should we keep in mind, and be careful about, if we
ant to use it in the context of real data analyses? 
We base our work on the publicly available code PS EOR 1 (M18),

hich outlines how to perform GPR in the context of EoR obser-
ations. Using it as a great starting point, we created the publicly
vailable PYTHON package GPR4IM , 2 a user-friendly code that can 
e used to perform GPR as a foreground removal technique for
ny real space H I intensity map, either simulated or real. The
RL in the caption of each figure shows how the figure was
roduced. 
The paper is organized as follows. We introduce our simulations 

n Section 2. We explain how GPR and PCA work to remo v e
oregrounds in Section 3. In Section 4, we show power spectrum 

esults of the reco v ered H I power spectrum using GPR and PCA for
he different cases considered. We conclude in Section 5. 
 ht tps://gitlab.com/flomert ens/ps eor
 https:// github.com/paulassoares/ gpr4im 
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 SI MULATI ONS  

e make use of the H I IM simulations presented in C21, choosing
he ones centred on the Stripe82 field, a popular target area for
alaxy surv e ys. These simulations include the smooth foreground 
ignal, the polarized foreground signal, the H I cosmological signal 
nd instrumental noise. The polarization leakage is simulated using 
he software CRIME , 3 and the smooth foregrounds are extrapolated 
rom observations, which contain sk y structure. F or more details on
he simulations, see the Appendix and C21. They are an idealized
epresentation of what a future H I IM surv e y will look like, such as
he proposed MeerKLASS surv e y (Santos et al. 2017 ). We assume
hroughout that our sky area is small enough that we can use a
artesian grid projection without much distortion. This flat-sky 
pproximation is widely used in large-scale structure surv e ys, where
urv ed sk y effects are not a major limitation (Blake, Carter & Koda
018 ; Castorina & White 2018 ). 
Each frequency channel ( ν) of our simulation is binned into pixels

 θ), therefore the total observed temperature fluctuations in our data
an be described as 

T obs ( ν, θ ) = δT FG ( ν, θ ) + δT HI ( ν, θ ) + δT noise ( ν, θ ) . (1) 

The foreground signal is itself composed of the Galactic syn- 
hrotron emission, free–free emission, extragalactic point sources, 
nd polarization leakage: 

T FG = δT sync + δT free + δT point + δT pol . (2) 

We centre our simulations at an ef fecti ve redshift of z eff =
.39, and assume a redshift range of 0.2 < z < 0.58, though our
osmological signal does not evolve with redshift (see the Appendix). 
he frequency at which we observe the H I signal changes with

edshift as ν = 1420MHz/(1 + z), so our redshift range corresponds to
 frequency range of 899 < ν < 1184 MHz , which is representative
f the MeerKAT telescope in the L band (Santos et al. 2017 ). The
imensions of our simulaion box are, in comoving distance units, 
 x = 1000 , L y = 1000 , L z = 924 . 78 Mpc h 

−1 , and we grid it into
 olume-pixels (v oxels) of dimensions N x = 256 , N y = 256 , N z =
85 [ z denotes the parallel to the line-of-sight (LoS) direction, while
 and y are perpendicular to the LoS]. This gridding corresponds
o a frequency resolution of δν = 1 MHz. The sky area covered by
ur simulation is approximately 3000 deg 2 , also representative of a
eerKLASS-like surv e y (Santos et al. 2017 ). 
After adding our different signals together, we smooth them by a

onstant Gaussian telescope beam, to make the angular resolution 
epresentative of future surveys. The resolution of the beam is 
etermined by the frequency of observation ( ν) and the size of the
elescope dish ( D dish ): 

FWHM 

= 

1 . 22 c 

νD dish 
, (3) 

here c is the speed of light. We choose D dish = 15 m based on
he SKA1-MID dishes, but this is also similar to the MeerKAT dish
ize. Although θFWHM 

is frequency dependent, we smooth every 
requency channel to the same resolution to aid the performance of
ur foreground removal algorithms (Matshawule et al. 2020 ). We 
hoose the common resolution to be that at our minimum frequency,
min = 899 MHz , since this will give the largest beam size, equi v alent
o θFWHM 

= 1.55 deg. 
The top row of Fig. 1 shows each component of our simulation

s a function of frequency. Each line shows a different random
 ht tp://intensit ymapping.physics.ox.ac.uk/CRIME.ht ml 
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Figure 1. Top : Random LoS samples drawn from each component of our simulation, namely from left to right: the smooth foregrounds, the polarized 
foregrounds, the H I (21cm) signal, and the instrumental noise. Bottom : Normalized frequency covariance for each component. The panels are arranged in order 
of decreasing signal amplitude and frequency correlation, from left to right. URL 
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ix el, to giv e a better idea of what the signal looks like throughout
ur simulation box. The foreground signals are much smoother in
requency than the H I signal, and this will be used later in order
o perform the foreground removal. The polarized foreground is
ess smooth in frequency than the smooth foregrounds, which will
e important for foreground removal too. On the bottom row, we
how the normalized frequency covariance of each component of
ur signal. It will be rele v ant later that the smooth foreground signal
s brighter and more correlated at lower frequencies. 

 F O R E G RO U N D  REMOVA L  M E T H O D S  

ere, we describe the main foreground removal technique studied
n this paper, GPR. We also present the PCA technique, which is a
idely used fore ground remo val technique that we will compare the
erformance of GPR to. 

.1 Gaussian process regression 

n this section, we will introduce the framework of GPR and
iscuss how it applies to our foreground removal problem. For a
omprehensive and in-depth discussion of Gaussian processes, please
ee Rasmussen & Williams ( 2006 ), and for an intuitive description,
ee Luger, F oreman-Macke y & Hedges ( 2021 ). We used these, as
ell as M18, Mertens et al. ( 2020 ) and Kern & Liu ( 2020 ), as

xcellent references for writing this section. 
We can model our simulated data as a vector d , where each

lement is one ‘observation’ (while our data is simulated, we will
se the term ‘observation’ in this paper for simplicity). The length of
his data vector is determined by the number of observations made
in our case, N ν = N z = 285 observations made at N ν frequency
hannels). Each element (or observation) is an image slice with
otal number of pix els giv en by N θ = N x × N y , and containing
ll the spatial information observed at that frequency. Therefore, our
NRAS 510, 5872–5890 (2022) 
ata vector is actually a data matrix with dimensions N θ × N ν . The
requency range of our data, a vector with length N ν , is denoted
s ν. 

Our data is composed of four signal components: the smooth
oregrounds ( f smooth ), the polarized foregrounds ( f pol ), the H I cosmo-
ogical signal ( f 21 ) and the instrumental (Gaussian) noise ( n ). We
rite our data matrix as the sum of these components: 

d = f fg + f 21 + n , (4) 

here our foregrounds f fg can be made up of either only a smooth
omponent ( f fg = f smooth ), or a smooth component and a polarized
omponent ( f fg = f smooth + f pol ). The smooth component is smooth
n frequency, while the polarized one is less so, as seen in Fig. 1 . 

Because we are assuming that our signal components are separate
rom each other, the (frequency) covariance ( C ) of our data ( d ) can
e written as 

 = 

〈
d d T 

〉 = d d T / ( N ν − 1) = C fg + C 21 + C n , (5) 

here the foreground covariance is written as C fg = C smooth in the
bsence of polarization, and C fg = C smooth + C pol in the presence of
olarization. Here, we are assuming that the polarized foregrounds
av e an additiv e effect, which is a suitable approximation to first
rder. Formally, due to mode-mixing, polarization leakage would
lso have a multiplicative effect (Mertens et al. 2020 ). 

.1.1 What is a Gaussian process? 

he main idea behind GPR is that we can describe each component
f our data d as a Gaussian process . A Gaussian process is a Gaus-
ian distribution o v er infinite dimensions. Think of a multi v ariate
aussian distribution o v er two variables, but e xtend the number
f variables to infinity. And instead of variables, it is functions of
requency ν. Each line in the top panel of Fig. 1 is a function,

art/stab2594_f1.eps
https://github.com/paulassoares/gpr4im/blob/main/Jupyter%20Notebooks/Reproducible%20paper%20plots/Assorted%20plots.ipynb
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epresenting signal in our data ( d ) which is a function of frequency
 ν). 

To understand this better, think of how a multivariate Gaussian 
istribution o v er variables is defined by a mean μ (of size N × 1) and
ovariance � (of size N × N ). A random variable f ( N × 1) that has
 multi v ariate Gaussian distribution defined by μ and � is written 
s 

 ∼ N ( μ, � ) . (6) 

Now, assume that the mean is actually a mean function , in our case
 function of frequency: μ = m ( ν) ≡ m . The only difference is that
ow each element of the mean depends on frequency: μi = m ( ν i ).
ssume also that the covariance is defined by a kernel function :
 ≡ k( ν, ν), so each element of the covariance is given by � i,j =
( νi , νj ). If we assume a random variable f is a Gaussian process, we
rite 

f ∼ GP ( m, K ) , 

f ( ν) ∼ N ( m ( ν) , k( ν, ν)) . (7) 

Multi v ariate Gaussian distributions have several useful properties, 
any of which are shared by Gaussian processes. We outline a few

f these below: 

(i) Multi v ariate Gaussian distribution (and Gaussian processes) 
re easy to sample from. All one needs is a mean (or mean function)
nd a covariance (or kernel function). 

(ii) Multi v ariate Gaussian distributions (and Gaussian processes) 
ave a well-defined marginal likelihood function, assuming only 
aussian noise is present. It can be calculated analytically given a 
ean (or mean function) and a covariance (or kernel function), and 

an be maximized for inference problems. 
(iii) A Gaussian process is a stochastic process. Since we drawing 

rom an infinite Gaussian distribution, each draw is random and 
an take any functional form consistent with the mean and kernel 
unction. 

We assume that our data d (and each of its components) is one such
ariable f , which is drawn from a Gaussian process with a particular
ean and kernel function as in equation (7). As is commonly done
ith GPR, we assume a zero mean function, which is true for our
ata since we mean-centre each frequency slice. 

.1.2 For eground r emoval with GPR 

f we consider our data d to be a Gaussian process defined o v er the
requency range ν, we can obtain its joint probability with a Gaussian
rocess defined at another set of frequencies ν′ as 

d 
d ′ 

]
= N 

([
0 
0 

]
, 

[
k( ν, ν) k( ν, ν′ ) 
k( ν′ , ν) k( ν′ , ν′ ) 

])
. (8) 

Since our data is made up of separate components (each of which
s a Gaussian process), we split its kernel function ( K ≡ k( ν, ν)) into
eparate components: 

 = K fg + K 21 + K n , (9) 

here if we have polarized foregrounds presents, we write K fg = 

 smooth + K pol . Otherwise, K fg = K smooth . 
We are interested in separating our foreground signal from the rest

f our data. If we know our data’s kernel function K, we can write the
oint probability distribution of our data d and the foreground model 
 fg as (M18): 

d 
f fg 

]
= N 

([
0 
0 

]
, 

[
K fg + K 21 + K n K fg 

K fg K fg 

])
(10) 

Our foreground model f fg is also a Gaussian process, with 
xpectation value (E[ f fg ]) and covariance (cov[ f fg ]) defined by 

 fg ∼ N ( E [ f fg ] , cov [ f fg ]) . (11) 

The expectation value is a prediction of the foreground signal, and
he covariance is the uncertainty in this prediction. These are given
y (M18): 

E [ f fg ] = K fg [ K fg + K 21 + K n ] 
−1 d , 

cov [ f fg ] = K fg − K fg [ K fg + K 21 + K n ] 
−1 K fg (12) 

The expectation value E[ f fg ] is dependent not only on the fore-
round kernel K fg but also on the full kernel of our data K = K fg 

 K 21 + K n . It is thus important to ensure we have an appropriate
ernel for all the elements in our data. E[ f fg ] is also dependent on
ur data d , so it can be thought of as: given the known data d , the
oreground kernel K fg and the full data kernel K, what is the expected
mean) value of our foregrounds in our data’s frequency range? 

Thus, by estimating f fg , we are making an informed prediction for
hat our foregrounds look like. We can then subtract this prediction

rom the data, and hopefully be left with only our cosmological
ignal and instrumental noise. This is how one performs foreground 
emoval with GPR. The residual vector r (what is lefto v er after GPR
ore ground remo val) is defined as (M18): 

 = d − E [ f fg ] . (13) 

We are also interested in cov[ f fg ], the ‘error margin’ of our
oreground prediction E[ f fg ]. This is important for bias correction
echniques (see Section 3.1.6). 

So far we have described the process of fore ground remo val with
PR assuming we know the kernel K = K fg + K 21 + K n . In reality,
e need to use the data to try and find the best-fitting kernel for each

ignal component. 

.1.3 Kernel functions 

o understand how we find the optimized kernel functions for our
ata, let’s first think of a simple linear regression problem. Consider
 vector y of observed values (dependent variable), and a vector
 of input values (independent variable), both of length N . If the
 ariables follo w a linear trend, it can be fit with a linear model:
 i = mx i + b, i = 1 , ..., N . This might be a good model for the data,
ut the model parameters ( m and b ) still need to be optimized, which
an be done using a maximum likelihood estimation, for example. 
hus, this is a two-step process: first, a model is chosen to best
escribe the data, and then the parameters of the model are optimized.
Our kernel optimization problem is similar, but not as simple as

his two-step process. We wish to find the kernel functions K that
est fit the covariance of our data C (equation 5). For example,
or the fore ground co variance C fg , we want to find the kernel
unction K fg that best describes that covariance, and its best-fitting 
yperparameters. The parameters of the kernel functions are called 
yperparameters to emphasize that a Gaussian process is a non- 
arametric model. 
We henceforth use the terms ‘k ernel’, ‘k ernel function’ and

covariance function’ interchangeably, but the data covariance is 
ot equi v alent to the covariance function – the covariance function
MNRAS 510, 5872–5890 (2022) 
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Figure 2. Left : RBF covariance samples. Right : Exponential covariance samples. We can see that overall, the RBF samples look smoother than the exponential 
samples. The top row shows the case of small variance and small length-scale ( � = 1 , σ 2 = 1), meaning the signal amplitude is small and the data is not very 
correlated in frequency. The bottom row is showing the opposite case of a higher variance and length-scale ( � = 100 , σ 2 = 100), with higher signal amplitude 
and more frequency correlation. URL 
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s the model we are optimizing in order to best describe the data
ovariance. 

The covariance function must be a function of frequency ( K =
( ν, ν)), since our data is a function of frequenc y. There e xist sev eral
idely used kernels in GPR. One of them is the Mat ́ern kernel, which
as the form (Rasmussen & Williams 2006 ): 

 Matern ( ν, ν ′ ) = σ 2 2 
1 −η

	( η) 

(√ 

2 η
| ν − ν ′ | 

� 

)η

K η

(√ 

2 η
| ν − ν ′ | 

� 

)
, 

(14)

here 	 is the gamma function and K η is the modified Bessel function
f the second kind. The three hyperparameters of our Mat ́ern kernel
odel that we want to optimize are: 

(i) σ 2 is the variance , which describes the o v erall amplitude of
he signal. We expect σ 2 to be larger for our foregrounds than for our
 I signal since the foregrounds are brighter (see Fig. 1 ); 
(ii) � is the length-scale , which describes the typical scale of

orrelations in our data, across frequency. A larger value of � means
he data is more correlated in frequency, so we expect � to be larger
or our foregrounds than for our H I signal, since the foregrounds are
ore correlated in frequency (see Fig. 1 ); 
(iii) η is the spectral parameter , which determines the overall

smoothness’ of our data. We expect this to be larger for our
oregrounds than for our H I signal, since our foregrounds look smooth
n frequency while the H I signal is more Gaussian (see Fig. 1 ). 

The spectral parameter η is particularly important because it can
implify the Mat ́ern kernel. Some common choices are as follows: 

(i) η → ∞ : in this limit, the Mat ́ern kernel simplifies to a radial
asis function (RBF), also called a squared exponential function
r Gaussian function. This limit describes a very smooth signal,
hich is ideal for our foreground signal. Both Kern & Liu ( 2020 )

nd Mertens et al. ( 2020 ) use this kernel to describe their smooth
oreground component. It has the form: 

 RBF ( ν, ν ′ ) = σ 2 exp 

(
( ν − ν ′ ) 2 

2 � 2 

)
; (15) 

(ii) η = 5/2: In this limit, the Mat ́ern kernel is relatively smooth
ut not as smooth as the RBF kernel. M18 uses this to describe their
mooth foreground component; 

(iii) η = 3/2: In this limit, the Mat ́ern kernel is even less smooth
n frequency, and it can be used to describe foreground components
NRAS 510, 5872–5890 (2022) 
hat have medium frequency smoothness, as is done in e.g. M18 and
ertens et al. ( 2020 ); 
(iv) η = 1/2: In this limit, the Mat ́ern kernel is the least smooth in

requency, and is known as the exponential function. It agrees well
ith a spectrally varying signal such as the H I signal. The form of

his kernel, which is used in e.g. M18, Mertens et al. ( 2020 ) and
ern & Liu ( 2020 ) to describe the H I signal, is 

 exp ( ν, ν ′ ) = σ 2 exp 

( | ν − ν ′ | 
� 

)
. (16) 

The Mat ́ern kernel is very useful and widely applicable due to its
exibility. With different hyperparameters, it can describe a variety
f different signals. We find that the Mat ́ern kernel is sufficient to
escribe all components in our data, with differing hyperparameters.
ther kernel functions, such as the rational quadratic function, are

lso useful. Gehlot et al. ( 2019 ) for example use it to describe
requenc y varying fore grounds, which are qualitativ ely similar to
ur polarized foregrounds, ho we ver we did not find it to perform as
ell as the Mat ́ern kernel in our data. 
There also exist kernel functions with periodic behaviour, for
ore oscillatory signals. Our simulations do not include this type of

ehaviour hence we do not consider these kernels. Ho we ver, with real
ata, there might exist systematic effects with this type of behaviour.
In Fig. 2 , we e x emplify what samples dra wn from an exponential

nd RBF covariance look like. We consider the cases of small vari-
nce and length-scale ( � = 1 , σ 2 = 1), as well as a larger variance
nd length-scale ( � = 100 , σ 2 = 100) to illustrate the difference. In
oth cases, the RBF samples are much smoother than the exponential
amples, due to it having a higher spectral parameter ( η → ∞ ). For
oth the RBF and exponential kernels, increasing the variance σ 2 

eads to an increase in the amplitude of the signal, and increasing the
ength-scale � makes the samples more correlated in frequency. 

We also demonstrate what the exponential kernel function looks
ike. In Fig. 3 , we show the exponential kernel in two different cases:
he low variance, low length-scale case ( � = 1 , σ 2 = 1), and the high
ariance, high length-scale case ( � = 100 , σ 2 = 100). Increasing the
ariance changes the amplitude of the covariance, as seen in the
olour bar, while increasing the length-scale changes the correlation
f the signal, as seen by how the diagonal correlation is much wider
n the second plot. A wider diagonal means that the data are more
orrelated in frequency, while a smaller diagonal means that the data
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Figure 3. Exponential kernel for two different cases. Left : Low variance, 
low length-scale case ( � = 1 , σ 2 = 1). Right : High variance, high length- 
scale case ( � = 100 , σ 2 = 100). URL 
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oints are mostly correlated with themselves and those immediately 
round them. 

.1.4 Hyperparameter optimization and model selection 

e have established that the kernel hyperparameters affect the 
ehaviour of the samples being drawn from it. How do we simultane-
usly pick the best kernel model (e.g. choice of η for a Mat ́ern kernel),
nd also the best hyperparameters (e.g. length-scale and variance)? 
hese steps are interdependent. When comparing different models, 
e want to compare the best o v erall performance of each model.
herefore, we first optimize the hyperparameters of our model by 
aximizing the marginal likelihood o v er the function parameters 

which are distinct from the model hyperparameters defined abo v e); 
e then compare its evidence (i.e. the marginal likelihood o v er the

unction parameters) to other optimized models. When we talk about 
model’ in this section, we are talking about finding the kernel 
unction choices that best model our data (what we have referred 
o as K in previous sections). 

Given a model (kernel function) with hyperparameters θ , the 
arginal likelihood of the data (also known as the Bayesian evidence) 

an be calculated as the integral of the data likelihood L times the
rior: 

( d | ν, θ ) = 

∫ 
L ( d | x , ν, θ ) p( x | ν, θ )d x , (17) 

here x is another vector occupying the same space as our data,
hich describe the functions of the Gaussian process. The result 
f this integration is a constant, called the log-marginal likelihood 
LML): 

log p( d | ν, θ ) = −1 

2 
d T K 

−1 d − 1 

2 
log | K | − n 

2 
log 2 π , (18) 

here n is the number of data points sampled, and K is again
he full kernel function for the data (the sum of the kernels for
ach component of the data, including noise). We assume that each 
omponent of our data is a Gaussian process, and that the noise is
aussian distributed, thus the LML can be calculated analytically. 
he LML not only fa v ours models that fit our data well but it also
isfa v ours o v erly comple x models (Rasmussen & Williams 2006 ). 
The LML tells us the ‘evidence’ of the model, i.e. how well

ur covariance function fits our data. We can take the ratio of two
vidences to compare how well different models fit our data. This is
nown as the Bayes factor Z . When working with the log evidence,
he log of the Bayes factor is achieved by taking the difference
etween the LML of two different models (called m1 and m2): 

log Z = LML m1 − LML m2 , (19) 
here larger values of Z or log Z indicate that m1 fits the data better
han m2. 

We are also interested in obtaining the posterior distribution of 
ur hyperparameters. According to Bayes’ theorem, we can obtain 
he posterior probability density by multiplying the likelihood with 
he prior. In log space, the log posterior probability density can be
ritten as 

log p( θ | d , ν) ∝ log p( d | ν, θ ) + log p( θ) . (20) 

Because the LML is easy to calculate with equation (18), we
an calculate it for several choices of hyperparameters θ and find 
he combination of θ that gives us the maximum likelihood – the 
argest value for LML. This method for maximizing the LML 

s known as Type-II maximum likelihood (ML-II, e.g. gradient 
escent), and yields point estimates for the hyperparameters. While 
ast, ML-II has several caveats, as it is prone to: overfitting when
here are many hyperparameters, getting stuck in local minima, 
nd underestimating predictive uncertainty by yielding only point 
stimates for the best-fit values of the hyperparameters (without 
ny uncertainty) (Simpson, Lalchand & Rasmussen 2020 ). Some 
L-II methods, such as simulated annealing or ensemble sampling, 

ould lead to better global maxima estimates, but are still unable
o provide uncertainties on the hyperparameters. We use the PYTHON 
ackage GPY 4 (GPy 2012 ) to run gradient descent in the context of
PR. 
Nested sampling (NS) is a technique able to sample complex 

istributions, and it focuses on estimating the model evidence 
equation 17) and well as its uncertainty. It also yields the posterior
istribution of the hyperparameters as a by-product, which is useful. 
e used the PYTHON package PYMULTINEST 5 (Buchner et al. 2014 ;

eroz, Hobson & Bridges 2009 ) to run NS. 
A downside to this method is that it is computationally e xpensiv e.
e compared our model evidence estimate from NS to that of

radient descent, and found them to be consistent. We therefore use
PY for quickly comparing different models, and NS for obtaining 

he final best-fitting hyperparameter results of our chosen model. Our 
odel was relatively simple, with few hyperparameters, so both gra- 

ient descent and NS were able to sample the hyperparameter space
asily. For more complex models or real data, the hyperparameter 
pace will likely be more complex, leading to differences between 
radient descent and NS, so it would be better to use NS in practice.
ur simulations are idealized and do not suffer from systematic 

ffects other than polarization leakage, thus it was straightforward 
o find the best-fitting models since the differences between the 
vidences of different kernel choices were very large (much larger 
han the offset between the NS and gradient descent evidences). 

We summarize our model selection and hyperparameter optimiza- 
ion steps below: 

(i) Choose a kernel model K, and optimize it using gradient 
escent, obtaining an estimate for the evidence. 
(ii) Compare the evidence of the model with that of other models

e.g. try a different kernel for the smooth foregrounds K fg ). 
(iii) Conclude the model selection by using the Bayes factor to 

nd the best model. 
(iv) Once a model has been selected, run NS to obtain a more

obust estimate of the evidence and hyperparameters. 
(v) If the posterior distributions from NS look sensible, take the 

eaks of the distributions as the final optimized hyperparameter 
MNRAS 510, 5872–5890 (2022) 
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Figure 4. A flowchart outlining our fore ground remo val pipeline, starting 
with our data in [ N x , N y , N z ] format, and ending up with the power spectrum 

estimate of our foreground cleaned residual. In bold is the step where 
fore ground remo val is performed. 

3

I  

r  

m  

s  

o  

f
 

t  

c  

b  

a  

K  

t  

m  

u  

s  

e  

b  

c
 

b  

o  

o  

s  

c  

2  

c
 

d  

(  

t  

f  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/4/5872/6369372 by U
niversity of the W

estern C
ape user on 06 O

ctober 2022
alues. Though not done in this analysis, it is also possible to take
nto account the error on this prediction by looking at the standard
eviation of the posterior distributions. 

During model selection, one should carefully monitor the best-fit
yperparameter estimates to check if the result is hitting against a
rior or seems unphysical given what is known about the data. For
xample, we would not expect the variance of the H I kernel to be
rders of magnitude larger than the variance of the foreground kernel
we would expect the opposite. If this is happening, the model is

ot a good fit for the data, regardless of the evidence. 

.1.5 Noise treatment 

here are a few different ways to treat Gaussian noise in GPR. We
ote some below: 

(i) Constant noise: Assume the data has some random Gaussian
oise that is constant in frequency, with variance given by σ 2 

n . GPR
ill then assume that the observed target value y is given at a
articular frequency by 

 = f ( ν) + ε , (21) 

here ε ∼ N (0 , σ 2 
n ), and f is defined in equation (7). We can think of

his as adding a new kernel K n to our model K, given by K n ( ν, ν ′ ) =
2 
n δν,ν′ where δν,ν′ is a Kronecker delta which is one where ν = ν

′ 
and

ero elsewhere. The kernel can also be written as K n = σ 2 
n I where I

s the identity matrix. If one has a reasonable estimate for the noise
n the data, σ 2 

n can be fixed. Otherwise, it is a free hyperparameter
hat can be optimized. 

(ii) Heteroscedastic noise: This is similar to the constant noise
ase, with one difference: we assume that the Gaussian noise variance
s not constant in frequency. We would then have that for a given
requency ν i : 

 i = f ( νi ) + εi (22) 

here εi ∼ N (0 , σ 2 
n,i ), σ

2 
n,i being the frequency dependent noise vari-

nce. One would then write the noise kernel as K n ( ν, ν ′ ) = σ 2 
n ( ν, ν ′ ),

here σ 2 
n ( νi , ν

′ 
i ) = σ 2 

n,i for νi = ν ′ 
i and zero otherwise. It is also

ossible to either fix this noise variance for each frequency, or let
hem be free hyperparameters. As discussed in Section A4, in our
ase the noise variance is changing with frequency. 

(iii) Indistinguishable noise: Assume that there is indistinguish-
ble noise present in the data, such that y = f ( ν). This might mean
hat there is either no noise present in the data, or that there is
oise present but it is indistinguishable from other signals, and
o the covariance function of other signals is also describing the
oise. 
(iv) Another noise kernel: Choose a kernel to represent the noise

ignal, such as an exponential kernel. 

For our data, we tried each of these methods and used the Bayes
actor to decide on the best approach. We find that for our analysis,
ase (iii) is the best, possibly due to how small the noise is making it
ndistinguishable from the faint H I cosmological signal. 

In real data, more complex instrumental noise is likely to be
resent. F or e xample, time correlated 1/ f noise is a problem in
 I intensity mapping experiments, and would require more careful

reatment, such as its own kernel (see e.g. Li et al. 2020 ). 
We summarise our pipeline for removing foregrounds from our

ata using GPR and obtaining the residual power spectrum in
ig. 4 . 
NRAS 510, 5872–5890 (2022) 
.1.6 Bias correction 

deally, we want our estimate of the fore ground remo v ed residual
 to be unbiased. Unfortunately, for current foreground removal
ethods this is not the case. F ore ground remo val methods especially

truggle to reco v er the true H I power spectrum on large scales, where
ur desired H I signal looks similarly correlated in frequency to the
oregrounds and is erroneously removed (see e.g. C21). 

For GPR, this is also a problem. Previous works have tried
o account for o v er or undercleaning with GPR by using bias
orrection techniques. Mertens et al. ( 2020 ) presented an additive
ias correction to the residual covariance and power spectrum, which
rises analytically assuming the data covariance is perfectly known.
ern & Liu ( 2020 ) showed that this correction fails to reco v er the

rue EoR 21cm power spectrum when the EoR signal covariance is
isestimated. While the EoR signal is still undetected and not fully

nderstood, the H I signal from IM follows the well-known large-
cale structure of the Universe. Therefore, we are more likely to
stimate the H I signal covariance of our data accurately, making this
ias correction a better approximation in our case (especially when
onsidering idealized simulations). 

Kern & Liu ( 2020 ) point out that such an additive bias correction
y definition cannot account for under -cleaning, only o v er-cleaning
f the signal. The y deriv e a multiplicative bias correction as part
f their optimal quadratic estimator for the power spectrum, and
how that it is robust to imperfect estimations of the EoR signal
ovariance. Their correction by construction cannot under-predict the
1cm signal. Ho we ver, it requires perfectly kno wing the foreground
ovariance. 

Since our simulations are idealized and we are confident about our
ata covariance estimations, we show the effect of the Mertens et al.
 2020 ) bias correction to our results, and leave comparison between
he Mertens et al. ( 2020 ) and Kern & Liu ( 2020 ) corrections for
uture work. We only show this correction to demonstrate its effect
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GPR for H I IM 5879 

i  

w
c  

a
e  

P  

t  

c  

a
b

 

t
o  

f

 

o

G
c  

d

t

s

c
i  

s
m
s  

s  

i  

o
t  

a
t

3

P  

a
p  

M  

d  

i
e  

e  

r

t  

n  

h
f  

a
f

 

N  

s

d

w
s  

t  

o

ε

 

r  

t  

P  

4

H
r  

i  

l  

d  

f
 

N  

a  

c
b  

p
i  

c  

t  

t
t  

a  

u  

c
e  

w  

d  

t  

t  

c
t  

c
a
t

p  

v  

k  

2  

s

4

I  

t  

t  

p
w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/4/5872/6369372 by U
niversity of the W

estern C
ape user on 06 O

ctober 2022
n our case, and do not consider it when comparing our GPR results
ith PCA. The bias correction is analogous to the transfer function, 

ommonly applied to PCA cleaned data, in that it is a data-driven
pproach for estimating signal loss in a foreground clean (Switzer 
t al. 2015 ). Since we do not apply a transfer function correction to
CA, we do not consider the bias correction to GPR when comparing

he tw o. We w ant to establish their differences before any signal loss
orrection is applied. Ideally we want the need for correction to be
s minimal as possible, hence it is important to compare methods 
efore corrections. 
The Mertens et al. ( 2020 ) bias correction is well described in

heir Section 3.3.2, and we summarise it here. For the covariance 
f the residual, 〈 rr T 〉 , the bias correction is applied by adding the
oreground model covariance (cov[ f fg ]) to the result: 〈
r r T 

〉
unbiased 

= 

〈
r r T 

〉 + cov [ f fg ] . (23) 

For the radial power spectrum, we calculate the bias correction as
utlined below. 

(i) Draw a number of random realizations from a multi v ariate 
aussian distribution with mean zero and covariance given by 

ov[ f fg ]. The realizations are drawn in the same dimensions as our
ata ( N θ × N ν); 
(ii) Measure the radial power spectrum for each of these realiza- 

ions; 
(iii) Take the average of these power spectra; 
(iv) Add the averaged power spectrum to the residual power 

pectrum obtained with GPR. 

The procedure for calculating the bias correction for the spheri- 
ally averaged power spectrum is similar. The only difference is that 
n step (ii), we bin the measured radial power spectrum into the power
pectrum k -bins. This ensures we are ignoring the transverse k ⊥ 

odes in our spherically-averaged power spectrum. This is essential 
ince these will only contain random Gaussian noise due to how the
imulations are generated in step (i). The only physically rele v ant
nformation in our simulations is in the radial direction since cov[ f fg ]
nly contains radial information. No bias correction is applied to 
he transverse power spectrum because cov[ f fg ] does not give us
ny information about what uncertainties might be present in the 
ransverse direction. 

.2 Principal Component Analysis 

CA is a blind component separation method able to remo v e
strophysical foregrounds from H I IM data. It does not require 
rior knowledge of what the foregrounds look like in order to work.
ethods similar to PCA have been used in the analysis of real H I IM

ata since it does not make many assumptions about the data. This
s useful since we do not yet understand the instrumental systematic 
ffects of H I IM experiments well enough (Masui et al. 2013 ; Wolz
t al. 2016 ; Anderson et al. 2018 ). We choose this popular foreground
emoval method to compare the performance of GPR to. 

PCA tries to estimate the foreground signal by transforming 
he data to a dimensional basis which maximises variance. In this
ew conte xt, we e xpect the first few basis v ectors - which contain
ighly correlated signal with the largest amplitude - to represent the 
ore grounds. These basis v ectors are called the principal components ,
nd we designate the number of principal components containing the 
oreground information as N FG . 

Recall that we can describe our data as a matrix d with dimensions
 θ × N ν . We assume that our data can be represented as a linear
ystem 

 = A s + ε , (24) 

here A is the mixing matrix, containing the amplitude of the N FG 

eparable components ( s ), and ε is the residual signal, which includes
he noise and cosmological signal. The residual is what we want to
btain, and can be obtained simply by rearranging the abo v e equation 

= d − A s . (25) 

This fore ground remo v ed residual ε is the PCA equi v alent to the
esidual r we obtain with GPR, and we will compare which of these
wo are closer to the true residual. For more detail of how exactly
CA finds A and s and performs fore ground remo val, please see C21.

 RESULTS  

ere we present our main results, which compare the foreground 
emoval performance of GPR to that of PCA. We do this first in the
dealized case of no polarization leakage, then add in the polarization
eakage to see how it affects our results. We also investigate how
ependent our results are on bandwidth and redshift, and whether a
ore ground remo val transfer function is possible with GPR. 

When comparing GPR and PCA, we al w ays show two choices of
 FG for PCA: one that leads to an under-cleaning of the foregrounds,
nd one that leads to an o v er-cleaning. This will help us more robustly
ompare the GPR and PCA performances. We also show the residuals 
etween what GPR or PCA predict versus the true underlying signal
ower spectrum. We conclude that a technique is working better 
f it yields residuals that are close to zero, i.e. a prediction that is
lose to the truth. We point out when methods under- or o v erpredict
he true power spectrum, but make no conclusion about which of
hese predictions is best. Overpredicting the power spectrum means 
here are residual foregrounds left in the data, which can bias results
nd boost errors. Underpredicting is caused by a loss of the desired
nderlying signal, which also biases results. Ho we ver, signal loss
an be in principle be corrected with transfer functions (Switzer 
t al. 2015 ), but since we do not fully explore this, leaving it to future
 ork, we mak e no conclusions about which circumstance is more
esirable between under- and o v erprediction of the power spectrum.
Throughout, we also show the power spectrum results including 

he bias correction discussed in Section 3.1.6. This is only to show
he effect of this bias correction, and we do not consider it when
omparing the performance to PCA which would also require some 
reatment for signal loss, such as a transfer function, to ensure a fair
omparison. We use the terms ‘spherically averaged power spectrum’ 
nd ‘power spectrum’ interchangeably, but specify when we are 
alking about transverse or radial power spectra. 

We define the largest accessible scale for the spherically averaged 
ower spectrum to be k min = 2 π / V 

1/3 , where V is the total comoving
olume of our data. For the radial power spectrum, this becomes
 min, � = 2 π / L z , and for the transverse power spectrum k min , ⊥ 

=
 π/ 

√ 

( L 

2 
x + L 

2 
y ) . Throughout, we assume a bin width of twice the

mallest accessible wavenumber. 

.1 No polarization 

n the no polarization case, we want to find what kernel best describes
he smooth foregrounds and the H I signal, and choose a way to treat
he noise, as discussed in Section 3.1.5. Using our model selection
ipeline (which includes a Bayes factor analysis, see Section 3.1.4), 
e find that the exponential kernel (equation 16) best describes the H I
MNRAS 510, 5872–5890 (2022) 
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Figure 5. Posterior distribution of our model hyperparameters, obtained 
using nested sampling in the no polarization case. Dotted grey lines show the 
best-fitting hyperparameter results obtained with gradient descent. URL 
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ignal, and the RBF kernel (equation 15) best describes the smooth
oregrounds. 

We tested the noise scenarios outlined in Section 3.1.5 and find
hat the indistinguishable noise case performs best. In our data, the
oise is so small that the e xponential co variance for the H I signal is
robably working well to describe both the H I signal and the noise.
or real data, especially if the noise is larger or more correlated in
requency, this might not be the case. 

Our kernel model for this no polarization case can be summarized
s: Exponential (H I signal kernel, also describing indistinguishable
oise) + RBF (smooth foreground kernel) + indistinguishable
oise assumed throughout. Our hyperparameters for this model
re: σ 2 

smooth is the RBF kernel variance (describing the amplitude
f our smooth foregrounds), � smooth is the RBF kernel length-scale
describing the frequency correlation of our smooth foregrounds),
2 
21 is the exponential kernel variance (describing the amplitude of
ur H I signal and indistinguishable noise), and � 21 is the exponential
ernel length-scale (describing the frequency correlation of our H I

ignal and indistinguishable noise). 
We run nested sampling for this model using PYMULTINEST , obtain-

ng a better estimate for our evidence as well as our hyperparameter
osteriors. We find that our evidence obtained with gradient descent
using GPY ) and with nested sampling are consistent, as are the
est estimates for the hyperparameters (see Fig. 5 ). This level of
onsistency is sufficient for our simulations, where the signal is ide-
lized and the kernel model is simple. For real data the kernel model
nd hyperparameter posterior distributions will be more complex, so
ested sampling should be used instead of gradient descent. 
We plot the posterior distribution of our hyperparameters (obtained

rom nested sampling) in Fig. 5 , and the median and 1 σ of the
istributions can be found in Table 1 . We also quote the uniform
riors imposed in each hyperparameter in Table 1 . We find that priors
re required (especially on length-scales) to successfully separate the
 I and foreground signal, otherwise the H I kernel will try to fit to the
NRAS 510, 5872–5890 (2022) 
oregrounds. We tested different prior ranges and found that making
t narrower did not impro v e results, ho we ver this might not be the
ase for real data. 

From Fig. 5 we see that the hyperparameters of each kernel (e.g.
2 
21 and � 21 ) are correlated with each other but not with those of other
ernels, as expected since the signals are different. The dotted lines
how the best-fitting hyperparameter estimates from GPY ’s gradient
escent optimization, and they agree well with the peaks of the
osterior distributions obtained with NS. 
We use our best-fitting, optimized kernel model to perform

ore ground remo val with GPR and compare this with PCA. We
how two cases for PCA: one with N FG = 3, and the other with
 FG = 2. We plot in Fig. 6 the power spectra of these residuals
s well as the true residual (H I and noise) power spectrum. We
hoose to show the spherically averaged, radial, and transverse
ower spectra to compare how the foreground removal works in
ifferent directions. On the bottom panel we show the percentage
ifference between the foreground removed power spectra and the
rue residual power spectra, which we want to be as close to zero as
ossible. 
For the spherically averaged power spectrum, the residuals in Fig. 6

how that GPR performs well on small scales, and increasingly worse
n large scales. It yields residuals within 10 per cent of the truth
own to a k -bin of k = 0 . 07 h Mpc −1 , which we have marked with a
ertical pink line. This is larger than the radial and transverse limits
 k ‖ = 0 . 01 h Mpc −1 , k ⊥ 

= 0 . 02 h Mpc −1 ) combined, meaning that
he individual radial and transverse power spectra can access larger
cales than the spherically averaged power spectrum. PCA ( N FG = 3)
lso diverges at this k -bin, but PCA ( N FG = 2) reco v ers larger scales.
n small scales, GPR performs better than PCA ( N FG = 3). While
CA ( N FG = 2) can access larger scales, it o v erestimates the power
pectrum, which can boost errors. 

For the radial power spectrum in Fig. 6 , GPR performs remark-
bly well, able to reco v er the largest scales down to a k � -bin of
 ‖ = 0 . 01 h Mpc −1 within 10 per cent residual. Both PCA cases fail
eyond this k � -bin. GPR also recovers small scales better than both
CA cases, making it a superior method for the radial power spectrum
eco v ery. 

The thin green line in Fig. 6 shows the bias corrected GPR
eco v ery. Including it leads to an o v erestimation of the spherically
veraged and radial power spectrum at large scales, and no obvious
ifference on small scales. The transverse power spectrum does not
ave a bias correction, as discussed in Section 3.1.6. 
In the transverse power-spectrum case in Fig. 6 , all methods

erform worse than in the radial and spherically averaged power-
pectrum cases. While GPR can still reco v er the truth within
0 per cent residual down to a k ⊥ 

-bin of k ⊥ 

= 0 . 02 h Mpc −1 , the
esiduals tend to lie further away from zero than in the other power
pectra cases. GPR again reco v ers small scales very well, better
han PCA. Ho we ver, since the signal is almost zero here due to the
elescope beam, this is not very useful. We attribute the oscillatory
ature of the true transverse power spectrum on small scales to
he fact that the power here is near zero, so residual differences
re floating point precision. Ov erall, the reco v ery of the transverse
ower spectrum is worse than of the radial power spectrum. This
akes sense, since GPR mainly takes into account frequency (radial)

nformation. 

.2 With polarization 

hen including polarized foregrounds, we still find that the expo-
ential kernel is the best fit for the H I signal, and the RBF kernel
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Table 1. Median and 1 σ values of our model hyperparameter posterior distributions for different cases, obtained using nested sampling. 

Median and 1 σ error estimates for our hyperparameters 
Hyperparameter σ 2 

smooth [ mK 

2 ] / 10 4 � smooth [MHz] σ 2 
pol [ mK 

2 ] � pol [MHz] σ 2 
21 [ mK 

2 ] / 10 −3 � 21 [MHz] 

No polarization 16.26 ± 0.09 494.60 ± 0.54 N/A N/A 1.08 ± 0.001 5.94 ± 0.006 
With polarization 6.72 ± 0.04 475.30 ± 0.67 0.50 ± 0.004 58.42 ± 0.07 1.21 ± 0.002 6.73 ± 0.01 
With polarization (low frequency) 5.75 ± 0.03 489.62 ± 1.03 5.37 ± 0.08 74.52 ± 0.17 1.43 ± 0.004 8.02 ± 0.02 
With polarization (high frequency) 2.71 ± 0.02 588.61 ± 1.17 4.06 ± 0.09 106.98 ± 0.39 1.13 ± 0.002 6.22 ± 0.01 
With polarization (RFI case 1) 6.64 ± 0.04 476.39 ± 0.67 0.42 ± 0.004 55.66 ± 0.11 1.33 ± 0.003 7.46 ± 0.02 
With polarization (RFI case 2) 6.76 ± 0.04 482.21 ± 0.71 0.93 ± 0.01 79.70 ± 0.14 1.38 ± 0.003 7.64 ± 0.02 
With polarization (RFI case 3) 6.47 ± 0.03 473.49 ± 0.67 0.66 ± 0.006 62.33 ± 0.09 1.37 ± 0.003 7.59 ± 0.02 
With polarization ( + lognormal) 6.58 ± 0.03 475.11 ± 0.64 0.44 ± 0.004 57.86 ± 0.07 2.38 ± 0.003 5.28 ± 0.006 

Prior U (1000 , 100000000) U (200 , 10000) U (0 . 0001 , 10) U (15 , 500) U (0 . 000001 , 0 . 5) U (0 . 01 , 15) 

Figure 6. Power spectra results for the no polarization case. Top : True H I + noise signal (black solid line), PCA foreground cleaned residuals (blue dotted line 
for N FG = 3 and red dash–dotted line for N FG = 2), and GPR foreground cleaned residuals without bias correction (green dashed line) and with (thin green solid 
line). Bottom : Percentage residual difference between the foreground removed residual power spectra and the true H I power spectra. Left : Spherically averaged 
power spectrum. Centre : Radial power spectrum. Right : Transverse power spectrum. URL 
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s the best for the smooth fore grounds. F or the polarized signal, we
nd that the RBF kernel is also the best fit, though with smaller
ariance and length-scale than in the smooth foreground case. We 
gain find that the indistinguishable noise treatment gives the best 
esults. 

Our kernel model in the presence of polarization is Exponential 
H I signal kernel, also describing indistinguishable noise) + RBF 

smooth foreground kernel) + RBF (polarized foreground kernel) 
 indistinguishable noise assumed throughout. We run nested 

ampling for this model, and plot the hyperparameter posterior distri- 
utions in Fig. 7 . As in the no polarization case, the hyperparameter
f each kernel is correlated with itself. The exponential kernel hyper- 
arameters are the most correlated, and the RBF kernel describing 
he smooth foregrounds has the least correlated hyperparameters. 
o we ver, the polarized foreground hyperparameters also seem to be 
e gativ ely correlated with the smooth foreground hyperparameters, 
nd positively correlated with the H I signal + noise parameters. 
his indicates that the polarized foreground signal might not be 
ntirely described by the polarized foreground kernel, and some 
olarized signal is being described by the smooth foreground and 
 I + noise kernels. The best-fitting hyperparameter estimates 
rom GPY ’s gradient descent again agree well with the posterior
istribution obtained with NS. 
We record the median and 1 σ error estimates of our hyper-

arameters in Table 1 . The variance parameter for the smooth
oregrounds ( σ 2 

smooth ) is a factor of ∼2 smaller than in the no
olarization case, possibly due to difficulty in separating the smooth 
nd polarized foregrounds. The estimated evidence (LML) from 

ested sampling, describing how well our kernel model describes 
ur data, is smaller when including the polarized fore grounds. F or
he no polarization case, the evidence is 1 per cent larger than when
ncluding polarization leakage. 

We plot the best-fitting kernel function for each component 
n Fig. 8 . The H I exponential kernel is much less correlated in
requency than either foreground kernel, and the smooth fore- 
round RBF kernel is the most correlated in frequency. From 

he amplitude of the colour bar, the H I exponential kernel has
he smallest variance, while the smooth foreground RBF kernel 
as the largest variance (and consequently signal amplitude), as 
xpected. 
MNRAS 510, 5872–5890 (2022) 
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Figure 7. Posterior distribution of our model hyperparameters, obtained 
using nested sampling in the with polarization case. Dotted grey lines show 

the best-fitting hyperparameter results obtained with gradient descent. URL 
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We perform fore ground remo val with this best-fitting GPR model,
nd plot our residual power spectra in Fig. 9 . We also show the true
esidual power spectrum, as well as the residual obtained with PCA
now looking at the cases with N FG = 7 and N FG = 6, since the
olarization leakage foregrounds require a larger N FG to be properly
emo v ed). The bottom panel shows the percentage residual difference
etween the foreground cleaned and true residuals. 

For the spherically averaged power spectrum, Fig. 9 shows that
PR performs better than both PCA cases on small cases, since

he per cent residuals are closer to zero and it does not o v erestimate
he power spectrum. The residuals get gradually worse for larger
cales, until the y div erge be yond 10 per cent below a k -bin of k =
 . 09 h Mpc −1 . This a larger limit than in the no polarization case,
ndicating that the polarized foregrounds make the cleaning more
ifficult. From the residuals, PCA ( N FG = 7) is able to access larger
cales than GPR. PCA ( N FG = 6) o v erestimates the residual power
pectrum on both small and large scales. 

For the radial power spectrum, GPR is once again good at
eco v ering the truth, with residuals below 10 per cent down to
 ‖ = 0 . 03 h Mpc −1 (a larger cut-off than in the no polarization case).
he PCA residuals diverge after this point, meaning GPR can access

arger scales. For the PCA N FG = 6 case, influence from residual
oregrounds is strong and they are particularly dominant in the
econd smallest k � mode. The transverse power spectrum results
re dramatically worse than in the no polarization case. Neither PCA
r GPR reco v er the transv erse power spectrum of the true signal well.
his is probably due to how the foreground removal works in both
ases: it mainly takes into account frequency (radial) information, so
t is worse at reco v ering the true residual transverse power spectrum.

Once again, we see in Fig. 9 that including the bias correction leads
o an o v erestimation of the spherically averaged and radial power
pectra on large scales, and no clear difference on small scales. 

To better understand how well our best-fitting kernel functions
re describing the signals in our data, we compare the true fre-
uenc y co variance of our signals to what GPR predicts. In Fig. 10 ,
NRAS 510, 5872–5890 (2022) 
e look at two different cases of what GPR reco v ers, described
elow. 
First, we take the RBF kernel for the smooth foregrounds and the

BF kernel for the polarized foregrounds, and use our full data to
redict what the foreground signal looks like, i.e. we are estimating
[ f fg ]. This is what we have already done previously to predict the

oreground signal and remove it from our data, but we are focusing
ow on what this prediction looks like. We do this also for the smooth
oreground RBF kernel, to predict what the smooth foregrounds look
ike (i.e. E[ f smooth ]). We do the same for the polarized foregrounds
BF kernel, obtaining an estimate for what our polarized foregrounds

ook (i.e. E[ f pol ]). Finally, we also do this for the H I signal and
ndistinguishable noise kernel. These are denoted as a ‘full data
t’, since we are using the kernels and the full data to predict the
ignals. This ‘full data fit’ is what we have already done to remove
oregrounds using GPR, but here we are focusing on what the signal
redictions looks like, and how it compares to the true signal. We are
lso considering a new case of only fitting the smooth foreground
ernel, and also only fitting the polarized foreground kernel, to try
o predict these signals in isolation. 

We also consider an ‘individual fit’, where instead of fitting our
ernels to our full data, we fit them to the appropriate data only .
or the RBF + RBF full foreground kernel, we fit this to the smooth
 polarized foreground data. For the RBF smooth foreground kernel,
e fit it only to the smooth foreground data, and similarly for the
olarized foreground case. For the Exponential kernel, we fit it only
o the H I and noise data. This ‘individual fit’ is a new analysis, which
e are only doing for understanding GPR better, and it does not play a
art in our fore ground remo val pipeline. The only difference from the
full data fit’ is that instead of calculating the signal estimates using
he full data, we only use the rele v ant signal data (i.e. we are pre-
icting the foregrounds given the foreground kernels and foreground
ata, without the need to separate it from the H I signal or noise). 
We expect that the ‘individual fit’ will give predictions that are

loser to the truth than the ‘full data fit’, since in this case we are not
rying to separate our signals, but are instead fitting to the isolated
ignals. This is indeed what we find in Fig. 10 , where we plot the
requenc y co variance of our predictions as well as the real covariance.
he left-hand panel (‘individual fit’) looks similar to the right-hand
anel (truth), while the middle panel (‘full data fit’) shows some
isagreement. For the all foregrounds and smooth foregrounds case,
he difference between these cases is not too stark. Ho we ver, for the
olarized foregrounds and H I + noise signal it is. We can see that
he ‘full data fit’ for the polarized foregrounds is not great, since it
oes not match the truth so well. The fact that the ‘full data fit’ is bad,
ut the ‘individual fit’ is good means that the issue is not with our
est-fitting foreground kernels. The issue arises when we try to pick
ut the polarized signal in the presence of other signals – this makes
t easier for the signals to be confused with each other, and leads to

ore uncertainty. Our foreground kernels are good fits for the signals
ndividually, but it is difficult to isolate the polarized foregrounds in
he presence of other signals. 

The difficulty in reco v ering the H I + noise signal in the ‘full
ata fit’ case shows that foreground removal in the presence of
olarized foregrounds is more difficult. In the ‘individual fit’ case,
he H I + noise covariance recovery matches the truth well, but
hen considering all signals together in the ‘full data fit’, this is
o longer true. This suggests that the H I + noise signal is being
onfused with other signals, much like the polarized foregrounds.
his confusion and inability to separate signals makes the final

oreground prediction more uncertain, and ultimately hinders the
ore ground remo val process. 
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Figure 8. Frequency covariance generated using our best-fitting kernel functions, for each signal component. These are generated for the frequency range of 
our data, using our best estimate for the kernel hyperparameters from nested sampling. URL 

Figure 9. Power spectra results for the case including polarization. Top : True H I + noise signal (black solid line), PCA foreground cleaned residuals (blue 
dotted line for N FG = 7 and red dash–dotted line for N FG = 6), and GPR foreground cleaned residuals without bias correction (green dashed line) and with (thin 
green solid line). Bottom : Percentage residual difference between the foreground removed residual power spectra and the true H I power spectra. Left : Spherically 
averaged power spectrum. Centre : Radial power spectrum. Right : Transverse power spectrum. URL 
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.3 Bandwidth and redshift dependence 

e wanted to test how our results would differ if we cut our data’s
andwidth in half, i.e. only considered half of our frequency range. 
ince GPR uses frequency information, it might be more difficult 
or it to fit the data well if there is less frequency data to learn from.
lternatively, as suggested by Hothi et al. ( 2020 ), it might be better

o consider narrower frequency ranges in the case where the signal’s
ength-scale is changing with frequency, that way it a v oids being
averaged out’ as much. 

We test this in the case of including polarized foregrounds, and 
gain find the best model to be Exponential (H I signal kernel,
lso describing indistinguishable noise) + RBF (smooth foreground 
ernel) + RBF (polarized foreground kernel) + indistinguishable 
oise assumed throughout. The only difference now is that when we 
redict the foreground signal from our data using this model, we
nly consider half of the frequency range. When we split our data
n half along frequency, we also compare both halves, to see if the
edshift/frequency of observation makes a difference. 

We again use nested sampling to find the best-fitting hyper- 
arameters of our model, and note down the median and 1 σ of
he distributions in Table 1 . We then perform foreground removal
sing GPR, and plot the residual power spectra results for the low-
requency, high-redshift case in Fig. 11 , and for the high-frequency,
ow-redshift case in Fig. 12 . 

F or the low-frequenc y case, we show the N FG = 5 and N FG =
 cases for PCA. For the spherical power spectra of Fig. 11 , GPR
ends to lie closer to the true residual power spectrum line, indicating
t is performing better than PCA. In small scales, both PCA cases
MNRAS 510, 5872–5890 (2022) 
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Figure 10. Frequency covariance of our signals, as predicted by GPR and 
compared to the truth. We look at all foregrounds together ( top row ), the 
smooth foregrounds only ( second row ), the polarized foregrounds only ( third 
row ), and the H I + noise only ( bottom row ). Left : GPR prediction of what the 
signal frequenc y co v ariance looks like, gi ven our chosen kernels and based 
on the rele v ant signal data only. Centre : GPR prediction of what the signal 
frequenc y co v ariance looks like, gi ven our chosen kernels and based on our 
full data. Right : The true frequency covariance of our data. URL 
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 v erestimate the true residual power spectrum, while GPR slightly
nderestimates. GPR reco v ers the power spectrum within 10 per cent
esiduals down to a k -bin of k = 0 . 08 h Mpc −1 , smaller than the full
andwidth case, indicating that it can now access larger scales. GPR
lso reco v ers the radial power spectrum nicely, but not the transverse
ower spectrum, as before. 
For the high-frequency case, we show the PCA results for N FG =

 and N FG = 3. GPR does not outperform PCA in this case, but
grees nicely with the PCA N FG = 4 reco v ery throughout. It now
eco v ers the spherically averaged power spectrum within 10 per cent
esidual down to k = 0 . 1 h Mpc −1 , which is larger than the low-
requency case and full bandwidth case. GPR performs worse here
han in the low-frequency case. As seen in Fig. 1 , the amplitude of
ur foregrounds is higher in the lower frequency range than in the
igher frequency range, and this could make a difference in our GPR
ore ground remo val results. 

In both cases, including the bias correction results in an o v eresti-
ation of the spherically averaged and radial power spectra on large

cales, but some discernible difference on medium to small scales
hat makes it closer to the truth. It is interesting that the low-frequency
alf experiences a more extreme bias correction. 
Hothi et al. ( 2020 ) found that GPR performs worse in larger

andwidths. Here, this is not so clear – the low-frequency case
an access larger scales than the full bandwidth case, but the
igh-frequency case performs worse than the full bandwidth one.
othi et al. ( 2020 ) considers interferometric EoR simulations of
 I signal, which has different systematics to our single-dish, low-
NRAS 510, 5872–5890 (2022) 
edshift IM simulations. This, and the fact that their noise level is
uch larger than ours could explain why we do not see the same

ffects. 

.4 RFI effects 

t is common in H I IM experiments to have to remove whole
requency channels due to them being contaminated with RFI.

e test how GPR performs when frequency channels are miss-
ng, as compared to PCA, in the case of including polarized
oregrounds. To do this, we use the method described in Carucci
t al. ( 2020 ), where three different cases are considered in the
ontext of the sparsity-based foreground removal algorithm gener-
lized morphological component analysis (GMCA; Chapman et al.
012 ): 

(i) Case 1 : The case of removing 40 per cent of the channels in
ne chunk in the middle of the frequency range, such that we have in
rder: 30 per cent good channels, 40 per cent bad (missing) channels,
nd 30 per cent good channels. 

(ii) Case 2 : The case of removing 40 per cent of the channels in
ne chunk at the beginning of the frequency range, such that we
ave in order: 10 per cent good channels, 40 per cent bad (missing)
hannels, and 50 per cent good channels. 

(iii) Case 3 : The case of removing 40 per cent of the fre-
uency channels, in a few different chunks throughout the fre-
uency range, such that we have in order: 20 per cent good
hannels, 30 per cent bad (missing) channels, 20 per cent good
hannels, 10 per cent bad (missing) channels, and 20 per cent good
hannels. 

Once again we used the kernel model: Exponential (H I signal
ernel, also describing indistinguishable noise) + RBF (smooth
oreground kernel) + RBF (polarized foreground kernel) + in-
istinguishable noise assumed throughout, and ran nested sampling
o obtain the best-fitting kernel hyperparameters (see Table 1 for
he best-fitting median and 1 σ values). The only difference from
ur full data case is that here we are ignoring certain chan-
el when running GPR and performing fore ground remo val. We
re not setting them to zero, but instead removing the channels
ntirely from the data, thus reducing the number of frequency
hannels N ν . 

We plot our resulting power spectra for each of these different
ases in Fig. 13 . We show the cases of N FG = 6 and N FG = 5 for
CA. For the spherically averaged power spectra on the top row,
PR performs worse than it did in the no missing channels case, and

ither performs the same as or worse than the best PCA case. The
ame is true for the radial power spectrum in the middle row. The
ias correction in this case does impro v e the spherically averaged and
adial power spectra results, without leading to an o v erestimation on
arge scales as seen previously. 

The foreground removal pipeline for GPR depends on first mod-
lling the foreground signal as a function of frequency, so having
aps in the input data significantly decreases the continuity and
uality of information GPR has to learn from. This is turn leads
o worse foreground removal than in the no missing channels case,
nd worse foreground removal than PCA in many cases, since PCA
oes not have this strong dependency on modelling the foregrounds
s a function of frequency. 

Interestingly, the transverse power spectrum does not see a
ramatic difference, and looks similar to the reco v ered transv erse
ower spectra in the no missing channels case. This is not surprising,
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Figure 11. Power spectra results for the low-frequency half-bandwidth case including polarization. Top : True H I + noise signal (black solid line), PCA 

foreground cleaned residuals (blue dotted line for N FG = 5 and red dash–dotted line for N FG = 4), and GPR foreground cleaned residuals without bias correction 
(green dashed line) and with (thin green solid line). Bottom : Percentage residual difference between the foreground removed residual power spectra and the true 
H I power spectra. Left : Spherically averaged power spectrum. Centre : Radial power spectrum. Right : Transverse power spectrum. URL 

Figure 12. Power spectra results for the high-frequency half-bandwidth case including polarization. Top : True H I + noise signal (black solid line), PCA 

foreground cleaned residuals (blue dotted line for N FG = 4 and red dash–dotted line for N FG = 3), and GPR foreground cleaned residuals without bias correction 
(green dashed line) and with (thin green solid line). Bottom : Percentage residual difference between the foreground removed residual power spectra and the true 
H I power spectra. Left : Spherically averaged power spectrum. Centre : Radial power spectrum. Right : Transverse power spectrum. URL 
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ince there is no gap of information in the spatial direction, only in
he frequency direction. 

While both GPR and PCA are ne gativ ely impacted by missing
requency channels, Carucci et al. ( 2020 ) found that GMCA is still
ble to reco v er the true radial power spectrum in the presence of
hese complications. Carucci et al. ( 2020 ) also tested this for the
ndependent Component Analysis algorithm FastICA and found that, 
uch like PCA and GPR, it is compromised by missing frequency
hannels. 

Offringa et al. ( 2019 ) studied how missing frequency channels due
o RFI affect GPR as a fore ground remo val technique in the context
f EoR studies. They use an interpolation scheme to correct for
he flagged RFI channels, which differs from our method of simply
xcluding the channels, and found that RFI flagging leads to excess
MNRAS 510, 5872–5890 (2022) 
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Figure 13. Power spectra results for the RFI-like missing channels cases including polarization. For all cases, 40 per cent of the frequency channels are missing, 
but each row represents a different distribution of missing channels in the data. We show the true H I + noise signal (black solid line), PCA foreground cleaned 
residuals (blue dotted line for N FG = 6 and red dash–dotted line for N FG = 5), and GPR foreground cleaned residuals without bias correction (green dashed 
line) and with (thin green solid line). Left : Spherically averaged power spectrum. Centre : Radial power spectrum. Right : Transverse power spectrum. URL 
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ower in the final foreground removed power spectrum. We leave
nvestigation of how interpolation methods for missing frequency
hannels would affect our results to future work. 

.5 For egr ound transfer function 

mplementing a foreground removal transfer function is a common
ay of mitigating foreground removal effects that might be present in

he residual power spectrum (Switzer et al. 2015 ). It is usually done
y injecting H I IM mocks into the data, performing the foreground
emoval, and cross-correlating the result with the original mock,
n order to obtain an estimate for how the signal has been biased
Masui et al. 2013 ; Switzer et al. 2013 , 2015 ; Anderson et al. 2018 ;
unnington et al. 2021 ; Wolz et al. 2021 ). This works well for blind

ore ground remo val methods such as PCA, since the mocks should
e as uncorrelated in frequency as the true H I signal. Therefore, both
he mocks and the true H I signal will lose similar modes (the ones

ost degenerate with the foregrounds) in the foreground clean. 
Here, we begin to investigate whether this transfer function

echnique could work for GPR. With GPR, we are modelling each
omponent of our signal with a different kernel, and so we wanted
o check if we would need to adapt our kernel model in the presence
f mock data. We use a lognormal simulation of cosmological H I
NRAS 510, 5872–5890 (2022) 
ignal as our mock. We do this in the case of including polarized
oregrounds. 

We generated a lognormal realization of our cosmological signal
a method first proposed by Coles & Jones 1991 ), in the same way
s described in e.g. Cunnington et al. ( 2020b ). We then smooth it
y the same telescope beam as before, and add it to our data. Our
ata is now composed of the smooth and polarized foregrounds, our
riginal H I signal, this lognormal H I realization, and noise. 
We tested whether the model exponential (H I signal kernel, also

escribing indistinguishable noise) + RBF (smooth foreground
ernel) + RBF (polarized foreground kernel) + indistinguishable
oise assumed throughout would still work well with this data, or
f we need an extra exponential kernel to describe the lognormal
ealization. By comparing the evidence in both cases, we find that
he original model with only one exponential kernel is preferred,
robably due to ho w dif ficult it is for GPR to pick out very similar
ignals, making it better to model them together (this is similar to
ow it is better to model the H I signal and noise together with one
xponential kernel). 

We ran nested sampling using our original model and this new data
ncluding a lognormal realization. The median and 1 σ distributions
f our hyperparameters can be found in Table 1 . The variance of the
xponential kernel is larger than for the no-lognormal case (almost
ouble), which makes sense since we have essentially doubled our
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 I signal amplitude. The length-scale remains constant, because the 
ignals are similar. 

We compared how GPR fore ground remo val works in this case,
o the no-lognormal case. We perform foreground removal on our 
ata with the lognormal signal, using this best-fitting model, and find 
hat the residual power spectrum looks extremely similar in shape to 
he no-lognormal case, only changing in amplitude since it includes 
he extra lognormal realization. Adding a lognormal realization of 
ignal does not make the fore ground remo val an y worse, or o v erall
ifferent. Most importantly, it does not require a new or different 
ernel function to describe it. This is good, since it means we can use
he foreground transfer function technique in the context of GPR. 
urther work is required to determine whether it is viable to apply
oth a bias correction and a transfer function to GPR residuals. 

 C O N C L U S I O N S  

he take-home message of this paper is that GPR can be used as
 foreground removal technique for low redshift, single-dish H I 

ntensity mapping. We presented a pipeline for performing GPR 

n this case, which uses the data to optimize and choose a kernel
odel. For PCA, we had to fine-tune the N FG parameter for each

ase considered, and found that even just decreasing the bandwidth 
equires a different N FG choice. This is a problem for real data, where
e do not know the truth and have to make an educated guess for what

he best N FG choice is. GPR operates differently – it uses the data to
etermine the best choice for the kernel model, and then performs
he foreground removal. We do not have to make an educated guess
ith GPR, as the Bayes factor analysis guides our final choice. This
oses a significant advantage o v er blind fore ground remo val methods
hat require a fine-tuning parameter such as N FG (e.g. PCA, FastICA,
MCA). 
We presented the publicly available and user friendly PYTHON pack- 

ge GPR4IM , 6 which can be used to run GPR as a foreground removal
echnique in any real space H I intensity map, either simulated or real.
lthough we considered here the single-dish H I IM case, our code

ould also be used in the context of interferometric data, and higher
edshift signal. 

Our main findings can be summarized as as follows: 

(i) GPR may be used as a foreground removal technique in the 
ingle-dish, low redshift H I IM case. Without polarization leakage in 
he fore grounds, it reco v ers the true residual power spectrum within
0 per cent residual difference down to a k -bin of k = 0 . 07 h Mpc −1 .
ith polarization leakage, it does so down to k = 0 . 09 h Mpc −1 ,

ince the polarized foregrounds make the removal more difficult; 
(ii) In the no polarization case, GPR reco v ers the BAO scales better

han PCA in the radial power spectrum, but worse in the transverse
ase. For the spherically averaged power spectrum, GPR recovers 
he small BAO scales best, but PCA does better on the larger BAO
cales. The same is true for the case including polarization, except 
or the radial power spectrum, where GPR no longer outperforms 
CA. 
(iii) GPR outperforms PCA at reco v ering the true residual power 

pectrum on small scales, and both fail on large scales. This is no
onger true when the bandwidth is halved of frequency channels are 

issing. 
(iv) GPR is very good at recovering the true residual radial power 

pectrum, more so than PCA in the full bandwidth case. Both GPR
 github.com/paulassoares/gpr4im 

h
o  

2  
nd PCA are worse at reco v ering the transverse power spectrum, due
o how they mainly take into account frequency information; 

(v) GPR prefers lower frequencies. When splitting the bandwidth 
f our data in half, GPR performs much better in the low-frequency
high redshift) domain, where the foregrounds are brighter, and 
eco v ered the power spectrum within 10 per cent residual down to
 k = 0 . 08 h Mpc −1 . In the high-frequency case, this went up to
 = 0 . 1 h Mpc −1 ; 

(vi) In the presence of missing channels due to RFI contamination, 
oth PCA and GPR suffer, and GPR either performs the same as or
orse than PCA on all scales. This is clear for the power spectrum

nd radial power spectrum. The transverse power spectrum is not 
uch affected in any case. 
(vii) The Mertens et al. ( 2020 ) bias correction causes an o v er-

stimation of the spherically averaged and radial power spectrum 

n large scales. Ho we ver, in the case when frequency channels
re missing, the bias correction helps us reco v er the truth better.
hen halving the bandwidth, the bias correction impro v es results on
edium to small scales. 
(viii) Adding a lognormal realization of H I cosmological signal 

oes not require an additional kernel, and does not change how GPR
erforms as a foreground removal technique. As such, it should be
ossible to apply a foreground removal transfer function with GPR. 

We hope that these results are useful for implementing GPR as a
ore ground remo v al technique in the single-dish, lo w redshift H I IM
ase going forward. Future plans include performing a foreground 
emoval method comparison study like this one on real data to
nderstand how GPR performs in the context of real H I IM data. 
It would also be interesting to try different power spectrum bias

orrection techniques on the residual power spectrum, such as the one
escribed in Kern & Liu ( 2020 ). It could also be beneficial to try to
ncorporate the error in the hyperparameter posterior distributions 
btained with nested sampling into the residual power-spectrum 

stimation. 
Since the smooth foreground signal is actually composed of three 

ifferent signals (Galactic synchrotron, free–free and point source 
mission), it would also be interesting to check whether three kernels
nstead of one are best for describing the smooth foregrounds. 

Finally, we reiterate that our kernel models used in this paper
re o v erly optimistic since our simulations are idealized, and a full
ested sampling model selection procedure should be performed 
hen choosing the best-fitting kernels for real data. 
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PPENDI X:  SI MULATI ONS  

1 Smooth for egr ounds 

ere we describe how we generate the smooth foregrounds in
ur simulation. The most abundant smooth foregrounds that pose
roblems in H I IM experiments are synchrotron emission, free–
ree emission and point sources. The synchrotron emission comes
rom our Galaxy’s magnetic field accelerating cosmic ray electrons,
ausing them to emit radiation. The free–free emission comes mainly
rom ions in our Galaxy causing free electrons to scatter, but some
xtragalactic contribution to this signal is present. The point sources
epresent extragalactic objects which emit radio signals, such as
ctive Galactic Nuclei. 
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For the Galactic synchrotron and Galactic free–free emission, we 
se the Planck Le gac y Archiv e 7 FFP10 simulations. F or more detail
n these simulations, please see C21. 

1.1 Synchr otr on emission 

o generate maps of Galactic synchrotron emission, we take the 
FP10 maps at frequencies of 217 and 353 GHz. These maps are
erived from the source-subtracted and destriped 408 MHz all-sky 
ap, which is limited by a resolution of 56 arcmin but this N side =

048 version uses Gaussian random field realizations to fill in the 
igher resolution details (Remazeilles et al. 2015 ). 
The synchrotron spectral index map can be determined from 

he 217 and 353 GHz synchrotron maps, which use the ‘Model 
’ synchrotron spectral index map (Miville-Deschenes et al. 2008 ). 
his has a resolutions of approximately 5 degrees, so we must fill in

he higher resolution details. To do this, we use a Gaussian random
eld, using the synchrotron scaling relation in Santos, Cooray & 

nox ( 2005 ). We then use this spectral index map to interpolate the
ynchrotron emission at our frequency range. 

1.2 Fr ee-fr ee emission 

or simulating the Galactic free–free emission, we once again make 
se of the FFP10 maps, specifically the 217 GHz free–free simulation 
hich has N side = 2048 (Miville-Deschenes et al. 2008 ). This map is
ade using the free–free template from Dickinson, Davies & Davis 

 2003 ) as well as the ones from WMAP MEM. Taking the free–
ree amplitude ( a free ) from this map, we then simulate the free–free
mission using a power law 

 free = a free 

(
ν

ν0 

)βfree 

, (A1) 

here β free is the free–free spectral index, which is constant for all 
ixels. 

1.3 Point sources 

he point sources are generated by fitting a polynomial to radio 
ources at 1.4 GHz, using the model described in Battye et al. ( 2013 ).
e then use the method described in Oli v ari et al. ( 2017 ) to scale

his signal down to our frequencies. This method uses a power law,
here the spectral index is described by a Gaussian distribution with 
 mean of −2.7 and standard deviation of 0.2. Our source extraction
as an upper bound of 100 mJy. 

2 Polarization leakage 

olarization leakage arises from the magnetic fields present in our 
alaxy’s interstellar medium. When light interacts with these fields, 
araday rotation can change its polarization angle. This happens 
or our Galactic synchrotron emission, and some of its emission 
ill be leaked from Stokes Q and Stokes U to Stokes I. This

eakage will change with frequency because Faraday rotation is 
requency dependent (Jelic et al. 2010 ; Moore et al. 2013 ). Any
requency-dependent variation to the foreground signal will make 
ore ground remo v al more dif ficult, specifically for methods that rely
n foregrounds being smooth in frequency. 
 ht tp://pla.esac.esa.int /pla 

8

9

To simulate this effect, we use CRIME , 8 a software which simu-
ates Stokes Q emission maps for a giv en frequenc y. We generate this
or our frequency range, and choose the polarization leakage level of
he Stokes Q signal to be 0.5 per cent. For more details on CRIME ,
ee Alonso, Ferreira & Santos ( 2014a ). 

3 H I cosmological signal 

o generate the H I cosmological signal, we use the MULTIDARK-
LANCK (MDPL2) (Klypin et al. 2016 ) dark matter N-body 
imulation, a cosmological simulation which follows 3840 3 

ark matter particles evolving in a box with side lengths 
f 1 Gpc h −1 . The cosmology assumed in the simulation
s consistent with PLANCK15 , with { M 

, b , � 

, σ8 , n s , h } =
 0 . 307 , 0 . 048 , 0 . 693 , 0 . 823 , 0 . 96 , 0 . 678 } (Planck Collaboration
t al. 2016 ). This simulation has been made into the MULTIDARK-
ALAXIES (Knebe et al. 2018 ) galaxy catalogue, and the 
ULTIDARK-SAGE catalogue was also produced by applying the 

emi-analytical model SAGE (Croton et al. 2016 ). These are publicly
vailable in the Skies & Universe 9 web page. We choose to work with
he MULTIDARK-SAGE catalogue. 

This simulation is available in the form of redshift snapshots, 
here each snapshot shows the state of the cosmological density 
eld and galaxies to a different redshift evolution. We choose to use

he z = 0.39 snapshot, and assume a redshift range of 0.2 < z < 0.58
nd an ef fecti ve redshift of z eff = 0.39. This is not entirely realistic,
s it does not include the evolution of the density field and galaxies
ithin this redshift range, but it is sufficient for our purposes. We
rid our snapshot of galaxies into voxels using Nearest Grid Point
NGP) assignment. 

As first described in Cunnington et al. ( 2020a ), the method we
se for generating H I intensity mapping simulations is as follows:
ach galaxy in the MULTIDARK-SAGE catalogue has an associated 
old gas mass, which we use to compute a H I mass. For each voxel,
e take the H I mass of every galaxy falling into it, and bin them

ogether. We then convert this binned H I mass into a H I brightness
emperature T H I ( x ) for that voxel. Doing this for each voxel yields
he desired H I intensity map for our simulation. 

One of the limitations of this method is that the MULTIDARK-
AGE catalogue does not include haloes with mass lower than �
0 10 h 

−1 M �. In reality, these haloes would be present and contain H I ,
ontributing to the total H I brightness of each voxel. To account for
hese missing low mass haloes, we rescale the mean H I temperature
f our simulation to a more realistic value. We calculate this realistic
alue based on the H I abundance measurement made by the GBT-
iggleZ cross-correlation analysis, H I b H I r = [4.3 ± 1.1] × 10 −4 

Masui et al. 2013 ). We assume a cross-correlation coefficient of r =
, and take the H I bias to be b HI ( z eff ) = 1.105, based on the H I bias
t from Villaescusa-Navarro et al. ( 2018 ). 
For each redshift slide, this H I IM simulation can be then

ransformed into an o v ertemperature field by subtracting the mean
emperature. This o v ertemperature field traces the underlying dark 
atter o v erdensity field, δM 

( z): 

T H I ( z) = T H I ( z) − 〈 T H I 〉 = 〈 T H I 〉 b H I ( z ) δM 

( z ) . (A2) 
 ht tp://intensit ymapping.physics.ox.ac.uk/CRIME.ht ml 
 skiesanduniver ses.or g 
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4 Noise 

e wish to simulate what the instrumental noise for a MeerKLASS-
ike surv e y would look like in our case. The noise is uncorrelated in
requency, and it is Gaussian distributed with a standard deviation of
Alonso et al. 2014a ): 

( ν) = T sys ( ν) 

(
δνt tot 

p 

a N dish 

)−1 / 2 

, (A3) 

here δν is the frequency resolution of the data (1 MHz in our
ase), t tot is the total observing time (which we assume to be 1000
), N dish is the number of dishes (64, consistent with MeerKAT),
p = 1 . 13 θ2 

FWHM 

is the pixel solid angle, and a is the survey solid
ngle: 

a = 4 π
A sky 

, (A4) 

41253 

NRAS 510, 5872–5890 (2022) 
here A sky is the observed sky area (2927 deg 2 ). The frequency
ependent system temperature T sys ( ν) is made up of the receiver
oise temperature ( T rec ), and the sky temperature ( T sky ( ν)) (Santos
t al. 2015 ): 

 sys ( ν) = T sky ( ν) + T rec , (A5) 

here T rec = 25 K and T sky ( ν) is given by 

 sky ( ν) = 1 . 1 × 60 

(
300 

ν[MHz] 

)2 . 55 

. (A6) 
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