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On the exact constants in one-sided maximal inequalities
for Bessel processes

Cloud Makasu

Department of Maths and Applied Maths, University of the Western Cape, Bellville, Cape Town

ABSTRACT
In this paper, we establish a one-sided maximal moment inequality
with exact constants for Bessel processes. As a consequence, we
obtain an exact constant in the Burkholder-Gundy inequality. The
proof of our main result is based on a pure optimal stopping prob-
lem of the running maximum process for a Bessel process. The pre-
sent results extend and complement a number of related results
previously known in the literature.
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1. INTRODUCTION

Let X ¼ ðXtÞt�0 be a Bessel process (see (Revuz and Yor, 1991)) with dimension a > 0,

starting at x � 0, which is defined on a filtered probability space ðX,F , ðF tÞt�0,PÞ: It
is well known that a Bessel process is a submartingale for a � 1, and is a supermartin-
gale when a � 0: For the case 0 < a < 1, the Bessel process is not a semimartingale.
Throughout the paper, we assume that X ¼ ðXtÞt�0 is given by

dXt ¼ a� 1
2Xt

dt þ dBt; Xð0Þ ¼ x, (1)

where B ¼ ðBtÞt�0 is a standard Brownian motion under P.
Define X�

t ¼ sup0�r�t Xr: For Bessel processes, the Burkholder-Gundy type of inequal-

ities (Burkholder, 1977) are established in (DeBlassie, 1987) without exact constants, see
also Theorem 4.1 in (Graversen and Peskir, 1998). A special case of these inequalities
(DeBlassie, 1987) asserts that there exist constants ca and Ca depending only on a such
that

caEx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ x2

p
� Ex X�

s

� � � CaEx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ x2

p
(2)

for any stopping time s of X starting at x � 0: On the other hand, it is proved in
(Dubins et al., 1994) that there exists a constant Aa such that

E X�
s

� � � Aa

ffiffiffiffiffiffiffiffi
E s½ �

p
(3)

for arbitrary stopping times s of a Bessel process starting at zero.
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Our motivation is the proof of the maximal moment inequality (3) given in (Dubins
et al., 1994), and the question arising on the exact constants for ca and Ca in the
Burkholder-Gundy inequality (2). The main purpose of this paper is to establish the exact
form of ca in (2) for a Bessel process X ¼ ðXtÞt�0 with dimension strictly 1 � a < 2: This

is given in Corollary 2.1 as a consequence of our main result stated in Theorem 1.1. Our
proof rests on the optimal stopping theory of the maximum process for Bessel processes
(Dubins et al., 1994), see also (Dubins and Schwarz, 1988) for the Brownian motion case
and (Peskir, 1998) for general diffusion processes. A variant of the optimal stopping prob-
lems treated in (Dubins and Schwarz, 1988) and (Dubins et al., 1994) is considered here.
In the present case, the integral cost in (6) only depends on the running maximum process
associated with the Bessel process. The motivation will be apparent in the proof of our
main result.
More precisely, we shall prove the following result in this paper. A consequence of

this result will be proved in Corollary 2.1.

Theorem 1.1. Let X ¼ ðXtÞt�0 be a Bessel process given by (1) with dimension 1 � a < 2
fixed, and starting at x � 0. Then,

ffiffiffi
a

p
Ex s

1=2½ � þ a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
x � Ex sup

0�t�s
Xt

h i
(4)

for any stopping time s of X.
For the proof of the above result, we shall provide the necessary details only for instan-

ces which demand different arguments from those given in (Dubins et al., 1994). The use
of converse H€older’s inequality and the reverse Young inequality will play an important
role in our proof. This is not the case in (Dubins et al., 1994) where the proof of (3) is
based on maximizing an expected payoff with a constant cost of observation. However, we
note that the construction of the value function (8) and optimal stopping time (9) in the
present case (6) follows from a modification of the arguments in (Dubins et al., 1994). We
further employ a comparison principle (see (Lakshmikantham, 1962), Theorem 1) in our
proof to establish the maximal property of the optimal stopping boundary in question.

2. PROOF OF THE THEOREM

Proof. Let X ¼ ðXtÞt�0 be a Bessel process given by (1). Fix a � 1, and assume that a 6¼
2 only for simplicity. Define

Yt ¼ sup
0�r�t

Xr
� �

�y (5)

for all 0 � x � y:
Now consider the following optimal stopping problem:

uðx, yÞ :¼ inf
s
Ex, y Ys � c

ðs
0

1
Ys

ds

� �
, (6)

where the infimum is taken over all stopping times s for X such that the integral in (6)
has finite expectation, Ex, y denotes the expectation with respect to the probability law
Px, y :¼ P of the process (X, Y) starting at (x, y) with 0 � x � y, and c> 0 is some
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constant. In what follows, we shall show that the positive constant c is such that

a

1þ a� 1ð Þ 2
2�a

< c < a (7)

for 1 < a < 2: We shall treat the particular case a¼ 1 separately in the course of
the proof.
Using similar arguments as in (Dubins et al., 1994) by modifying Eq. (3.10), using

the continuity condition (3.16), smooth-fit principle (3.17) and normal reflection
boundary (3.18), it follows that

uðx, yÞ ¼
yþ c

y
1

2� a
g2�ðyÞ �

2
að2� aÞ x

2�aga�ðyÞ þ
1
a
x2

	 

; if g�ðyÞ � x � y

y; if 0 � x � g�ðyÞ:

8><
>:

(8)

On the other hand, we have the optimal stopping time s� of the form

s� ¼ inf t > 0jXt � g�ðYtÞ
� �

, (9)

where by the maximality principle (Peskir, 1998) the stopping boundary y 7! g�ðyÞ is the
maximal solution of the first-order nonlinear differential equation

g0ðyÞ ¼
y

cgðyÞ � gðyÞ
y

1
a

y
gðyÞ
� �2 þ 1

2�a � 2
að2�aÞ

gðyÞ
y

� �a�2
	 


2
2�a

gðyÞ
y

� �a�2 � 1

	 
 (10)

under the condition 0 < gðyÞ < y:
For the first part of the proof, we establish an upper estimate for any positive solution

y 7! gðyÞ of Eq. (10). We shall need this estimate to show that y 7! g�ðyÞ is the maximal
solution. The proof rests on a comparison principle argument (see (Lakshmikantham,
1962; Szarski, 1965; Walter, 1964), etc). Let D denote an open set D ¼ fðy, gÞj0 < gðyÞ <
yg and let Xðy, gðyÞÞ denote the right-hand side of (10). It can be easily shown that
Xðy, gðyÞÞ is continuous, and

jXðy, gðyÞÞj �
j 1c � 1

a j y
gðyÞ þ 1

j2�aj

 2a gðyÞ
y

� �a�1 � gðyÞ
y


2

j2�aj
gðyÞ
y

� �a�2
� 1




(11)

on the open set D. This immediately implies that there exists a maximal solution for
Eq. (10). Consider the following first-order nonlinear differential equation

h0ðyÞ ¼
j 1c � 1

a j y
hðyÞ þ 1

j2�aj

 2a hðyÞ
y

� �a�1
� hðyÞ

y


2

j2�aj
hðyÞ
y

� �a�2 � 1




(12)

on the common interval of existence with (10), and assume that hð0Þ ¼ jgð0Þj here and below.
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Its clear that

hðyÞ ¼ by, ðy > 0Þ (13)

is a positive solution of (12), where 0 < b < 1 and is the maximal root that satisfies

2
j2� aj jb

a � b2j � 1
j2� aj

 2a ba � b2
�
 1c � 1

a

 ¼ 0: (14)

Then, by a comparison principle argument (see (Lakshmikantham, 1962) for instance,
Theorem 1), we have the estimate

gðyÞ � by (15)

for any positive solution y 7! gðyÞ of (10). On the other hand, we have

g�ðyÞ ¼ hy, ðy > 0Þ (16)

as a positive solution of (10) with 0 < h < 1 and being the maximal root of the equation

2
2� a

1� 1
a

	 

ha � 1

2� a
h2 � 1

c
þ 1
a
¼ 0: (17)

By definition, y 7! g�ðyÞ is a maximal solution of Eq. (10) if gðyÞ � g�ðyÞ for any posi-
tive solution g(y) of (10). We shall first show that (16) is a maximal solution in the par-
ticular case a¼ 1. This will follow from the estimate (15) and by the definition once it
is shown that b ¼ h: Assume that a¼ 1 in (17). Then, immediately we have the max-
imal root

h ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� 1

c

r
(18)

provided that c> 1. Similarly, if a¼ 1 in (14), then it follows that

2 b� b2
 � 2b� b2

 � 1
c
� 1


 ¼ 0: (19)

Suppose that the terms under the modulus signs are negative. Therefore,

b2 þ 1
c
� 1 ¼ 0 (20)

for c> 1. Now choose b in (20) such that b ¼
ffiffiffiffiffiffiffiffiffiffi
1� 1

c

q
for c> 1. Consequently, b ¼ h

and it follows from (15) that gðyÞ � hy for any positive solution y 7! gðyÞ of (10).

Hence, we have just proved that g�ðyÞ ¼ hy is the maximal solution of (10) with h ¼ffiffiffiffiffiffiffiffiffiffi
1� 1

c

q
when c> 1 and in the particular case a¼ 1. In what follows, we shall give the

proof in the remaining case when 1 < a < 2: We first show the inequality (7). Let f ðhÞ
be a real-valued function which is continuous on a closed interval ½0, 1� and differenti-
able on (0, 1) defined by

f ðhÞ :¼ 2
2� a

1� 1
a

	 

ha � 1

2� a
h2 � 1

c
þ 1
a
: (21)
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Clearly, f ð0Þ ¼ � 1
c þ 1

a and f ð1Þ ¼ � 1
c : Now assume that f ð0Þ < 0: Then, using an

elementary argument, there exists a maximal root h satisfying (17) such that

a� 1ð Þ 1
2�a < h (22)

if and only if c is a positive constant satisfying the restriction

c >
a

1þ a� 1ð Þ 2
2�a

(23)

for 1 < a < 2: Assuming that f ð0Þ < 0 and using (23), for 1 < a < 2, then we have

a

1þ a� 1ð Þ 2
2�a

< c < a (24)

which proves (7).
Using the estimate in (15), we shall now show that g�ðyÞ ¼ hy in (16) is the maximal

solution of (10) in the case 1 < a < 2: Let h be the maximal root of (17) for 1 < a < 2:
For 0 < b < 1 and using the fact that c < a for 1 < a < 2, it follows from (14) that

2
2� a

1� 1
a

	 

ba � 1

2� a
b2 � 1

c
þ 1
a
¼ 0: (25)

Hence, we deduce immediately from (17) and (25) that the maximal roots are such that
h ¼ b: This and the estimate (15) prove the maximal property of the solution y 7! g�ðyÞ in
the remaining case 1 < a < 2:We have completed the proof of the first part of the theorem.
Let � and q denote the H€older exponents such that 1

� þ 1
q ¼ 1 with � < 0: Now using

the reverse H€older inequality, it follows from (6) that

Ex, y Ys½ � � cEx, y

ðs
0

1
Ys

ds

� �
þ uðx, yÞ

� cEx, y Y�1
s s

� �þ uðx, yÞ
� �Ex, y Y

��
s½ ��1=��cqEx, y s

q½ ��1=q þ uðx, yÞ: (26)

Then, applying the reverse Young inequality in (26), we have

Ex, y Ys½ � � 1
�
Ex, y Y

��
s½ � þ 1

q
cqEx, y s

q½ � þ uðx, yÞ: (27)

Now choose � ¼ �1 so that q ¼ 1
2 : Hence,

Ex, y Ys½ � � ffiffi
c

p
Ex, y s

1=2½ � þ 1
2
uðx, yÞ (28)

which follows immediately from (27).
On the other hand, we have

Ex, y Ys½ � � c�=qEx, y Y
��
s½ �

� �1=�
cq=�Ex, y s

q½ �
� �1=q

þ uðx, yÞ

� 1
�
c�=qEx, y Y

��
s½ � þ 1

q
cq=�Ex, y s

q½ � þ uðx, yÞ
(29)

which follows from (26) and by using the reverse Young inequality.

SEQUENTIAL ANALYSIS 39



Now arguing similarly by choosing � ¼ �1 and q ¼ 1
2 in (29) and followed by a sim-

ple re-arrangement, we obtain

Ex, y Ys½ � � 2c2ffiffi
c

p ð1þ c2ÞEx, y s
1=2½ � þ c2

1þ c2
uðx, yÞ: (30)

It is easy to show from (26) that

Ex, y Ys½ � � 2c
1þ c

Ex, y s
1=2½ � þ 1

1þ c
uðx, yÞ (31)

and

Ex, y Ys½ � � 2c
1þ c

Ex, y s
1=2½ � þ c

1þ c
uðx, yÞ (32)

by choice of � ¼ �1 and q ¼ 1
2 :

Using (8) and (16), we have

uðx, xÞ ¼ x 1þ c
h2

2� a
� 2ha

að2� aÞ þ
1
a

 ! !
: (33)

The desired result (4) now follows by letting x¼ y in (28, 30, 31) and (32), using (33)

and passing to the limit as c " a and h # ða� 1Þ 1
2�a for 1 � a < 2: The proof of the the-

orem is now complete. w

Remark 1. It should be noted that the upper estimate in (24) is not possible when the
integral cost

Ð s
0

1
Ys

ds in (6) is replaced by
Ð s
0

1
Xs

ds: The upper estimate is crucial in the

proof of our Theorem 1.1. We further remark that the case with the integral costÐ s
0

1
Xs

ds requires a modification of the value function u(x, y) in (8). The details are left

to the interested reader.
The following result and its proof is a consequence of Theorem 1.1. We now establish

the exact form of the constant ca in (2) in this result.

Corollary 2.1. Assume that X ¼ ðXtÞt�0 is a Bessel process given by (1) starting at x �
0, and with dimension 1 � a < 2 fixed. Then, we have

a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
Ex

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ x2

p
� Ex sup

0�t�s
Xt

h i
(34)

for any stopping time s of X.

Proof. This follows immediately from Theorem 1.1 and using an elementary inequality.
Let a, b be non-negative real numbers and 0 < r � 1, then it follows that

ðaþ bÞr � ar þ br: (35)

Now for any 1 � a < 2, its easy to see from (4) that
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Ex sup
0�t�s

Xt
h i � ffiffiffi

a
p

Ex s
1=2½ � þ a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
x

� a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
Ex s1=2 þ x
� �

¼ a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
Ex s1=2 þ ðx2Þ1=2
h i

� a2

1þ a2
2� ðaþ 1Þða� 1Þ a

2�a

� �
Ex

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ x2

p
,

(36)

where the last inequality follows using (35) with r ¼ 1
2 : This completes the proof. w

Remark 2. At point x¼ 0, we deduce from (4) and (34) thatffiffiffi
a

p
E s1=2½ � � E sup

0�t�s
Xt

h i
(37)

which is a one-sided Burkholder-Gundy inequality with an exact constant.

Remark 3. For the particular case when a¼ 2 in Theorem 1.1 and Corollary 2.1, we

simply replace ða� 1Þ a
2�a by 1

e2 : Hence, we have

ffiffiffi
2

p
Ex s

1=2½ � þ 4
5

2� 3
e2

	 

x � Ex sup

0�t�s
Xt

h i
(38)

from the inequality (4) and

4
5

2� 3
e2

	 

Ex

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ x2

p
� Ex sup

0�t�s
Xt

h i
(39)

which follows from (34) for a Bessel process X ¼ ðXtÞt�0 with dimension a¼ 2 and

starting at x � 0: It follows immediately from (38) and (39) thatffiffiffi
2

p
E s1=2½ � � E sup

0�t�s
Xt

h i
for a Bessel process starting at zero.

Remark 4. It is not immediate whether the present method of proof can be modified to
cover the remaining case Ca in the upper bound in (2).
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