
Climate Change in Coastal Waters: Time Series Properties Affecting
Trend Estimation

ROBERT W. SCHLEGEL AND ALBERTUS J. SMIT

Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa

(Manuscript received 7 January 2016, in final form 30 August 2016)

ABSTRACT

In South Africa, 129 in situ temperature time series of up to 43 years are used for investigations of the

thermal characteristics of coastal seawater. They are collected with handheld thermometers or underwater

temperature recorders (UTRs) and are recorded at precisions from 0.58 to 0.0018C. Using the natural range of

seasonal signals and variability for 84 of these time series, their length, decadal trend, and data precision were

systematically varied before fitting generalized least squares (GLS) models to study the effect these variables

have on trend detection. The variables that contributed most to accurate trend detection, in decreasing order,

were time series length, decadal trend, variance, percentage of missing data (% NA), and measurement

precision. Time series greater than 30 years in length are preferred and although larger decadal trends are

modeled more accurately, modeled significance (p value) is largely affected by the variance present. The risk

of committing both type-1 and type-2 errors increases when $5% NA is present. There is no appreciable

effect on model accuracy between measurement precision of 0.18–0.0018C. Measurement precisions of 0.58C
require longer time series to give equally accuratemodel results. The implication is that the thermometer time

series in this dataset, and others around the world, must be at least two years longer than their UTR coun-

terparts to be useful for decadal-scale climate change studies. Furthermore, adding older lower-precision

UTR data to newer higher-precision UTR data within the same time series will increase their usefulness for

this purpose.

1. Introduction

The roughly 3000 km of South Africa’s coastline is

bordered by the Benguela and Agulhas Currents (e.g.,

Roberts 2005; Hutchings et al. 2009), which, in com-

bination with other nearshore processes, affect the

country’s marine coastal ecosystems (Santos et al.

2012). A thorough understanding of these coastal

processes is provided by several physical variables,

with temperature being one of the main determinants

(e.g., Blanchette et al. 2008; Tittensor et al. 2010;

Couce et al. 2012). The statistical properties of in situ

seawater temperature time series representing the

whole coastline—such as the annual mean, minimum

and maximum temperature, and the thermal range

and variance characteristics—vary greatly among

coastal sections due to the varying influence of the

Benguela and Agulhas Currents. Based on these ther-

mal properties, the coastline has been classified into a

cool temperate west coast, a warm temperate south

coast, and a subtropical east coast (Smit et al. 2013;

Mead et al. 2013). That the ocean temperature of these

regions is changing has been reported in recent years. For

example, an increase of 0.558–0.78C decade21 has been

reported in the Agulhas Current (Rouault et al. 2009,

2010), while the southern Benguela has decreased by

0.58C decade21 during some parts of the year (Rouault

et al. 2010).

The aforementioned climate change trends were de-

rived from remotely sensed gridded sea surface tem-

perature (SST) products. Whereas newer remotely

sensed gridded SST products are approaching high

enough resolutions for use in coastal waters, older lon-

ger products that could be used for the detection of long-

term trends are not (e.g., Chao et al. 2009; Qiu et al.

2009; Vazquez-Cuervo et al. 2013). A study by Smit et al.

(2013) has also shown that remotely sensed gridded

SST data have a warm bias as large as 68C when com-

pared to coastal in situ data. Nevertheless, a wide-

spread approach in coastal ecological research is to use

satellite and/or model-generated temperature data as a
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representation of SST along coastlines (e.g., Blanchette

et al. 2008; Broitman et al. 2008; Tyberghein et al. 2012).

Either the dangers of applying gridded SSTs to the coast

are not widely known or in many places in the world

there simply are no suitable in situ coastal temperature

time series available. It is for this reason that we strongly

recommended the use of in situ data to support research

conducted within 400m of the shoreline.

Where records of in situ coastal seawater temperature

do exist, the reliability of many of these datasets that

could be used in place of the remotely sensed SST data

remains to be verified. Users of remotely sensed SST data

benefit from it being refined through a number of well-

documented validation and quality control processes

(e.g., Reynolds and Smith 1994; Brown et al. 1999;Martin

et al. 2012), whereas the standards and methods with

which local in situ data from a single dataset are collected

and refined may differ greatly. For example, there are

currently seven organizations and/or governmental de-

partments (hereafter referred to as bodies) contributing

coastal seawater temperature data to the South African

Coastal Temperature Network (SACTN). These bodies

use different methods and instruments to collect their

data as no national standard has been set. One conse-

quence of this methodological disparity is that two-thirds

of the data were sampled with hand-held thermome-

ters that are manually recorded at a data precision of

0.58C, as opposed to the current generation of un-

derwater temperature recorders (UTRs), which have

an instrument precision as fine as 0.0018C. If these

in situ temperature data are to be used together in lieu

of remotely sensed SST data, it is important that the

characteristics of the contributing data sources are

understood in terms of their ability to yield useful,

reliable, and accurate long-term measurements for

use in climate change studies.

This prompted us to examine the 129 in situ time se-

ries that comprise the SACTN. The range of measure-

ment precisions and statistical characteristics of this

dataset were used to guide a series of enquiry-driven

analyses into the suitability of the time series to yield

statistically significant and accurate assessments of de-

cadal temperature change. The length, decadal trend,

and data precision of each time series were adjusted in a

systematic manner, and this forms the core of our ana-

lyses. Furthermore, the natural variability of each of the

time series, which differ more or less predictably be-

tween coastlines variously affected by the Benguela and

Agulhas Currents, was also entered into the analysis.

Our aim was to assess the effect that each of these var-

iables has on the ability of a model to produce a robust

estimate of time series decadal trend. The effect gaps in

the time seriesmay have on the fitting ofmodels was also

investigated as many of the time series used here have

some missing data scattered throughout, which is un-

avoidable for a 20 year and greater time series that is

sampled by hand by a single technician at each site.

The study provides a better understanding of some of

the characteristics of a time series that are influential in

the detection success of decadal trends in coastal ocean

temperatures.

2. Methods

a. Data sources

Our study lies within the political borders of South

Africa’s coastline and the location of each point of col-

lection may be seen in Fig. 1. Of these 129 time series, 43

are recordedwithUTRs and the other 86with hand-held

mercury thermometers. The oldest currently running

time series began on 1 January 1972; there are 11 total

time series that started in the 1970s, 53 more started in

the 1980s, 34 began in the 1990s, 18 in the 2000s, and 13

in the current decade.

The data are collected using two different methods

and a variety of instruments. Hand-held mercury ther-

mometers (which are being phased out in favor of al-

cohol thermometers or electronic instruments) are used

in some instances at the shoreline, and represent sea-

water temperatures at the surface. At other places,

predominantly along the country’s east coast, data are

collected with glass thermometers from small boats at

the location of shark nets along the coast (Cliff et al.

1988). Whereas both types of thermometers allow for a

measurement precision of 0.18C, the recordings are

written down at a precision of 0.58C. Data at other lo-

calities are collected using delayed-mode instruments

that are permanently moored shallower than 10m, but

generally very close to the surface below the low-water

spring tide level.

Over the last 401 years the electronic instruments

used to measure coastal seawater temperatures have

changed and improved. The previous standard was the

Onset Hobo UTR with a thermal precision of 0.018C.
The new standard currently being phased in is the

Starmon Mini UTR. These devices have a maximum

thermal precision of 0.0018C 6 0.0258C (http://www.

star-oddi.com/). Of the 43 UTR time series in this

dataset, 30 were recorded at a precision of 0.0018C for

their entirety, and 5 UTR time series include older data

that were recorded at a precision of 0.018 or 0.18C and so

have been rounded down to match this level of pre-

cision. Eight additional UTR time series have data re-

corded at a precision of only 0.18C.
The thermometer data are recorded manually and

saved in an aggregated location at the head offices of the
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collecting bodies. UTRs are installed and maintained by

divers and data are retrieved at least once annually.

These data are digital and are downloaded to a hard drive

at the respective head offices of the collecting bodies.

b. Data management

Each of the seven bodies contributing data to this

study has its own method of data formatting. Steps are

being taken toward a national standard as we move to-

ward replacing all the thermometer recordings with

UTR devices; however, as of the writing of this article,

one does not yet exist. Data from each organization

were formatted to a project-wide comma-separated

values (CSV) format with consistent column headers

before any statistical analyses were performed. This

allowed for the same methodology to be used across the

entire dataset, ensuring consistent analysis. Before an-

alyzing the data, they were scanned for any values above

358C or below 08C. These data points were changed to

NA,meaning not available, before including them in the

SACTN dataset.

All analyses and data management performed in this

paper were conducted with R version 3.3.1 (21 June

2016; http://www.r-project.org/). The script and data

used to conduct the analyses and create the figures seen

in this papermay be found at https://github.com/schrob040/

Trend_Analysis.

Any time series with a temporal precision finer than

one day were averaged into daily values before being

aggregated into the SACTN.A series of additional checks

were then performed (e.g., removing long stretches in the

time series without associated temperature recordings)

and time series shorter than five calendar years, collected

deeper than 10m or missing more than 15% of their

monthly values were removed. At the time of this anal-

ysis, this usable daily dataset consisted of 84 time series,

consisting of 819499 days of data; monthly averages were

then made from these daily data to create the 26924

temperature values available for use in this study.

c. Systematic analysis of time series

We used the 84 time series simply for their variance

properties (composed of seasonal, interannual, decadal,

and noise components), which reflect that of the ther-

mal environment naturally present along the roughly

3000km of South African coastline. Linear trends that

may have been present in each time series were removed

prior to the ensuing analysis by applying an ordinary

least squares regression and keeping the detrended re-

siduals as anomaly time series. In doing so we avoided

the need to simulate a series of synthetic time series,

whose variance components may not have been fully

representative of that naturally present in coastal wa-

ters. These detrended anomaly time series (henceforth

simply called time series) represent a range of time

scales from 72 to 519 months in duration.

To each of the 84 time series, we artificially added

linear decadal trends of 0.008–0.208C decade21. In other

words, we now had time series that captured the natu-

ral thermal variabilities around the coast, but with

their decadal trends known a priori. The range of de-

cadal trends was selected based around the global av-

erage of 0.1248C from Kennedy et al. (2011) and used in

IPCC (2013). Furthermore, in order to represent the

FIG. 1. Map of South Africa indicating the location of the 129 time series comprising the

South African Coastal Temperature Network. The locations of the 84 time series used in this

study are shown as solid white circles and the unused time series as gray-filled circles.
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instrumental precision of the instruments used to col-

lect these time series, we rounded each of these (84

time series 3 5 decadal trends) to four levels of pre-

cision: 0.58, 0.18, 0.018, and 0.0018C. Consequently, we
had a pool of 1680 time series with which to work.

To gain further insight into the effect of time series

length on trend detection, each time series was first

shortened to a minimum length of 5 yr, starting in Jan-

uary so that the timing of the seasonal signal for each

time series would be equitable. After fitting the model

(see section 2d below) to all 1680 of the shortened time

series, the next year of data for each time series was

added and the models fitted again. This process was

iterated until the full length of each time series was at-

tained. For example, if a time series consisted of 12 full

years of data, it would require 160models (8 iterations of

increasing length 3 5 decadal trends 3 4 levels of pre-

cision); similarly, 720models would be applied to a 40-yr

time series. Considering the 84 time series available, the

total number of individual models required to capture

each combination of variables quickly increased to

36 220.

Our approach of fitting models to each of the semi-

artificial time series that we generated allowed us to

study the effect that the relevant variables (time series

length, natural variability, added slope, and level of

measurement precision) has on the ability of the time

series model to faithfully detect the decadal thermal

trend, which was known a priori. The primary results of

interest in these analyses were the significance (p value)

of the model fit, the accuracy of the decadal trend de-

termined by the GLS model, and the error associated

with the trend estimate.

d. Time series model

The selection of the appropriate model can greatly

influence the ability to detect trends (Franzke 2012). Two

broad approaches are widely used in climate change re-

search (IPCC 2013). The first group of models estimates

linear trends, and although linearity may not reflect re-

ality (i.e., trends are very frequently nonlinear), these

models do provide the convenience of producing an easy

to understand decadal trend (e.g., 0.1068C decade21;

Wilks 2011; IPCC 2013). The other group accommo-

dates nonlinear trajectories of temperature through

time by the use of higher-degree polynomial terms or

nonparametric smoothing splines, but the inconve-

nience comes from not being able to easily compare

models among sites (Wood 2006; Scinocca et al. 2010).

Both groups of models can accommodate serially cor-

related residuals, which is often the cause for much

criticism due to their effect on the uncertainty of the

trend estimates (Von Storch 1999; Santer et al. 2008).

For example, generalized least squares (GLS; yielding

estimates of linear trends) and generalized additive

mixed models (GAMM; nonlinear fitting with no trend

estimate provided) can both capture various degrees of

serial autocorrelation (Pinheiro and Bates 2006; Wood

2006). Although our exploratory analysis assessed two

parameterizations of each of the model groups, we

opted to proceed here with a GLS equipped with a

second-order autoregressive [AR(2)] correlation struc-

ture fitted using restrictedmaximum likelihood (REML;

Pinheiro and Bates 2006):

y
t
5b

0
1b

1
x
t
1 «

t
,

where the lag-2 autocorrelated residuals are given by

«
t
5f

1
«
t21

1f
2
«
t22

1w
t

and the white noise series is

w
t
; i.i.d.N(0,s2).

This approach is similar to that of the IPCC, although

the latter uses an AR(1) error term (Hartmann et al.

2013). Another difference from the IPCC approach is

that we nested the autoregressive component within a

given year. This modeling approach allowed us to assess

how various properties of the detrended time series

would affect the models’ ability to detect trends by

comparing the estimates of the trends against the known

artificially added trends.

3. Results

The residuals for the base 84 detrended time series

may be seen in Fig. 2. From these detrended time series

the length, decadal trend, and precision variables were

systematically manipulated as explained in the methods.

It was found that the important variables affecting the

accuracy of the slope detected by the GLS model, in

decreasing order, were 1) time series length, 2) the size

of the added decadal trend, 3) initial SD of the time

series (after detrending but prior to adding artificial

slopes), 4) the amount of spurious or missing data (NA),

and 5) measurement precision. These variables influ-

ence the model fits in a systematic manner.

As would be expected, the size of the decadal trend

estimated by the GLS increases in direct proportion to

the decadal trend that we added and therefore knew a

priori. What is especially noteworthy in this analysis is

that time series of longer duration more often result in

trend estimates converging with the actual trend than

those of shorter length (Fig. 3). This effect is most

evident from around 30 yr. Furthermore, how well the

9116 JOURNAL OF CL IMATE VOLUME 29

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 02/07/23 09:07 AM UTC



estimatedmodel trend converges with the actual trend is

also very visible in the standard error (SE) of the trend

estimate (Fig. 4): models fitted to short time series al-

ways have modeled trends with larger SE compared to

longer ones. The strength of this correlation is r 5 0.56

(p , 0.001) and it remains virtually unchanged as the

added decadal trend increases. The p value of the fitted

models also varies in relation to time series duration and

to the steepness of the added decadal trend (Fig. 5). It is

usually the longer time series equipped with steeper

decadal trends that are able to produce model fits with

estimated trends that are statistically significant. Note,

however, that this p value tests the null hypothesis that

the estimated trend is no different from 08C decade21 at

p# 0.05, and not that the slope is not different from the

added trend. Taken together, these outcomes show that

although our GLS model can very often result in trend

estimates that approach the true trend, it is seldom that

FIG. 2. Box-and-whisker plot summarizing the 84 temperature anomaly (8C) time series used in this study (i.e., after detrending) but

before adding a decadal trend or rounding the data. The plot indicates the first and third quartiles as the extremities of the boxes, the

median is shown as the horizontal line within each box, the minima and maxima are indicated by the whiskers, and the points are outliers.

FIG. 3. The effect of time series length on the ability of the GLS model to accurately detect

the trend added to each time series. The box-and-whisker plot shows the first and third

quartiles as the extremities of the boxes, the median is shown as the horizontal line within

each box, and the minima and maxima are indicated by the ends of the whiskers. Points

indicate the spread of the actual data and their size are scaled according to the length of the

time series they represent as shown at the top of the figure.
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those estimates are statistically significant in the sense

that the estimated trends differ statistically from

08C decade21.

The variance of the detrended data is another variable

that can affect model fitting, but its only systematic in-

fluence concerns the SE of the trend estimate. Here, it

acts in a manner that is entirely consistent across all a

priori trends (Fig. 6). What we see is that as the variance

of the data increases [represented here as standard de-

viation (SD)] the SE of the slope estimates increases too.

Moreover, it does so disproportionately more for time

series of shorter duration. Again, as we have seen with

the estimated trend that converges to the true trend

around 30 yr, so too does the initial SD of the data cease

to be important in time series of around three decades

in length.

The number of NAs permitted in any of our time se-

ries was limited to 15% per time series. Twenty-five of

the 84 time series have less than 1% NA. An additional

45 time series have up to 5% NA, 10 have up to 10%

NA, and 4 have up to 15%NA. The mean number of NA

for the data is 2.65%. The relationship between % NA

and the p value of the models is shown in Fig. 7. At

2.5% or fewer NA their presence does not have any

discernible effect on resultant p values. Progressively

increasing the number of NAs above 5%, however, leads

to a drastic improvement of models fitted to series with

no or gently increasing decadal trends (these generally

have very large p values indicative of very poor fits,

perhaps due to the presence of a very weak signal), and a

significant deterioration of models fitted to data with

steep decadal trends (for these data, themodel generally

fits better at low numbers of NA, as suggested by the

larger number of p values that approach 0.05). In other

words, the more missing values (NA) there are in a time

series with no discernible decadal trend, the more

likely a model is to erroneously detect one. On the

other hand, model results from time series that do have

detectable decadal trends tend to produce fits that are

not significantly different from 08C decade21.

Regarding the effect that the level of measurement

precision has on the GLS models, we see in Fig. 8 that

decreasing the precision from 0.0018 to 0.018C has an

undetectable effect on any differences in the modeled

trends. The root-mean-square error (RMSE) between

the slopes estimated from 0.0018 and 0.018C data is

0.001. The correspondence between the slopes esti-

mated for data reported at 0.58C compared to that at

0.0018C decreases to a RMSE of 0.03.

The effect of decreasing data measurement precision

from 0.0018 to 0.58C has almost no appreciable effect on

any of the measures of variance presented in this study.

The effect of measurement precision on the accuracy of

the modeled slope, however, becomes very pronounced

going from 0.18 to 0.58C. This effect is larger on smaller

decadal trends. For example, at a trend of 0.058C decade21,

the deviation from the true value of models fitted to data

with a precision of 0.18C is negligible; however, the accu-

racy of the fitted model on data recorded at a precision of

0.58C with a real trend of 0.058C decade21 is 10.81% dif-

ferent on average (i.e., given a slope of 0.058C decade21

the model detects slopes of 0.0558C decade21). This ac-

curacy of the models improves to an average difference

of 6.44% with a slope of 0.108C decade21 and 2.24%

at 0.158C decade21 and decreases slightly to 2.30% at

0.208C decade21. A precision of 0.58C always provides

clearly less accurate modeled trends than at higher pre-

cisions; however, the current analysis did not highlight one

precision that consistently provides the most accurate es-

timate of the trends. This may, however, become de-

terminable in an analysis of synthetic data with variance

structures that are manipulated in a more consistent

manner.

As the actual time series used to generate the data for

this study are predominantly over 300 months in length

and recorded at a data precision of 0.58C, we would be

FIG. 4. The relationship between the length of a time series, the size of the modeled trend, and its SE. Each individual line shows the

modeled trend for 1 of the 84 sites used in this analysis to which a model was fitted iteratively as the time series length was ‘‘grown’’ from

5 yr in length to the maximum duration available for the site. (left)–(right) The progressive effect that decadal trend has on this re-

lationship (indicated by the numeral above each panel), and the gray-shaded bar shown on the right, is mapped to the SE of the trend.
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remiss not to investigate the interaction between the

increase in accuracy provided by a lengthy time series

against the decrease caused by a data precision of 0.58C.
In other words, at what point does a model fitted to a

longer time series, with less precise measurements (e.g.,

those taken by thermometers and reported at a precision

of 0.58C), become as accurate as a time series with more

precisemeasurements (e.g., UTRs)? Figure 8 shows how

FIG. 5. The effect of the SD (8C) of the anomaly time series before adding a decadal trend

(initial SD), or rounding the data to the different levels of precision, on the significance of the

modeled trend. The sizes of the symbols are scaled in direct proportion to the time series

length and are shown at the top of the figure. Time series belonging to the three SouthAfrican

coastal sections are represented using different symbols. The east coast (ec; circles) typically

has the most stable thermal regime of the three coasts, with the south coast (sc; triangles)

having the greatest amount of variance and the west coast (wc; squares) consisting of areas

with both high and low variance. Linear models with 95% confidence intervals (indicated by

the gray-shaded ribbons) have been fitted separately for each coastal section, and illustrate

the interaction between initial SD in each group and the significance (p value) of the GLS

models. (top)–(bottom) Increasing decadal trends are shown as indicated by the numerals

above the panels.
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varied the modeled trends become when a precision

of 0.58C is used, and we see here that when these

low-resolution time series have a shallow slope of

0.058C decade21, a fitted model requires 24 months of

additional data on average to have a comparable level

of accuracy to a model fitted to data recorded at a pre-

cision of 0.18C. The difference in the required time series

length necessary for accurate detection decreases to

16months when a larger slope 0.208C decade21 is present

in the data.

An analysis with a large number of variables as shown

here is bound to have a medley of complex interactions

between the various statistics being measured; however,

much of the range seen in the results of the GLS models

can bewell explained by the influence of one independent

variable, or two operating in concert, as we have shown

above. The most important of these variables has clearly

been the length of the time series.

4. Discussion

The strongest finding of this analysis is that the accu-

rate detection of long-term trends in time series pri-

marily concerns the length of a dataset. But there are

also a host of nuances resulting from time series length,

the steepness of the decadal trend the model is asked to

detect, the influence of the SD of a time series, the

amount of missing values, and the precision at which the

data have been measured or recorded that interact with

one another and that must be considered.

Whereas time series with smaller variances (shown as

SD in this study) generally produce model fits that are

FIG. 6. The relationship between the effect of initial SD (8C) (i.e.,
the variance of the anomaly time series before adding artificial

decadal trends; shown here as gray shades), on the SE of a modeled

trend, controlled for by the length of the time series. The effect of

the size of the added decadal trends on the relationship is imper-

ceptible and therefore only a decadal trend of 0.28C decade21 is

presented.

FIG. 7. The relationship between the amount of missing values (log%NA) and the significance of amodeled trend (p value). Each panel

shows the effect of an increasingly larger amount of missing values indicated above each panel by numerals (from top left to bottom right):

1, 2.5, 5, 10, 12.5, and 15. The fitted black lines and 95% confidence intervals (shown as gray-shaded bands) represent each of the five

decadal trends assessed (8C decade21) shown using different black symbols: 0 (circles), 0.05 (triangles), 0.1 (squares), 0.15 (crosses), and

0.2 (squares with an 3 symbol inside).
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statistically significant (i.e., with decadal trends that are

significantly different from 08C decade21 at p , 0.05)

and with smaller SE of the estimated trends after shorter

lengths of time, we also see that increasing a time series’

length beyond 25 yr, but preferably beyond 30 yr, will

increase the likelihood of detecting a decadal tempera-

ture change even in very variable datasets. Detecting

temperature change in highly variable coastal environ-

ments, such as those around the coast of South Africa

and many temperate coastal environments globally, will

therefore benefit from access to the longest possible

time series available. This phenomenon is demonstrated

in Fig. 5, which uses symbols to show the time series

binned by the three different coastal sections of South

Africa (Smit et al. 2013). Of these three coastal sections

the east coast is known to have the most stable thermal

regime (i.e., with the smallest variance), with the south

coast having the greatest variance. Long time series at

sites of low variance result in great improvements in our

ability to detect significant climate change trends, and

this effect is most obvious in time series with steeper

decadal trends. The selection of sites for long-term

monitoring must therefore account for the location of

study and necessitate adequate planning to collect a long

enough time series.

The detection of long-term trends requires long-term

data, a fact that is already firmly established in climate

change research (Ohring et al. 2005; IPCC 2013). The

length of these time series is firmly under the control of

the investigator with sufficient foresight and persever-

ance to plan the installation and management of new

instrument networks that will yield usable results only

after about three-quarters of a typical academic career

has passed. Should such data already exist—and con-

sidering the scarcity of such long-term records that are

already yielding benefits today—we must ensure that

these sources of data are managed and curated with

great care and diligence as they are practically irre-

placeable. For this reason, it is essential that we un-

derstand the inherent strengths and weaknesses of such

existing sources of data so that we may fully maximize

their utility and extract from them themodel coefficients

needed to detect decadal temperature trends, and know

the accuracy of these estimates to the best of our ability.

There are many time series,20 yr in length that should

be avoided, where possible, for trend analysis. These will

mature with time and their maintenance needs to be

ensured going forward.

Aside from length, the most powerful time series have

measurements that are taken regularly. The inclusion of

too many missing values (NAs) in the datasets must be

avoided. We have shown that permitting 5% NAs or

more into our time series has a drastic and significant

influence on the chance of committing a type-1 error

(arriving at a false positive, i.e., detecting a trend when

none exists) for time series with no or very gentle de-

cadal trends. On the other hand, the inclusion of NAs in

datasets with a decadal trend present tends to cause an

increase in the probability of committing a type-2 error

(i.e., finding false negatives). Although our modern

UTR datasets generally have fewer NAs than we should

be concerned about—therefore with a low chance of

committing type-1 or type-2 errors—the presence of

NAs may seriously compromise some of the time series

that are still being collected by hand using hand-held

thermometers.

We have demonstrated clearly that as the steepness

of an expected decadal trend increases, the ability for it

to be modeled accurately increases, too. Our GLS

model is generally not able to detect trends that are

FIG. 8. Plots representing correlations of the modeled trends acquired at different levels of rounding, which can

be interpreted as representations of different measurement precisions. (left) The effect of rounding from 0.0018 to
0.018C may be seen. (right) Rounding from a precision of 0.0018–0.58C has a visibly greater effect on the de-

terioration of the correlation between the two sets of estimated trends.
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significantly different from 08C decade21 unless a slope

of 0.208C decade21 exists. Very rarely were we able to

produce significant model fits at shallower slopes. No

trends with a slope ,0.058C decade21 were found to be

significant in this study. Based on the relationship be-

tween SD and the added decadal trend, we see that time

series with an SD of 1.58C (the bulk of the time series

here) and a decadal trend of 0.108C decade21 should

consist of roughly 640 months of data before our GLS

model would regularly be able to detect a significant

trend (p , 0.05). This finding is somewhat discouraging

as most global analyses of decadal SST change based on

gridded SST products estimate a trend closer to

0.18C decade21 (e.g., IPCC 2013). This means that the

trends present in most time series representative of very

variable coastal environments that exhibit the same

variance structure as that of our data are probably un-

likely to be detected as significant, even if they do indeed

exist. In other words, the chance of committing a type-2

error is probably very real for such systems, unless time

series .50 yr are available.

As 50-yr coastal seawater temperature time series are

probably very scarce, it is important to note that those

measured at precisions of 0.18–0.0018C require fewer

months of data to detect long-term trends. Based on the

data presented here, we calculated that time series

measured at a low precision (0.58C)may require asmuch

as an additional 24 months of data to accurately detect

long-term trends. One of the motivators for this paper

was to investigate the effect measurement precision has

on a time series’ ability to produce results useful for

investigations of long-term climate change, and to vali-

date the use of the low-precision 0.58C thermometer

data. This is an important consideration as many studies

investigating the effects of climate change (e.g., Grant

et al. 2010; Scherrer and Körner 2010; Lathlean and

Minchinton 2012) do use lower-precision 0.18C data.

Although the precision of much of our data is below the

current standard of 0.18C required for climate change

research (Ohring et al. 2005; WMO 2008), the length of

the thermometer time series makes them a valuable

asset. The average length of the thermometer time series

in the SACTN, fromwhich the 84 time series used in this

study were drawn, is 349 months. The average length of

theUTR time series is 167months. Given this difference

in the lengths of the time series, even after correcting for

the negative effect of low measurement precision, the

time series collected with thermometers are currently

more useful for climate change research than the UTR

time series within the SACTN. Because time series with

data precisions of 0.18–0.0018C produce comparable

results, newer higher-precision UTR data may be com-

bined with older lower-precision UTR data within the

same time series without concern that the reduced

overall data precision may have a negative impact on a

model’s ability to detect decadal trends. Extending time

series in this way will serve to make them more de-

pendable as length is the primary criterion through

which one should initially assess the potential to accu-

rately detect a decadal trend before refining ones as-

sumptions with any statistical analyses. A time series

with data precision finer than 0.18C is therefore only

necessary when an investigation requires that the de-

cadal trend be known to an accuracy of 0.018C or finer

(e.g., Karl et al. 2015).

It is important to take note of the accuracy of the

models, not only to focus on the significance of their

results. Indeed, the p value given for the slope in amodel

does not show how well the model detects the true trend

in the data (known a priori in this study); rather, it tells

us if the detected trend is significantly different from

08C decade21. This is not particularly useful for applying

the results of climate change research more broadly to

biotic interests. For example, of the 1344 models (84

base time series 3 4 decadal trends 3 4 levels of

precision) fitted to time series with decadal trends

$ 0.058C decade21, 317 of these were accurate to within

10% of the decadal trend known a priori, but not sig-

nificant (p $ 0.05). That a long-term trend does exist

that may be accurately detected by a model and related

to an observed change in the natural world—such as

range expansion/contraction of coastal biota (Bolton

et al. 2012; Straub et al. 2016; Wernberg et al. 2016)—is

more important than whether or not themodel can show

if that trend is significantly different from 08C decade21

in a statistical sense.

We must mention also that much of the metadata

pertaining to the older temperature records used here

have over time been lost. As with the bulk of the In-

ternational Comprehensive Ocean–Atmosphere Data

Set (ICOADS; Freeman et al. 2016), in situ coastal

seawater temperature monitoring that started in the

1970s in South Africa was not developed with climate

change research in mind, and comprehensive records

that keep track of details of the instruments used, cali-

bration, their turnover, and changes in monitoring

methods and locations and so forth are not always

available as per modern requirements (Aguilar et al.

2003). For studies of climate change per se this is a se-

rious limitation and it prevents us from knowing any-

thing about the accuracy of the instruments or potential

issues of drift (stability) that may have occurred. We do

know, however, that all the time series sampled with

thermometers were sampled only with thermometers,

and vice versa for the UTR time series, ensuring that the

precisions of the measured data used in this study are
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correct. Moving forward with the further development

of the SACTN and the establishment of a national

standard of data collection and instrumentmaintenance,

we are able to record and archive all these levels of

pertinent metadata, allowing for the enforcement of SI

traceability and the accurate measurement of in-

strument drift (WMO 2008). Nevertheless, the de-

trended anomaly time series used here were taken only

for their variance properties, which we think accurately

reflect those of the three different coastal sections. They

provide a strong backbone for semiartificial time series,

and we have shown how important insights about model

fitting could be derived from these data.

5. Conclusions

We draw several key conclusions:

1) There is a rapid increase in the accuracy and signif-

icance of modeled trends as time series lengths

extend from 10 to 20 yr. This improvement slows

from 20 to 30 yr, and as time series approach 40 yr in

length the accuracy of models becomes nearly exact.

Modeled trends from time series at or under 25 yr in

length should be interpreted with extreme caution.

2) For our variable coastal seawater, a time series of

520 months in length is required to detect a decadal

trend in line with the global average (i.e., near

0.18C decade21) with perfect accuracy; however, an

additional 120 months of data is often required for

the detected trend to be considered significant (p #

0.05).

3) The length of a time series required to detect a

decadal trend at 0.18C decade21 may rapidly exceed

100 yr when a large amount of variance is present.

4) The larger the decadal trend within a time series, the

more accurately it will be modeled regardless of the

amount of variance in the time series.

5) There is a complicated relationship between the

accuracy of a trend fitted to a time series and the

%NA of that time series. As the %NA increases, so

too does the chance of committing type-1 (with

gentle trends) or type-2 errors (with steeper trends).

6) A measurement precision finer than 0.58C is not

required to confidently detect the long-term trend

in a time series; however, precisions at or finer than

0.18C may reduce the length of time required to

accurately detect a long-term trend, if one does exist,

by as much as 2 yr.

7) Improving the precision of measurements finer than

0.18C has almost no appreciable effect on a models

ability to detect a long-term trend, provided that the

reported effect size matches the level of precision by

the instruments.

We understand that time series of .30 yr may be ex-

ceedingly rare. Therefore, as we move forward as a

scientific community investigating the issues of climate

change, the continuity of any current time series of

sufficient length must be ensured as these commodities

are practically irreplaceable.
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