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A B S T R A C T   

Knowing the spatial and temporal suitability of neglected and underutilised crop species (NUS) is important for 
fitting them into marginal production areas and cropping systems under climate change. The current study used 
climate change scenarios to map the future distribution of selected NUS, namely, sorghum (Sorghum bicolor), 
cowpea (Vigna unguiculata), amaranth (Amaranthus) and taro (Colocasia esculenta) in the KwaZulu-Natal (KZN) 
province, South Africa. The future distribution of NUS was simulated using a maximum entropy (MaxEnt) model 
using regional circulation models (RCMs) from the CORDEX archive, each driven by a different global circulation 
model (GCM), for the years 2030 to 2070. The study showed an increase of 0.1–11.8% under highly suitable (S1), 
moderately suitable (S2), and marginally suitable (S3) for sorghum, cowpea, and amaranth growing areas from 
2030 to 2070 across all RCPs. In contrast, the total highly suitable area for taro production is projected to 
decrease by 0.3–9.78% across all RCPs. The jack-knife tests of the MaxEnt model performed efficiently, with 
areas under the curve being more significant than 0.8. The study identified annual precipitation, length of the 
growing period, and minimum and maximum temperature as variables contributing significantly to model 
predictions. The developed maps indicate possible changes in the future suitability of NUS within the KZN 
province. Understanding the future distribution of NUS is useful for developing transformative climate change 
adaptation strategies that consider future crop distribution. It is recommended to develop regionally differen
tiated climate-smart agriculture production guidelines matched to spatial and temporal variability in crop 
suitability.   

Practical implications  

Climate change undermines resource-poor farmers’ ability to 
respond to risk (Tom et al., 2018). Also, climate change will affect 
species and ecosystem distribution, reducing or increasing crop 
suitability. The maps developed show suitability zones for selected 
neglected and underutilised crop species (NUS) in KwaZulu-Natal. 

The projected increase in areas suitable for NUS production (i.e., 
S1-S3) under climate change suggests a positive change in ecology 
for the selected crops. The increased suitability also could inform 
how farmers could redesign and diversify their farming enterprise 
in response to climate risk. For instance, the possible co- 
occurrence of one or more NUS in a delineated zone could pro
mote crop diversification. Crop diversification is particularly 
beneficial in areas where maize monoculture is dominant, given 
that the productivity of maize is projected to decline under climate 

* Corresponding author. 
E-mail addresses: mugiyoh@gmail.com (H. Mugiyo), v.chimonyo@cgiar.org (V.G.P. Chimonyo), kunzr@ukzn.ac.za (R. Kunz), msibanda@uwc.ac.za (M. Sibanda), 

luxonn@wrc.org.za (L. Nhamo), modiat@ukzn.ac.za (A.T. Modi), mabhaudhi@ukzn.ac.za (T. Mabhaudhi).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2022.100330 
Received 27 November 2021; Received in revised form 15 August 2022; Accepted 12 October 2022   

mailto:mugiyoh@gmail.com
mailto:v.chimonyo@cgiar.org
mailto:kunzr@ukzn.ac.za
mailto:msibanda@uwc.ac.za
mailto:luxonn@wrc.org.za
mailto:modiat@ukzn.ac.za
mailto:mabhaudhi@ukzn.ac.za
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2022.100330
https://doi.org/10.1016/j.cliser.2022.100330
https://doi.org/10.1016/j.cliser.2022.100330
http://creativecommons.org/licenses/by/4.0/


Climate Services 28 (2022) 100330

2

change. The inclusion of sorghum in areas previously mapped as a 
livestock region could see the promotion of crop-livestock sys
tems. Sustainable intensification by promoting a mixed cropping 
system with greater agrobiodiversity supports SDG 15. However, 
information relating to the type of diversification, either temporal 
or spatial, will have to be generated together with actors in the 
agriculture value chain. 

This research proposes a method that can be used to improve the 
targeting of NUS as climate-smart crops, ultimately allowing their 
inclusion in strategic (long term) and operational (short to me
dium term) crop systems management. It is important to note that 
the maps are not decision-ready until various issues around the 
uncertainty of GCM data and its downscaling are clarified. More 
importantly, ground truthing is needed to validate the zoned areas 
for NUS before decision-makers use the maps. However, the 
method presents a proof of concept for informing the mapping of 
crop suitability of lesser-known crops. Therefore, the methods 
presented in this study can aid in the preliminary understanding of 
what (NUS) grows “where” and “when”. 

By delineating the suitability zones, research can better motivate 
the inclusion of NUS as part of a climate adaptation strategy. 
Furthermore, agronomists can use the maps to better understand 
current and future resource limitations across each area and crop. 
When interpreted by an agronomist, the maps can help to target 
the appropriate agronomic strategy suited for the farmer context 
(Andersson-Sköld et al., 2015; Gopichandran et al., 2016). 

Data availability 

Data will be made available on request.   

Introduction 

The Intergovernmental Panel on Climate Change (IPCC) projects a 
global temperature increase by 2050 of 1.2 ◦C and 2.2 ◦C under low and 
high emissions conditions, respectively (IPCC, 2018). In South Africa, 
the impacts of climate change have rapidly escalated; by 2080, tem
peratures in the coastal regions of the country are projected to increase 
by 1.5 ◦C and between 3 and 6 ◦C over the western, central and northern 
parts of South Africa (Chersich and Wright, 2019). Several conse
quences, including shifting agroecological zones, weather extremes 
(drought, floods and temperatures), and significant rainfall variability, 
affect crop production regardless of adaptability (Akinola et al., 2020). 
In rural farming communities in marginal areas, climate variability and 
change are already impacting food and nutrition security, and the extent 
varies across localities. Moreover, poverty, youth unemployment, and 
inequality within these communities remain high, with little to no access 
to climate services and inherently low adaptive capacity. However, Af
rican regional governments, including South Africa, continue to pro
mote agriculture as a plausible solution to reduce food and nutrition 
insecurity, poverty, youth unemployment and inequality (NPC, 2013). 
There is a need to focus on innovative agricultural technologies adapted 
to changing climate and create sustainable rural development oppor
tunities. It is within this context that several researchers are advocating 
for mainstreaming of neglected and underutilised crop species (NUS) 
into agricultural and food systems under climate change (Mabhaudhi 
et al., 2017a,b; Chibarabada et al., 2020; Chimonyo et al., 2016a; 
Hadebe et al., 2017; Nyathi et al., 2018). 

Neglected and underutilised crop species (NUS) are defined as crops 
that were once popular (in and out of their centres of diversity) but have 
become neglected by users and researchers despite their relevance in 
diversity (Mabhaudhi et al., 2017a,b). They form an important part of 
agrobiodiversity and are naturally adapted to marginal areas. Akinola 
et al. (2020) could contribute to food and nutrition insecurity in mar
ginal communities under climate change (Mabhaudhi et al., 2019). 

Several researchers have reported the benefits of NUS and highlighted 
high nutritional value, adaptation to marginal soils, and tolerance to 
drought and heat stresses (Chimonyo et al., 2016a; Hadebe et al., 2017; 
Nyathi et al., 2018; Chibarabada et al., 2020). In addition, they have low 
water use, which means they do not threaten water resources (Mab
haudhi et al., 2019). It is reasonable to assume that NUS display traits 
from natural selection that make them adaptable to harsh agro- 
ecologies. Moreover, NUS have been reported to offer ecologically 
viable options for increasing agriculture production and productivity at 
present or in the future (Chivenge et al., 2015). Despite their reported 
adaptability to marginal environments and climate change, there is a 
lack of studies focusing on climate change impacts on NUS’ temporal 
and spatial distribution. This limits the ability of policy and decision- 
makers to include them in adaptation options for smallholder farmers 
(Olayinka Atoyebi et al., 2017). 

Spatial modelling and analysis techniques can aid in understanding 
the distribution of NUS (Pecchi et al., 2019). Species distribution models 
(SDM) involve collating species occurrence data, relating these occur
rences to terrain and climate variables, and generating maps that predict 
past, present, or future species distributions (Shabani and Kotey, 2016; 
Akpoti et al., 2020). They relate environmental variables to species 
occurrence records to gain insight into ecological or evolutionary drivers 
and help predict agro-ecology suitability across large scales (Kramer- 
Schadt et al., 2013). These models include climatic-envelop models 
(Heumann et al., 2013), statistical models, such as generalised linear 
models (GLM), generalised additive models (GAM) (Austin, 2007), and 
machine-learning algorithms such as a genetic algorithm for rule-set 
production (GARP) and maximum entropy (MaxEnt) (Phillips et al., 
2006). The latter model, MaxEnt, has become a popular tool for pre
dicting species distributions in environmental research (Su et al., 2021). 
The model can cope well with sparse, irregularly sampled data and 
minor location errors (Phillips et al., 2006). The MaxEnt model has been 
successfully used by Kogo et al. (2019) to identify suitable areas for 
maize production in Kenya. Similarly, with limited training data, Akpoti 
et al. (2020) mapped land suitability for rice production in Benin and 
Togo. Bunn et al. (2019) mapped recommendation domains to scale-out 
climate change adaptation strategies in cocoa production in Ghana. 

This study applied the MaxEnt model to assess climate change im
pacts on the geographic distribution of suitable production areas for 
selected NUS with limited empirical data on occurrence. The study 
assessed the application of presence-only data to evaluate the current 
and future crop suitability of sorghum (Sorghum bicolor), cowpea (Vigna 
unguiculata), and amaranth (Amaranthus) and taro (Colocasia esculenta). 
This study considered sorghum as an NUS in sub-Saharan Africa “in 
terms of ‘extent’ (socio-economic) and ‘where’ (geographical)” (see 
Hadebe et al., 2017). In addition, it is also considered an NUS because, 
relative to its potential, the production is low, and utilisation in sub- 
Saharan Africa is still regarded as low (Taylor, 2003; Macauley, 
2015). The application of MaxEnt, a machine-learning algorithm-based 
model designed to estimate the likelihood of occurrence based on 
presence-only data, has great potential for use, mainly where extensive 
land use information is often difficult to obtain. The study is the first step 
toward understanding the present and future NUS suitability. 

Methodology 

Study area 

This study was carried out in the KwaZulu-Natal (KZN) province in 
South Africa. The province covers 94 361 km2, of which 65 000 km2 is 
considered suitable for farming. This study classified farming land as 
either arable (cropland and fallows) or land under permanent crops, 
pastures, and hayfields. The province has a dual agricultural economy 
consisting of commercial and subsistence farms (Tibesigwa et al., 2017). 
KwaZulu-Natal is characterised by summer rainfall, and most of its rain 
is received in the austral summer period, between October and March 
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(Kruger and Nxumalo, 2017). The mean annual rainfall ranges from 650 
mm in the eastern Grasslands to 1400 mm in the east of Coastal Bush
veld, and the Central Bushveld receives 900 mm (Walker and Schulze, 
2006; Ghile and Schulze, 2008). Across space and time, rainfall in the 
province is unevenly distributed (Lobell et al., 2008; Dai, 2011; Zier
vogel et al., 2014) and is the dominating factor determining crop suit
ability (Walker and Schulze, 2006). 

MaxEnt model description 

MaxEnt (Phillips et al., 2006) is a general-purpose machine learning 
model based on a precise and straightforward mathematical formulation 
(Reddy et al., 2015; Akpoti et al., 2020). It is also described as a 
presence-only model that uses predictor datasets to distinguish species 
occurrence patterns (Merow et al., 2013). The model utilises categorical 
and continuous datasets (Merow et al., 2013; Heumann et al., 2013). 
Although a fundamental assumption of MaxEnt is that regions have been 
systematically sampled across most existing land, the MaxEnt model is 
usually built from occurrence records that are spatially biased towards 
better-surveyed areas (Akpoti et al., 2020). The model offers both a user- 
friendly graphical user interface and command-line functions. MaxEnt is 
among the most preferred niche-based geographic species distribution 
modelling methods and performs exceptionally well with small datasets 
(Phillips et al., 2006; Kramer-Schadt et al., 2013). The model also pro
vides useful model assessment tools such as i) jack-knife environmental 
parameter contributions, ii) species-environment curves (with and 
without other ecological parameters) and iii) Area Under the Curve of 
the Receiver Operating Characteristic (AUC-ROC) as a metric of model 
performance (Phillips et al., 2006; Merow et al., 2013). This study used 
MaxEnt Version 3.4.4 (https://www.cs.princeton.edu/~schapire/ 
maxent) to model the distribution of the four NUS (sorghum, cowpea, 

amaranth and taro) in KZN. 

Species occurrence data 

The species occurrence data points were gathered from field surveys 
conducted in KZN between October and November 2019. During the 
survey and for each crop (sorghum, cowpea, taro, amaranth), we 
collected 60 GPS locations, making 240 data points, and the points were 
randomly selected in a linear pattern (Fig. 1). These data points were 
randomly collected within 20 m of farmer’s fields where the crops were 
seen to be established. 

Predictor variables 

In the current study, the MaxEnt model was adopted to simulate the 
planting area of the selected NUS by combining a set of known geo- 
coordinates with layers of environmental variables under KZN’s cur
rent and future environmental conditions. The datasets used in this 
study were divided into i) continuous surfaces of bioclimatic variables 
(e.g., climate and topography) and ii) categorical (or discrete) surface 
variables (e.g., known locations of NUS growing areas). Four climatic, 
six soil physical and chemical properties, two topographic and two so
cioeconomic variables were used (Table 1). Social and economic factors, 
such as the distance along with the road network and distance to metro 
cities, can significantly affect crop profitability, influencing crop choice 
to be grown on a farm. These social-economic factors affect farmers’ 
crop preference because some crops like taro are heavy to transport to 
the markets. In this regard, some farmers who reside far away from 
metro towns where markets are situated might not grow these crops on 
large hectarages because of the cost of transporting them to the markets. 

In this study, historical and future climatic data were mined from 

Fig. 1. Map of South Africa and the location of KwaZulu Natal province. Also, the presence data for sorghum, cowpea amaranth and taro in KwaZulu-Natal in South 
Africa is shown. 
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high-resolution regional climate projections from the newly performed 
Coordinated Output for Regional Evaluations (CORE) embedded in the 
Coordinated Regional Climate Downscaling Experiment (CORDEX) 
framework (Ciarlo et al., 2020). The CORDEX dataset is provided to 
conduct climate change impact assessment at the regional and local 
scales and to understand patterns of projected future climate (Coppola 
et al., 2020). Three climatic parameters, namely, minimum tempera
ture, maximum air temperature and precipitation with a spatial reso
lution of 0.25◦ by 0.25◦ at the ground level, were selected from the 
Copernicus Climate Change Service (C3S) (2017). We selected five 
different Earth System /Regional Climate Model (ESM/RCM) combina
tions at a spatial resolution of 0.22◦. The five climate scenarios where 
MPI-ESM- LR/REMO2015, HadGEM2-ES/REMO2015, NorESM1-M/ 
REMO2015, HadGEM2-ES/RegCM4-7, and NorESM1-M/RegCM4-7 
(Thrasher et al., 2012; Teichmann et al., 2021). Each climate projection 
includes daily maximum temperature, minimum temperature, and pre
cipitation from 1950 through 2100. Musie et al. (2020) and Vautard 
et al. (2021) provided more details about the CORDEX method used to 
generate the datasets. 

The elevation and categorical soil type datasets were resampled to 
0.25◦ by 0.25◦ resolutions using the bilinear interpolation method (Du 
et al., 2013) (Table 1). Social and economic factors, such as the distance 
between the main road, road network and distance to metro cities, can 
significantly affect crop profitability, influencing farmer crop choices. 
For instance, farmers residing far away from a good road network and 
markets might be less inclined to grow taro, a tuber crop that is bulky 
and heavy, owing to the high transportation cost. Finally, South Africa 

environmental data in GCS-WGS-1984 were obtained from the above 
global raster data overlaid by the administrative boundary maps of 
KwaZulu- Natal in ESRI shape format in ArcGIS. All raster files were 
converted into ‘asc’ format based on the requirements of the Maxent 
model (Phillips et al., 2006). 

A multicollinearity test was undertaken using R- Package ’virtual 
species’ (version 4.0.4) McLeod, (2011), and Pearson correlation coef
ficient (r) was selected as an absolute value to filter out correlated 
variables. The correlation coefficient threshold of 0.7 was chosen to 
minimise multicollinearity and screen highly correlated environmental 
predictors. The test was done on both current and future databases. 

Future scenario 

The Representative Concentration Pathways (RCPs), published in the 
IPCC’s Fifth Assessment Report (AR5), represent greenhouse gas con
centration trajectories that may determine possible future climates (Wei 
et al., 2018). Datasets of 21 models under Coupled Model Inter- 
Comparison Project Phase 5 (CMIP5) were generated by downscaling 
coarser-resolution GCMs. Martynov et al. (2013) indicated that the 
measure of the global mean temperature response to an increase in CO2. 

The future projections of the CORDEX datasets are available for three 
representative concentration pathways (RCPs2.6, 4.5 and 8.5), covering 
the entire range in radiative forcing (Haile et al., 2020). RCP 2.6 assumes 
that global annual greenhouse gas emissions will peak between 2010 
and 2020 and substantially decline. This RCP projects a rise in global 
mean temperature of 0.4 to 1.7 ◦C by the end of the century, relative to 
1850 (Thrasher et al., 2012; Teichmann et al., 2021). According to IPCC 
(2018), the RCP 4.5 is an intermediate scenario, and the emissions are 
projected to around 2040, then decline. The RCP 4.5 is more likely to 
result in a global temperature rise between 2 and 3 ◦C, by 2100, with a 
mean sea level rise 35 % higher than RCP 2.6 (Rodrigues et al., 2015). 
For RCP 8.5, emissions continue to rise throughout the 21st century, and 
the global mean temperature is projected to rise by 2.6 to 4.8 ◦C (Hij
mans et al., 2005; Reddy et al., 2015). In this study, we averaged three 
RCPs to estimate the distribution and suitability of sorghum, cowpea, 
taro, and amaranth for two periods (2050 and 2070) across KZN. 

Model setting and evaluation 

The MaxEnt model partitioned the crop presence data using a 
random 50/50 % split for training and calibration. The following default 
settings were used: random test percentage = 25; regularization multi
plier = 1; the maximum number of background points = 10 000 (Phillips 
et al., 2006). Ten replicates were simulated and used to calculate the 
mean relative occurrence or suitability probabilities. The MaxEnt model 
assumes that species are equally likely to be anywhere on the landscape 
by default. As such, a 10th percentile training presence logistic threshold 
was used. This then assumes that 10 % of occurrence records of NUS in 
the least suitable habitat occur in KZN agro-ecosystems. In this study, we 
used the area under the receiver operating characteristic (ROC) curve 
(AUC), a commonly used threshold independent metric, to evaluate the 
fit of the MaxEnt model to the true presence and absence data (Heumann 
et al., 2013; van Proosdij et al., 2016). If AUC ≤ 0.5, it indicates a 
random prediction, while AUC > 0.5 indicate a better model prediction 
(Jiménez-Valverde, 2012; Senay and Worner, 2019). This study used an 
AUC threshold of 0.7 (or above) to identify good discriminatory power 
results (van Proosdij et al., 2016; Somodi et al., 2017). The relative 
suitability probability of > 0.5 was used, which denotes a 50 % chance of 
NUS being present in suitable production areas of KZN. 

Analysis of model outputs 

The MaxEnt model outputs a map of occurrence probabilities and 
tables of model selection (e.g., variable contribution to the model) and 
the AUC for the training and validation datasets. The mean and the 95th 

Table 1 
Input variables used to predict land suitability of NUS in KwaZulu-Natal with 
MaxEnt, including the original data source and native spatial resolution.  

Variable Name Source Resolution 

Climate 
Seasonal precipitation 

(mm) 
Seasonal 
precipitation 

https://cordex. 
org/domains/region-5- 
africa/ 

25 km 

Minimum temperature 
(◦C) 

Minimum 
temperature 

https://cordex. 
org/domains/region-5- 
africa/ 

1 km 

Maximum 
temperature (◦C) 

Maximum 
temperature 

https://cordex. 
org/domains/region-5- 
africa/ 

1 km 

Length of the growing 
period (days) 

LGP Schulze (2008) 1 km  

Soil physical and chemical properties 
Available soil water 

capacity untilwilting 
point  
(volumetric 
fraction) 

WWP SoilGrids250m 250 m 

Soil pH PH AfSoilGrids250m 250 m 
Soil depth (mm) DEPTH AfSoilGrids250m 250 m 
Soil texture fraction: 

clay (%) 
CLAY AfSoilGrids250m 250 m 

Soil texture fraction: 
silt (%) 

SILT AfSoilGrids250m 250 m 

Soil texture fraction: 
sand (%) 

SAND AfSoilGrids250m 250 m  

Topography    
Elevation (m a.s.l) DEM earthexplorer.usgs.gov 30 m 
Slope (%) SLOPE earthexplorer.usgs.gov 30 m  

Socioeconomic factors 
The distance along 

with the road 
network (km) 

EUCDIST Derived in ArcGIS 2 km 

Distance to metro 
cities (km) 

ACCESS Derived in ArcGIS 1 km  
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percentile of the 1000 runs conducted for habitat suitability were 
mapped. Variable contributions and AUC were displayed as jack-knife 
plots. The contributions for each variable were determined by 
randomly permuting the values of a variable at each species occurrence 
point and measuring the resulting decrease in training (AUC). The 
continuous probability maps were then converted into binary maps 
(suitable vs unsuitable) based on the probabilities being equal and that 
the model was correctly classified as i) suitable and ii) unsuitable area (i. 
e., sensitivity = specificity). The simulated MaxEnt model outputs were 
then reclassified in ArcGIS using the natural breaks (Jenks) classification 
method. Change detection was undertaken using an overlay analysis to 
find spatial shifts from present to projected future suitability. Suitable 
crop production areas were reclassified as highly suitable (S1), moder
ately suitable (S2), marginally suitable (S3), and unsuitable (N1), as 
described in Table 2. 

Results 

Current vs future crop production areas 

The current and future suitability maps of sorghum predicted by the 
MaxEnt model are shown in Fig. 2. Under current conditions, land 
deemed suitable for sorghum production followed the west to east 
suitability trend, mainly due to rainfall distribution. From Fig. 2, areas 
classified as highly suitable (S1) are located in the western and central 
parts of the province, whilst the north-eastern was considered largely 
unsuitable (N1). Highly suitable and unsuitable areas occupy approxi
mately 13.4 and 14.5 % of the province’s total land area. 

The cowpea distribution for present conditions had a similar trend to 
sorghum (Fig. 3). Areas classified under S1 and S2 were in the western 
part of the province, whilst the north-eastern region was largely S3 and 
N1. Currently, highly suitable and unsuitable areas are estimated to 
occupy approximately 13.1 and 17.5 % of the total land in the province, 
respectively. The current distribution maps for amaranth showed that 
the crop could be produced throughout the province. Like sorghum and 
cowpea, suitability followed the west to east trend, with areas in the 
west being more suitable than the east. The taro spread remained 
spatially sparse in all scenarios in the KZN province (Fig. 5). Suitable 
land was concentrated in the province’s southwest, northwest, and 
central parts (Fig. 6). 

Change detection under RCPs 2.6, 4.5 and 8.5 

The spatial and quantitative changes in land area for each suitability 
category under RCPs 2.6, 4.5 and 8.5 relatives to present growing con
ditions for each crop are shown in Figs. 2 to 5. The results showed a 
significant difference between the present suitable habitats and those 
predicted in the 2050s across all RCPs, with substantial changes 
occurring under RCP 4.5 and 8.5. In particular, the area deemed 
moderately suitable for production continues to increase insignificantly 
for sorghum, cowpea and amaranth (Figs. 2–4). Simulations indicate a 
decrease in unsuitable areas (N1) of 35.3–39.9 %, 46.5–47.5 % and 

10.6–15.4 % for sorghum, cowpea and amaranth, respectively. Contrary 
to this, the results showed an increase (15.6–18.0 %) in unsuitable areas 
for taro (Table 3). The change in highly suitable areas increased by 
3.6–11.8 %, 3.5–0.8 % and 0.1–2.9 % for sorghum, cowpea and 
amaranth, respectively, yet decreased by 15.5–8.2 % for taro across all 
scenarios (Table 3). 

Suitable land for sorghum, cowpea and amaranth production will 
increase in the 2070s (Fig. 7). However, in the 2070s and across all 
RCPs, the highly suitable growing area for taro is projected to decrease 
by 4.59–9.78 % in S1 (Table 4). The moderately suitable and unsuitable 
areas for taro are projected to increase in the 2070s by 13.68–16.69 and 
38.86–40.75 %, respectively (Table 4). 

MaxEnt evaluation under current and future growing conditions 

The jack-knife plots from the MaxEnt model were used to determine 
the contribution of all 14 environmental variables (Figs. 8 and 9) to the 
final maps produced. The AUC varied across all crops; however, the 
highest contributions were obtained from climatic variables where AUC 
> 0.8. Different biophysical parameters influenced the suitability of 
each crop and geographical range. The plots revealed that the climatic 
variables minimum and maximum air temperature, length of growing 
period and seasonal precipitation made a relatively higher contribution 
to sorghum, cowpea and taro (Figs. 8 and 9) suitability. More specif
ically, rainfall-related factors had the most significant influence on the 
potential suitability. For edaphic factors, lower AUC values were ob
tained for soil depth, pH, and slope. 

The receiver operating characteristic curves (ROCs) are shown in 
Fig. 10, together with the final AUCs of 0.93 (sorghum), 0.89 (cowpea), 
0.91 (amaranth) and 0.84 (taro). These values represented the average 
of the replicate runs and were above 0.8, thus indicating that MaxEnt 
can satisfactorily estimate land suitability for NUS in KZN. 

Discussion 

This study was the first to explore the impacts of climate change on 
areas deemed potentially suitable for sorghum, cowpea, amaranth and 
taro production in KZN. The MaxEnt model identified the most critical 
biophysical predictors of suitability for each crop. Our analysis of model 
parameterisation showed two things: (1) that the accuracy of the suit
ability models increased when maximum temperature and seasonal 
precipitation were included in the modelling, (2) that the suitability of 
the studied NUS was affected more by maximum temperature and sea
sonal precipitation, and (3) socioeconomic factors did not increase the 
accuracy of the models. The observed results suggest that the reliability 
of models increases with the inclusion of crop growth indices as they are 
more related to the observed spatial and temporal distribution of the 
selected NUS, which provides more confidence in the application of the 
model for climate impact studies. The finding that precipitation-based 
factors are most important for the suitability of NUS is in line with 
other studies that identified rainfall as the critical determinant of mar
ginal production systems (Chemura et al., 2020). 

Contrary to finding on precipitation and temperature, the low rele
vance of socioeconomic factors included in the model could be attrib
uted to the sampling structure used in the study. The study adopted a 
random sampling approach where the sighting of the investigated NUS 
did not follow the same trend as major roads. In light of our findings, 
further investigations are needed to identify the effects of socioeconomic 
variables and land-use changes on NUS cultivation to ensure sustainable 
production and mitigate future food insecurity. Transport affects 
farmers’ crop produce; NUS must be transported from farms to the 
market. Usually, poor transportation in rural areas has resulted in low 
productivity, low income, a fall in the standard of living of smallholder 
farmers, and a high poverty rate in KZN. Distance to markets and reliable 
transport systems are essential in distributing agricultural products. It, 
therefore, helps to facilitate market access for NUS products and reduces 

Table 2 
Suitability assessment for sorghum, cowpea, amaranth and taro cultivation in 
KwaZulu-Natal (FAO, 2007).  

Class of 
Suitability 

Suitability 
index (SI) 

Description of class 

Highly suitable 
(S1) 

> 0.8 Optimal conditions for crop cultivation 

Moderately 
suitable (S2) 

0.6–0.79 Minor limitations that could reduce crop 
productivity 

Marginally 
suitable (S3) 

0.2–0.59 Land with major limitations that may 
significantly reduce crop production 

Unsuitable (N1) < 0.19 Lands with severe limitations that are not 
favourable for crop cultivation  
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Fig. 2. Land areas deemed potentially suitable for sorghum production undercurrent (a) and three future environmental conditions for the 2050s, based on RCPs 2.6 
(b), 4.5 (c) and 8.5 (d). The maps were developed from the continuous probability maps based on the threshold optimisation method (sensitivity = specificity). 

Fig. 3. The current and future suitable zones for cowpea, (a) current (b) RCP2.6, (b) RCP 4.5 and (d) RCP 8.5 in 2050s. The maps are discretised from the continuous 
probability maps based on the threshold optimisation method (sensitivity = specificity). 

H. Mugiyo et al.                                                                                                                                                                                                                                 



Climate Services 28 (2022) 100330

7

spoilage of farm products. 
The results indicated that suitable land for sorghum and cowpea 

followed the same pattern, while amaranth is highly suitable in s 
KwaZulu-Natal. In contrast, taro’s suitability was mainly confined to 
higher rainfall areas in the province. The similarity in suitable land for 
sorghum and cowpea could be because these crops have similar water 
and temperature requirements and growing cycle lengths (Neely et al., 
2018). Sorghum and cowpea are tropical crops requiring moderately 
high temperatures and water. Chimonyo et al. (2016a,b) and Neely et al. 
(2018) noted that sorghum and cowpea need 450–650 mm of rainfall 
and are often found in the same cropping system (i.e., monocrop or 
intercrop). The observed similarities in suitability would suggest that 
these crops could be recommended, in tandem, in areas earmarked for 
agroecological intensification. The general suitability of amaranth to 
present and future climatic conditions could be attributed to its short 
growing cycle and adaptability to broader temperature ranges. More
over, it requires less water over the growing season (Bello and Walker, 
2017). Short-duration crops have long been suggested to increase 
farmers’ resilience to drought and its mitigation. The observed suit
ability of sorghum, cowpea and amaranth supports claims on the po
tential benefits of NUS enhancing climate resilience in marginalised 
land. However, to further guide sustainable climate resilience in these 
farming systems, climate services should integrate crop suitability as
sessments into short (1–5 years), medium (decadal) and long term (30 
years) climate impact analysis within agricultural planning. 

The study revealed that taro would be most affected by future 
climate as the crop is less suited to the hotter growing conditions. 
Nevertheless, results also showed that the tested landrace variety was 
suitable in dry regions receiving less than 500 mm. Then again, Mab
haudhi et al. (2014) estimated that taro requires 2500 mm of water per 
year, which explains why the crop is best suited to the province’s wetter 
regions, the western region the province. The studied taro landrace is the 

upland type, not the swamp or wetland type. Mabhaudhi et al. (2014) 
indicated that the upland taro landrace grown in the greater KZN region 
possesses drought avoidance mechanisms. During the dry spell, upland 
taro regulates water loss through stomatal closure and adjustments in 
canopy size (Mabhaudhi et al., 2014). Results suggest taro may be out of 
place for drought adaptation because of its high-water demand, and SA 
is becoming more water-stressed. Then again, climate projections indi
cate an increase in floods within the region. In this regard, taro can be 
grown to mitigate flood losses in other cropping systems. In S1 to S3, it 
would be necessary to continue supporting and improving climate-smart 
crop production techniques. However, marginalised smallholder 
farmers have experienced several challenges when adopting NUS in 
their farming practices. There is a generation gap among them regarding 
recipes prepared; to a certain extent, the current generation does not 
accept NUS. There is a need for concretising end-users about the 
importance of NUS. In several parts of South Africa, markets of NUS are 
not well organised (Massawe et al., 2016). Therefore, our results indi
cate areas where the investigated crops can be introduced as an adap
tative management strategy. 

There is an increase in suitability for all crops in the Drakensberg 
area (central region along the western border of KZN). The Drakensberg 
is a mountain range that experiences relatively high summer rainfall 
(>700 mm) and has fertile soil foothills (Vinet and Zhedanov, 2011). 
Lawrence et al. (2012) indicated that for RCP 8.5, the CORDEX projects 
an increase in minimum and maximum temperature within the central 
region of South Africa. Based on these projections, the Drakensberg area 
will become more suitable for producing crops such as sorghum and 
amaranth (Nyathi et al., 2018). The added suitability for sorghum and 
amaranth production in this area will increase farmer crop choices. 
However, this suggests that crops currently occupying these areas will 
become less suitable. Shifts in crop suitability would indicate a need to 
re-evaluate the distribution, diversity and suitability of existing crops 

Fig. 4. The current and future suitable zones for amaranth, (a) current, (b) RCP 2.6, (c) RCP 4.5, and (d) RCP 8.5 in the 2050s. The maps are discretised from the 
continuous probability maps based on the threshold optimisation method (sensitivity = specificity). 
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within areas where the current suitability of crops is projected to in
crease at different Representative Concentration Pathways (RCPs). 

Representative Concentration Pathways represent different emis
sions, concentrations and radiative forcing projections leading to a large 
range of global warming levels, from continued warming rising above 
4 ◦C by the year 2100 to limiting warming well below 2 ◦C as called for 
in the Paris Agreement (IPCC, 2018). In this study, we used three RCPs, 
very high (RCP8.5), medium (RCP 4.5) and very low (RCP2.6) future 
concentrations and tried to explore crop suitability options at the 
different magnitude of pathways. The three scenarios were selected 
based on the expected differences in radiation forcing for the future 
climate (Teichmann et al., 2021; Vautard et al., 2021). In addition, the 
use of GCMs for future climate projections is subject to some un
certainties arising from distinct sources such as different emission/ 
concentration scenarios, parameterization and structure of the GCMs, 
and boundary and initial conditions. Climate sensitivity is an important 
source of model uncertainty over large parts of the globe, not just near- 
surface temperature (Martynov et al., 2013; Teichmann et al., 2021). In 
GCMs, it is often measured in terms of the equilibrium (or “effective”) 
climate sensitivity (ECS), the global mean near-surface air temperature 
response to a doubling of CO2 after equilibrium is reached, or as a GCM’s 
transient climate response (TCR), the change in global mean tempera
ture at the time CO2 reaches double its initial concentration while 
increasing at 1 % per year (Zhao et al., 2005; Kattsov et al., 2013). 
Furthermore, climate models often cannot represent future conditions at 
the degree of spatial, temporal, and probabilistic precision with which 
projections are often provided, which gives a false impression of confi
dence to users of climate change information (Teichmann et al., 2021). 
Nissan et al. (2019) suggest focusing on decision-relevant timescales, an 
increased role for model evaluation and expert judgment, and inte
grating climate variability into climate change services. 

Study limitations 

Like most modelling studies on the effects of climate change on crop 
production, this study also has some limitations. The analysis assumes 
no improvements in drought and heat tolerance of crops through plant 
breeding efforts, which would affect their future distribution. Secondly, 
during data collection, we have not considered the influence of farming 
systems such as irrigation or dryland farming in KZN because the visual 
selection of occurrence location points may cause substantial bias in 
sample selection (Araújo and Peterson, 2012; Merow et al., 2013). A 
systematic random sampling technique is recommended to capture the 
dynamics of farming systems in KZN. In addition, this study assumed 
that future land use and farming systems remain constant, which is an 
unlikely situation. The approach taken in this study assumes all four 
crops can grow anywhere, regardless of current land use. Therefore, 
changes in land use should be considered in future research to improve 
the results further. In addition, more ground truthing is required to 
verify the area under NUS in KZN. Despite these limitations, the current 
study results still hold value and significance in informing planning. It is 
important to note that the maps need to be ground-truthed after 
assessing the sensitivity of the predicted crop suitability to uncertainty 
and spread of the input climate data in KZN. The spatially averaged 
outputs might not capture seasonal variability such as rainfall intensity, 
frequency, length of dry and wet spells (Dosio et al., 2019). One of the 
goals for future work is to investigate and compare the physical mech
anisms underlying rainfall variability and changes in rainfall character 
in observations and the models. 

There has been little work on crop suitability in Africa using regional 
climate models (RCMs); however, the CORDEX project provides an 
effective source of regional climate model data for crop suitability 
(Teichmann et al., 2021). Rather than convection parameterizations, 
global model uncertainty still makes up the largest part of the 

Fig. 5. The current and future suitable zones for taro, (a) current, (b) RCP 2.6, (c) RCP 4.5, and (d) RCP 8.5 in the 2050s. The maps are discretised from the 
continuous probability maps based on the threshold optimisation method (sensitivity = specificity). 
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Fig. 6. Changes in land suitability for sorghum, cowpea, taro and amaranth production under RCPs 2.6, 4.5 and 8.5 in the 2050s, relative to present conditions.  
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uncertainty in future climate. Using RCMs helps to explore key sources 
of uncertainty further because they may respond differently to climate 
forcings than their driving GCM, particularly for precipitation 
(Chapman et al., 2020; Gao et al., 2021). This work did not evaluate 
uncertainty from global climate, and there is a need for improved in
formation on sensitivities of RCMs on NUS suitability to give better 
predictions and make better use of the new generation of explicit- 
convection models. Explicit convection might have more impact if 
suitability included a more comprehensive treatment of extremes 
(Vautard et al., 2021). 

The study used a range of RCMs from the CORDEX archive, each 
driven by a different GCM, to map areas suitable for NUS. It is important 
to note that the maps are not decision-ready until a host of issues around 
uncertainty in the results are clarified, such as assessing the sensitivity of 
the predicted crop suitability to uncertainty and the spread of the input 

climate data. While the results of our study suggest a good agreement 
between simulated occurrences and observed occurrences of the crop 
species, the classification algorithm and the RCMs conditioned by GCM 
projections introduce some uncertainty to the outputs. Such uncertainty 
has implications for how the results can be used. In our case, the results 
are exploratory and can be used for further research on developing NUS 
production guidelines and breeding varieties suitable for projected en
vironments. The CORDEX datasets are a promising input for crop suit
ability and climate change impact studies in developing countries such 
as South Africa, where the required bias correction data are scarce 
(Teichmann et al., 2021). The model may not identify a novel agro- 
climatic zone emerging under future conditions. It could be worth
while to use an ensemble of GCMs to understand the size of the uncer
tainty (Chapman et al., 2020; Teichmann et al., 2021; Vautard et al., 
2021). The uncertainties associated with the modelling process, from 

Table 3 
Changes in land suitability for sorghum, cowpea, amaranth and taro production under RCPs 2.6, 4.5 and 8.5 in the 2050s, relative to present conditions.  

Scenario Suitability 
Index 

Sorghum Change of area as a % Cowpea Change of area as a % Taro Change of area as a % Amaranth Change of area as a % 

Current S1 8579  7678  5789  36,890  
RCP 2.6 S1 8884  3.6 7945  3.5 4892  − 15.5 36,902  0.0 
RCP 4.5 S1 9594  11.8 8505  10.8 4326  − 25.3 37,560  1.8 
RCP 8.5 S1 9320  8.6 8469  10.3 3580  − 38.2 37,946  2.9  

Current S2 27,902  28,250  9007  18,402  
RCP 2.6 S2 28,905  3.5 28,882  2.2 8568  − 4.9 19,800  7.6 
RCP 4.5 S2 29,002  3.8 29,931  6.0 8542  − 5.2 20,098  9.2 
RCP 8.5 S2 30,987  10.7 30,508  8.0 8023  − 10.9 20,059  9.0  

Current S3 19,003  19,502  22,101  4338  
RCP 2.6 S3 18,201  − 4.2 19,045  − 2.3 23,209  5.0 4206  − 3.0 
RCP 4.5 S3 17,203  − 9.5 17,525  − 10.1 23,800  7.7 3841  − 11.5 
RCP 8.5 S3 14,992  − 21.1 17,064  − 12.5 24,499  10.9 3699  − 14.7  

Current N1 9516  9570  28,103  5370  
RCP 2.6 N1 9010  − 39.9 9128  − 46.5 28,331  15.6 4092  10.6 
RCP 4.5 N1 9201  − 38.6 9039  − 47.0 28,332  15.6 3501  − 5.4 
RCP 8.5 N1 9701  − 35.3 8959  − 47.5 28,898  18.0 3296  − 10.9  

Fig. 7. Changes in land suitability for sorghum, cowpea, taro and amaranth production suitability under RCPs 2.6, 4.5 and 8.5 in the 2070s.  
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the driving climate to impacts, need to be quantified because RCMs are 
not equal when it comes to their performance in a localised study area. 
In future, analysis and intercomparison of the individual RCMs and their 
ensemble will help us to better understand how the RCMs perform in 
areas with complex topography, such as Drakensburg in KwaZulu-Natal. 
Hence, to select the appropriate RCMs for a specific location, evaluating 
the performance of multiple available RCMs is necessary. 

Conclusion 

This study is the first step toward a better understanding of present 
and future suitability for NUS production. The study used a range of 
RCMs from the CORDEX archive, each driven by a different GCM, to map 
areas suitable for NUS. The results showed that MaxEnt could predict 
NUS’ present and future suitability across a heterogeneous province like 
KZN. These results suggest that the same analytic framework could be 
adopted across South Africa and the region. The analysis predicted that 
the potential distribution of the selected NUS’ current and future 

Table 4 
Changes in land suitability for sorghum, cowpea, amaranth and taro suitability under RCPs 2.6, 4.5 and 8.5 in the 2070s, relative to present conditions.  

Scenario Suitability Index Sorghum 
Area 
km2 

Change of area as a % Cowpea 
Area 
km2 

Change of area as a % Taro 
Area 
km2 

% Change for taro Amaranth 
Area 
km2 

Change of area as a % 

Current S1 8579  7678  5789  36,890  
RCP 2.6 S1 8615  0.42 7952  3.57 5396  − 6.79 37,942  2.85 
RCP 4.5 S1 8617  0.44 8081  5.25 5523  − 4.59 37,890  2.71 
RCP 8.5 S1 8622  0.50 8158  6.25 5223  − 9.78 37,841  2.58  

Current S2 27,902  28,250  9007  18,402  
RCP 2.6 S2 28,206  1.08 28,395  0.51 7775  − 13.68 19,833  7.78 
RCP 4.5 S2 28,391  1.73 28,567  1.12 7628  − 15.31 19,800  7.60 
RCP 8.5 S2 28,439  1.90 28,745  1.75 7504  − 16.69 20,044  8.92  

Current S3 19,003  19,502  22,101  4338  
RCP 2.6 S3 18,700  − 1.59 18,922  − 2.97 21,028  − 4.86 4033  − 7.03 
RCP 4.5 S3 18,416  − 3.09 18,450  − 5.39 21,049  − 4.76 3901  − 10.07 
RCP 8.5 S3 18,177  − 4.35 18,167  − 6.85 21,884  − 0.98 3809  − 12.19  

Current N1 9516  9570  28,103  5370  
RCP 2.6 N1 9479  − 47.85 9730  − 46.44 30,801  40.75 3192  − 16.20 
RCP 4.5 N1 9576  − 47.32 9902  − 45.49 30,800  40.74 3409  − 10.50 
RCP 8.5 N1 9762  − 46.29 9930  − 45.34 30,389  38.86 3306  − 13.21  

Fig. 8. Jack-knife plots evaluating the relative importance in MaxEnt of environmental variables for (a) sorghum, (b) cowpea, (c) taro and (d) amaranth under 
present growing conditions. The stripped black bars (without variable) show the performance lost when the variable is removed. In contrast, the dotted black bars 
(with only one variable) indicate the performance when using a variable in isolation. The boxed dark black bar (with all variables) indicates the model performance 
when using all variables. 
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growing areas was based more on environmental than socioeconomic 
factors. Climatic variables related to rainfall (length of growing and 
seasonal rainfall) and minimum and maximum air temperature signifi
cantly contributed to the model performance and crop suitability. The 
study provides insight into the zoning of areas suitable for producing 
NUS. However, there is a need to address issues of data uncertainty and 

model sensitivity. As such, the developed maps show one scenario of 
possible changes in the future suitability of NUS within the KZN prov
ince. The study should be used as a proof of concept to demonstrate an 
approach to delineate sustainable crop production areas under climate 
change. 

Fig. 9. Jack-knife plots evaluating the relative importance in MaxEnt of environmental variables for (a) sorghum, (b) cowpea, (c) taro and (d) amaranth under future 
(the 2050s) growing conditions. 

Fig. 10. The receiver operating characteristic (ROC) curve for (a) sorghum, (b) cowpea, (c) taro and (d) amaranth for present period.  
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Jiménez-Valverde, A., 2012. Insights into the area under the receiver operating 
characteristic curve (AUC) as a discrimination measure in species distribution 
modelling. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2011.00683. 
x. 

Kattsov, V., R. Federation, C. Reason, S. Africa, A.A. Uk, et al. 2013. Evaluation of 
climate models. Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth 
Assess. Rep. Intergov. Panel Clim. Chang. 9781107057: 741–866. 10.1017/ 
CBO9781107415324.020. 

Kogo, B.K., Kumar, L., Koech, R., Kariyawasam, C.S., 2019. Modelling climate suitability 
for rainfed maize cultivation in Kenya using a maximum entropy (MAXENT) 
approach. Agronomy 9 (11). https://doi.org/10.3390/agronomy9110727. 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., et al., 2013. 
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