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Abstract: The devastating socioeconomic impacts of recent droughts have intensified the need for
improved drought monitoring in South Africa (SA). This study has shown that not all indices can be
universally applicable at all regions worldwide, and there is no single index that can represent all
aspects of droughts. The aim of this study was to review the performance and applicability of the
Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index
(VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index
(SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE
(Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines
for selecting feasible candidates for integrated drought monitoring. The review is based on the
‘2016 World Meteorological Organisation (WMO) Handbook of Drought Indicators and Indices’
guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to
compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI,
VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting
probability distribution functions (PDFs) used, and with an informed choice between parametric and
non-parametric approaches, this combination has the potential for integrated drought monitoring.
Due to the scarcity of groundwater data, investigations on the use of GRACE-based groundwater
drought indices must be carried out. These findings may contribute to improved drought early
warning and monitoring in SA.

Keywords: multivariate drought indices; PDSI; SWSI; SPI; SPEI; VCI; SSI; SGI; GRACE

1. Introduction

Drought is a costly natural hazard whose impact is significant and widespread, affect-
ing many economic sectors such as agriculture, water resources, tourism, energy, ecosys-
tems, etc. [1]. Historical records prove that drought is a recurrent phenomenon and affects
relatively larger areas when compared to other hazards, such as floods, which are usually
constrained to floodplains, coastal regions, storm tracks, or fault zones [2,3]. The impacts
of droughts have been and continue to be witnessed at a wide range of geographical
scales and climate regimes around the world. For instance, between 1980 and 2013, the
United States of America (USA) reportedly experienced 18 droughts that resulted in over
USD 250 billion in damages [1–3]. Sub-Saharan Africa has experienced several drought
events, such as the 1982–1983 and the 1991–1992 droughts, which were reportedly the most
severe meteorological droughts in the 20th century [4,5]. In South Africa (SA), the 1992
droughts were reportedly the worst droughts since the year 1900 and led to approximately
70% crop failure, livestock deaths, and malnutrition in humans. Between the years 2014
and 2017, the Western Cape (WC) province in SA reportedly experienced the worst water
shortage in 113 years. Water levels from some major dams in the province were reportedly
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at approximately 23%, translating effectively to approximately 12.3% of the usable dam
water. As a result, the SA government imposed strict water restrictions to water consumers
and users [6]. It is thus evident that throughout most of the known history of humankind,
drought has proven to be a recurrent feature, occurring with increasing frequency and
intensity, resulting in significant economic, environmental, and social impacts [1,7]. Pro-
jections on global warming due to climate change indicate that there is a likelihood of an
average global temperature increase of approximately 3 ◦C [5,8]. Records indicate that,
during the 20th century, Sub-Saharan Africa has warmed at the average rate of 0.5 ◦C.
Furthermore, it is projected that land areas of the Sahara and semi-arid parts of Southern
Africa will experience warming by as much as 1.6 ◦C by 2050. These projections imply
that many regions worldwide will continue to experience more frequent and more intense
drought events, with irreversible impacts on human beings and ecosystems [8–11]. Hence,
drought monitoring for early warning, mitigation, and response has become a topic for
urgent scientific research in recent years [10–12].

Drought is a complex phenomenon, which varies every time in terms of its onset,
intensity, duration, and geographical coverage. The South African Weather Service (SAWS)
defined drought as the degree of dryness in comparison to normal or average amounts of
rainfall for a particular area or place and the duration of the dry period [13]. A few more
definitions exist in the literature, and, judging by their number and variety, it is apparent
that there is no universal definition for drought [5,13]. However, from these existing defi-
nitions, it can be deduced that the primary driver for drought is precipitation. Hence, for
simplicity, drought occurs when less than normal precipitation falls for an extended period,
reaching a point of threatening water storage and supply [13]. The storage and supply
of water could be through soil moisture, streamflow, as well as surface and groundwater
storage. Drought is therefore a multivariate phenomenon and affects water supply and stor-
age by propagating through four main phases: (1) It originates as meteorological drought
characterised by below-normal precipitation over a relatively short period of time. (2) If the
below-normal precipitation persists such that the impact results in insufficient soil moisture,
thereby affecting crop growth, it becomes agricultural drought. (3) Hydrological drought
ensues when the below-normal precipitation manifests in terms of reduced water levels
in the surface and groundwater water reservoirs. (4) Socioeconomic drought conditions
manifest when the physical water shortage begins to negatively affect water availability
(supply vs. demand) for human consumption [4,7,11,13–18]. The complexity and lack
of a clear definition makes drought challenging to quantify and monitor [19]. However,
the description of the propagation of drought throughout its four phases (meteorological,
agricultural, hydrological, and socio-economic) is very crucial because it helps to identify
key drought indicators, leading to the development of appropriate indices for monitoring
the different types of droughts. Indicators such as precipitation, temperature, soil moisture,
vegetation condition, streamflow, groundwater levels, dam levels, etc., have been used to
develop indices for tracking droughts throughout their phases [7,14].

Drought indices are quantitative measures that characterise drought by assimilating
data from one or several indicators into a single numerical value. Drought indicators and
indices are used to describe physical characteristics of drought, such as duration, magnitude,
intensity, severity, spatial extent, and frequency. Hence, their strength may be measured by
their ability to quantify drought duration, magnitude, intensity, severity, spatial extent, and
frequency [3,11]. It is noteworthy, however, that the strength and quality of drought indices
may also be measured by their computational simplicity as well as method flexibility [18].
Furthermore, the performance of any drought index or indices depends on the availability
and accessibility of credible climatic and hydrological data. Data scarcity combined with
the fact that a plethora of drought indices have been developed throughout the 20th and
21st centuries, make the selection of appropriate indices for meteorological, agricultural,
and hydrological droughts a challenge. The selection of appropriate drought indices is a
crucial step in the development of integrated drought monitoring systems that may enable
effective drought risk monitoring and management and contribute to the implementation
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of SA’s national disaster management policies that relate to drought risk preparedness,
mitigation, and response. Effective drought risk monitoring and management is therefore
achieved when appropriate drought indicators and indices are properly selected and
utilised to develop integrated systems capable of providing early warning information
on drought duration, magnitude, intensity, severity, spatial extent, and frequency [11].
Globally, various drought indices have been developed and tested [11]. However, not all
have been thoroughly and rigorously tested and reconfigured for the SA geological and
hydro-climatic conditions. Hence, this study hypothesises that not all the existing drought
indices developed to date can be applicable for SA hydro-climatic conditions and that
there is no single index that can represent all aspects of meteorological, agricultural, and
hydrological drought conditions and impacts in SA. It is thus imperative that a review of the
performance and applicability of selected drought indices be carried out to identify suitable
candidates for characterising meteorological, agricultural, and hydrological droughts in a
comprehensive and integrated manner in SA. Many reviews have been conducted focussing
on comparing the strengths and weaknesses of the existing drought indices, but none have
been presented that focus on the applicability of these indices for integrated drought
monitoring in the SA context [11,13].

Hence, the aim of this study is to provide a review of the performance and applicabil-
ity of insitu and satellite-based drought indices and provide guidance on the selection of
suitable and feasible indices for integrated drought monitoring in SA. The WMO recom-
mended that the SPI be used by national meteorological and hydrological services globally
to characterise meteorological drought. However, the WMO acknowledged that other
indices should be assessed and recommended for hydrological and agricultural drought
monitoring [20,21]. It is thus essential that an assessment be carried out before drought
indices are selected for meteorological, agricultural, and hydrological drought monitoring
in SA. Section 2 of this paper provides a brief overview of some of the vegetation types,
climate, as well as surface and groundwater systems in SA; Section 3 describes the method-
ology or approach used to carry out the review; Section 4 presents and discusses the review
results; and Section 5 provides concluding remarks and recommendations on feasible
drought indices and alternative methods for drought index development and drought
monitoring in SA.

2. The South African Context

SA is semi-arid, water scarce, and reportedly the 30th driest country in the world. Me-
teorological, agricultural, and hydrological drought impacts typically affect two main types
of natural resources in SA, i.e., vegetation and water resources, before their socioeconomic
impacts are evident [22,23].

Vegetation in SA can be classified into nine key vegetation groups or biomes, according
to Rutherford et al. (2006) (Figure 1). The winter rainfall fynbos biome in the southwestern
Cape region; the winter rainfall Succulent Karoo biome (smallest of the world’s six floristic
kingdoms) found over the Cape Fold Mountains and sandy lowlands regions of the south-
western Cape; the summer rainfall savanna biome situated on the north and east region
of SA; the summer rainfall grassland biome situated in the interior region of SA (home to
a wealth of species limited to the southern African region); the Indian Ocean coastal belt
(IOCB) biome (makes up SA’s southernmost extent of coastal (sub)tropical forests of the wet,
tropical, and subtropical seaboard of East Africa); the desert biome located at the extreme
northwest of SA (forms the southern tip of the winter-rainfall domain of the Namib Desert
as well as a summer-rainfall Gariep Desert); the Albany thicket biome in the south-eastern
region of SA (contains plant species that overlap between savanna, Nama-Karoo, and
subtropical forest biomes); the summer-rainfall Nama-Karoo biome (possibly the least
species-rich amongst all the biomes); and the forests biome, which is highly distinctive and
characterised by its small and patchy occurrence over the wetter parts of the winter- and
summer-rainfall areas. It is clearly part of the global warm-temperate forest biome [24].
Vegetation in SA plays an important role in drought monitoring and management because
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changes in vegetation cover may negatively or positively impact agricultural productivity.
It is therefore imperative that indices that are based on vegetation condition be considered
when monitoring drought in SA [24].
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Figure 1. Map of nine biomes in South Africa: Fynbos, Succulent Karoo, Desert, Nama-Karoo,
Grassland, Savanna, Albany Thicket, Indian Ocean Coastal Belt, and Forests [24].

With an average precipitation of about 460 mm per year, SA receives only slightly
more than half of the world’s average precipitation (860 mm per year). Furthermore, SA
is subject to relatively high potential evapotranspiration, ranging from under 1800 mm
per year in the east of the country to over 3000 mm per year in the north-western part of
the country (Figure 2) [25–27]. Rainfall in SA is highly variable and unevenly spread [28].
At a regional scale, the SA rainfall regime is complex, consisting of eight climatic regions
(Figure 3). The north-western Cape (1) and the southwestern Cape (2) experience winter
rainfall with maxima of approximately 30 and 70 mm, respectively. The South Coast
(3) experiences regular all-year rainfall ranging between 30 to 40 mm. The southern
interior (4) and the western interior (5) experience summer rainfall with maxima of about
60 mm in March; while the central interior (6), KwaZulu-Natal (7), and the north-eastern
interior (8) experience summer rainfall with maximum rainfall of approximately 130 mm
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in January [28]. This complex rainfall regime may have the potential to complicate drought
monitoring in SA [28]. It is therefore imperative that indices that are based on temperature
(evapotranspiration) and rainfall (precipitation) be considered when monitoring drought
in SA.
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South Africa [25].

SA has two main strategic water sources, i.e., surface water, and groundwater storages.
It is reported that approximately 8 to 10% of the land area in SA is the source of about
50% of the country’s surface water storage [27]. The water demand on SA’s surface water
sources is mainly from the water supply systems that provide water to more than 50% of
SA’s population as well as cities and towns that generate more than 64% of national eco-
nomic activity [27]. There also exists approximately 70% of the water demand for irrigation
in SA. Some of the major water supply systems in SA include the Western Cape Water
Supply System (WCWSS), which comprises six interlinked major dams (Theewaterskloof,
Wemmershoek, Steenbras Lower, Steenbras Upper, Voëlvlei, and the Berg River dams) [27].
The Breede-Gouritz Water Management Area (BGWMA) and the Berg-Olifants Water Man-
agement Area (BOWMA) are the main surface water drainage systems for the WCWSS [28].
The WCWSS provides approximately 99.6% of the combined storage capacity, supplying
bulk water to Cape Town (324 Mm3/year), the agricultural sector (144 Mm3/year), and
nearby municipalities (23 Mm3/year), amongst others (Mm3 ≈million cubic meters) [29].
The Integrated Vaal River System (IVRS) is an important bulk water supply system in
SA, supplying water to 46% of the country’s economy and 33% of the population (Johan-



Water 2023, 15, 240 6 of 30

nesburg, Midrand, Vereeniging, Rustenburg, Secunda, and others). The major dams in
the IVRS are Bloemhof Dam on the Vaal River (total storage capacity (TSC) of 1.16 billion
m3), Vaal Dam on the Vaal River (TSC = 2.57 billion m3), Grootdraai Dam on the Vaal
River (TSC = 0.35 billion m3), Katse Dam on the Vaal River (TSC = 1.95 billion m3), Sterk-
fontein Dam on the Wilge River (TSC = 2.62 m3), Mohale Dam on the As River/Tunnel
(0.94 billion m3), and the Woodstock Dam (0.38 billion m3) through pumped transfer to the
IVRS. As well established as they are, the WCWSS, IVRS, and other water supply systems,
such as the Algoa, Olifants, Luvuvhu-Lethaba, etc., all suffer from the negative impacts
of droughts [27]. It is therefore imperative that indices that are based on surface water
parameters such as streamflow and/or dam levels be considered when monitoring drought
in SA.
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Groundwater is equally important as a water supply source in SA because it sustains
perennial rivers during the dry seasons, and it can be exploited directly through abstractions.
It supplies approximately 32% of SA’s human settlements that rely on groundwater supply.
About 44% of the groundwater in SA is used for agriculture, while about 32% is used for
industrial purposes. For instance, the Cape Town region has three major aquifers, i.e., the
Table Mountain Group (TMG) aquifer, the Cape Flats aquifer, and the Atlantis aquifer,
which have the potential to supplement the WCWSS during both dry and wet periods [27].
For example, by 01 January 2022, the WC province has been reported to have a total of
approximately 744 Mm3/year available groundwater, with approximately 589 Mm3/year
being abstracted from the total available groundwater. From the water management area
perspective, by 1 January 2022, the BGWMA had approximately 467 Mm3/year available
groundwater, with approximately 263 Mm3/year abstracted; while the BOWMA had ap-
proximately 262 Mm3/year available groundwater, with approximately 319 Mm3/year be-
ing abstracted (NIWIS.DWS.gov.za/NIWIS2/GroundWaterStatus). Groundwater sources
may also be negatively affected by droughts. However, groundwater supply and availabil-
ity appear to last longer than surface water availability during prolonged droughts. Hence,
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an integrated approach using indices based on both vegetation, temperature, rainfall,
surface water, as well as groundwater is recommended for drought monitoring in SA.

3. The Review Approach

A literature review can broadly be described as a systematic approach for collecting
and synthesizing previous research. It serves as a foundation for emerging research, and, if
well conducted, it may produce new ideas for future research [30]. Therefore, the literature
review conducted for this study focused mainly on published studies containing method
descriptions as well as empirical information on the performance, strengths, weaknesses,
and applicability of selected drought indices. The review outcome was used to recommend
suitable or feasible approaches for integrated drought monitoring in SA.

The criteria for the review of the insitu and remote sensing-based drought indices and
their applicability in SA is based on the 2016 WMO Handbook of Drought Indicators and
Indices. The handbook provides guidelines and recommendations on the criteria to be
used to help users decide which indicators and indices are most appropriate for drought
monitoring and early warning. The handbook recommends that drought indices’ selection
be guided by the following 7 questions [31] (pp. 5–6): (1) Do the indices allow for timely
detection of drought to trigger appropriate communication and coordination of drought
response or mitigation actions? (2) Are the indices sensitive to climate, space, and time
to determine drought onset and termination? (3) Are the indices and various severity
levels responsive and reflective of the impacts occurring on the ground for a given location
or region? (4) Are the chosen indicators, indices, and triggers the same, or different, for
going into and coming out of drought? It is critical to account for both situations. (5) Are
composite (hybrid) indicators being used to take many factors and inputs into account?
(6) Are the data and resultant indices/indicators available and stable? In other words, is
there a long period of record for the data source that can give planners and decision-makers
a strong historical and statistical marker? (7) Are the indices easy to implement? Do
the users have the resources (time and human) to dedicate to efforts, and will they be
maintained diligently when not in a drought situation? Hence, based on the 7 questions
in the 2016 WMO Handbook of Drought Indicators and Indices, the following criteria
was derived and used in the review of the selected insitu and remote sensing-based
drought indices [31] (pp. 5–6): (I) Capability of the indices to characterise meteorological,
agricultural, and hydrological droughts according to their duration, magnitude, intensity,
severity, spatial extent, and frequency (WMO Question 1–4). (II) Sensitivity of the indices to
SA geological, hydrological, and climatic (geo-hydro-climatic) conditions (WMO Question
2). (III) Performance, strengths, and weaknesses of the indices when using readily available
and accessible data in SA (WMO Question 6). (IV) Computational and interpretation
simplicity of the indices (WMO Question 7). (V) Versatility of the indices for integrated
drought monitoring (WMO Question 5) [31] (pp. 5–6).

The selection of the indices to be reviewed in this study was based on the Bachmair
et al. (2016) study, which used questionnaire surveys to identify indices that are commonly
preferred and used by government, research, and academic institutions worldwide. The pre-
cipitation percentile (PP), standardised precipitation index (SPI), standardised precipitation
evapotranspiration index (SPEI), Palmer drought severity index (PDSI), and self-calibrated
(Sc-PDSI) were listed by Bachmair et al. (2016) as the most preferred indices for meteorolog-
ical drought monitoring. The soil moisture deficit (SMD), normalised difference vegetation
index (NDVI), vegetation condition index (VCI), crop moisture index (CMI), and the Palmer
moisture anomaly index (PMAI) were listed as the most preferred indices for agricultural
drought monitoring. The streamflow percentile (SP), reservoir levels (RL), surface water
supply index (SWSI), Palmer hydrological drought severity index (PHDSI), cumulative
streamflow anomaly (CSA), and the standardised streamflow index (SSI) were the most
preferred indices for hydrological drought monitoring. The institutions that participated
in the survey highlighted calculation and interpretation simplicity, data availability and
accessibility (timeliness), as well as common practice as some of the main reasons for the
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method preferences [32]. From the Bachmair (2016) list, this study selected the PDSI, SWSI,
VCI, SPI, SPEI, and the SSI for review. To account for groundwater drought monitoring,
the standardised groundwater index (SGI), and the GRACE groundwater drought index
(GGDI) were reviewed in this study. To account for the review criteria that deals with the
versatility of the indices for integrated drought monitoring (WMO Question 5), multivariate
drought indices were also reviewed.

4. Review Results and Discussion

The Palmer drought severity index (PDSI) (Equation (3)) was developed by Palmer
(1965) and became widely used in the United States of America (USA) to monitor drought.
It is based mainly on anomalies in the supply and demand in the water balance equation,
using temperature and soil moisture as the main indicators. It uses a two-layer soil water
balance model to estimate the soil moisture supply and demand with the inputs including
temperature, precipitation, and available water content of the soil on a monthly time scale,
or other scales, such as weekly [3,13,17,33,34].

The PDSI calculation procedure is carried out using evapotranspiration (ET), recharge
(R), runoff (RO), loss (L), potential evapotranspiration (PE), potential recharge (PR), poten-
tial runoff (PRO), and potential loss (PL), which are derived from meteorological and soil
data [35]. Ochieng et al. (2021) summarised the PDSI calculation process as follows [35]:
Compute the moisture departure and moisture anomalies based on the water balance
model, resulting in the climate characteristic, K, as shown in Equation (1):

K′i = 1.5 log10

 PEi+Ri+ROi+2.8
Pi+Li

Di

 (1)

where
Z̃ = ∑12

j=1

∣∣∣dj

∣∣∣K′j (2)

Z̃ is the summation of the annual moisture departure and Di is the mean moisture anomaly
for a specific month.

A predefined PDSI value Xi is a weighted sum of the previous PDSI value Xi−1 and
the current moisture anomaly Zi leading to Equation (3):

Xi = pXi−1 + qZi (3)

If p = 50.897 and q = 1
3 then self-calibrated PDSI (Sc-PDSI) is given, as shown in

Equation (4):

Xt =

(
1− m

m + b

)
Xi−1 +

CZt

m + b
(4)

where C represents the drought category, m is the slope, and b is the y- intercept.
The PDSI is an effective method but complex, data demanding, and computationally

intensive, which is not feasible for operational drought monitoring in SA. The inherently
fixed time scale of 9 months makes it unable to detect drought onset, an important fea-
ture in drought early warning and preparedness. According to several studies, the PDSI
is more effective for monitoring meteorological and agricultural droughts than for hy-
drological drought, which is not favourable for integrated drought monitoring in SA.
Being a multi-parameter/indicator index, it can integrate the combined effects of both
precipitation, temperature, evapotranspiration, and soil moisture, excluding groundwater
storage. A major drawback is that the PDSI cannot perform well in hydroclimatic condi-
tions, other than that of the regions it was initially developed for, without a recalibration
process [3,13,17,33,34]. The PDSI is therefore capable of characterising meteorological and
agricultural droughts according to their duration, magnitude, intensity, severity, spatial
extent, and frequency, but very sensitive to varying geo-hydro-climatic conditions because
it would require recalibration or reconfiguration. Due to the scarcity of data such as soil
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moisture, the PDSI would not be feasible for SA because such data is not readily available
and accessible in SA, specifically for operational use. Due to its complexity, the PDSI would
not be versatile for integrated drought monitoring in SA. It is anticipated that combining it
with other indices to form multivariate indices would be challenging. The summary of the
review of the PDSI based on the 2016 WMO Handbook of Drought Indicators and Indices
is provided in Table 1.

The self-calibrated Palmer drought severity index (Sc-PDSI) (Equation (4)) was then
developed to account for the shortcomings of the PDSI. It is based on the original PDSI but
replaces the constants with values that can be calibrated for the region of interest, making it
more flexible than the original PDSI [13]. The PDSI is among the frequently used drought
monitoring tools in the USA and has laid a good foundation for drought monitoring and
management in the rest of the world, including Africa [35].

Gizaw and Gan (2016) used the Sc-PDSI and climate data such as precipitation and
temperature to study the impact of climate change on the frequency, severity, and spatial
distribution of drought events in sub-Saharan Africa. The self-calibrating feature in the
Sc-PDSI algorithm enables automatic calibration of the PDSI parameters from historical
climate data at the location of interest, making the Sc-PDSI more flexible than the original
PDSI. The study by Gizaw and Gan (2016) has thus shown that the Sc-PDSI can be a useful
tool for drought early warning, preparedness, and mitigation in sub-Saharan Africa [36].

Ochieng et al. (2021) used the Sc-PDSI to study the spatiotemporal behaviour of
historical (39 years) and projected drought characteristics such as its duration, severity, and
intensity in a Kenyan region. Using monthly mean precipitation data from the Climate
Hazard Group Infrared Precipitation with Station (CHIRPS), monthly average temperature
data from the Climate Research Unit (CRU), and soil water content from Oak Ridge National
Laboratory Distributed Active Archive Center (ORNL DAAC), the Sc-PDSI identified
various drought with varying spatiotemporal characteristics. The study also used the
Sc-PDSI and projection models to conclude that there is a likelihood of increased future dry
periods in their region of interest [35].

Edossa et al. (2015) used the Sc-PDSI to study the characteristics of drought in the
Modder River Basin (MRB) tertiary catchment in SA. Using long-term records (1950–1999)
of precipitation, temperature, and soil moisture data, the Sc-PDSI enabled the identification
of the number, location, severity, magnitude, and intensity of drought events in the study
area. The Sc-PDSI study results enabled Edossa et al. (2015) to identify lag times between
hydrological and meteorological drought events, which is crucial information for policy
makers and effective drought risk management in SA [37].

It is evident that the Sc-PDSI is a powerful tool that has already been tested in many
regions across the world, but, as noted by Ochieng et al. (2021) and Edossa et al. (2015),
the PDSI and/or the Sc-PDSI is generally a complex and data-intensive method. When
comparing the PDSI with the SPEI and the SPI, Balbo et al. (2019) found that both were
equally capable of identifying and quantifying meteorological and agricultural drought
events. However, the authors did note that the SPI would be a preferred choice over the
PDSI due to the SPI’s simplicity and versatility. Hence, in the SA context, the use of the PDSI
and/or the Sc-PDSI is not feasible for integrated drought monitoring, more especially if it
is intended for use to develop the already complex multivariate drought indices [35,37,38].
Hence, according to the review criteria used in this study, the PDSI and the Sc-PDSI are not
recommended for integrated drought monitoring in SA.
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Table 1. Review of the PDSI and the SWSI; based on the 2016 WMO Handbook of Drought Indicators
and Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of the
indices to characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of the
indices to SA geological,
hydrological, and
climatic
(geo-hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available and
accessible data in SA

(IV) Computational and
interpretation simplicity
of the indices

(V) Versatility of the
indices for integrated
drought monitoring

Palmer Drought
Severity Index (PDSI)

~ Characterises
meteorological
and agricultural
droughts
according to their
duration,
magnitude,
intensity, severity,
spatial extent,
and frequency.

~ It can integrate
the combined
effects of
precipitation,
temperature,
evapotranspira-
tion, and soil
moisture.

~ Due to the
inherently fixed
time scale of 9
months, it is
unable to detect
meteorological
drought onset.
[3,13,17,33,34].

~ Sensitive to
varying geo-
hydroclimatic
conditions
because it would
require
recalibration or
reconfiguration
[3,13,17,33,34].

~ The
self-calibrating
feature in the
Sc-PDSI enables
automatic
calibration of the
PDSI, making the
Sc-PDSI more
flexible than the
original PDSI
[13].

~ Data demanding
and requires data
that are not
readily available
for operational
use (e.g., soil
moisture)
[3,13,17,33,34].

~ Computationally
complex and
data intensive
[35,37,38].

~ Due to its
complexity and
its requirement
for data that are
not readily
available, the
PDSI would not
be versatile and
hence not
recommended
for integrated
drought
monitoring in
SA.

Surface Water Supply
Index (SWSI)

The SWSI has the
capability to
characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency.

~ The SWSI is
based on the
water balance
model and
considers various
geo-
hydroclimatic
processes that
contribute to
drought
development
[17,39–41].

~ The SWSI is
flexible enough
to be applied at
SA’s various geo-
hydroclimatic
conditions
[39,41].

~ The SWSI
performs well
when using
readily available
and accessible
data in SA, such
as rainfall,
streamflow, and
dam levels [42].

~ Major drawback
is its
computational
and
interpretation
complexity, due
to the
uncertainties
from the lack of
criterion for
assigning
weights to the
indicators used
in its calculation
[13,39,40].

~ The SWSI is
versatile for
integrated
drought
monitoring
because it can
utilise various
combinations of
input parameters
to incorporate
drought
indicators that
account for both
meteorological,
agricultural, and
hydrological
droughts [42].

Shafer and Dezman (1982) presented the surface water supply index (SWSI) as a
hydrological drought index aimed at addressing the shortcomings of PDSI. The SWSI uses
weighted sum of non-exceedance probabilities of four drought indicators, i.e., precipitation,
reservoir storage, snowpack, and streamflow, taken from probability distributions fitted to
each drought indicator. The indicators are subjectively assigned weighted values based on
the total contributions to the water balance in a catchment [13,39]. The SWSI is not accurate
at all catchments, especially where inter- and intra-basin transfers are taking place [13,17].
The SWSI can be calculated using Equation (5) [39]:

SWSI =
[(a× PNrn) + (b× PNsf) + (c× PNrs)−C1]

C2
(5)
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where
SWSI = Surface water supply index (dimensionless)
PN = Probability of non-exceedance
rn = Rainfall (mm)
sf = Streamflow (m2/s)
rs = Storage reservoir level component (m)
a, b and c = Weighting factors. Provided a + b + c = 1
C1 = 50 and C2 =12
The modified SWSI is calculated using Equation (6) [40,41]:

SWSImod =
[(a× PNrn) + (b× PNsf) + (c× PNrs) + (d× PNdf)−C1]

C2
(6)

where
SWSImod = Modified surface water supply index (dimensionless)
df = Dam inflow
The advantage of developing a drought index based on the water balance model is

that it allows the index to consider various physical processes that contribute to drought
development [17]. However, Garen (1993) highlighted a major drawback of the SWSI. The
weights of the indicators used in original SWSI were obtained using a subjective assessment
of the impact of each component on water availability in the catchment of interest. No
criterion existed for assigning weights to the indicators [40].

To address this and other inherent weaknesses in the SWSI method, Garen (1993)
presented a revised SWSI, and, according to this review, it has made the calculation and
computation even more complex [40]. The summary of the review of the SWSI based on
the 2016 WMO Handbook of Drought Indicators and Indices is provided in Table 1.

Wambua (2019) presented a hydrological drought forecasting approach based on the
modified SWSI (Equation (6)), the streamflow drought index (SDI) and artificial neural
networks (ANNs). To calculate the SWSI at a catchment in Kenya, the authors used monthly
precipitation, stream flow, reservoir levels, and dam inflows. To address the issue related to
the subjective weighting of each drought indicator, the authors estimated the weights using
a method they referred to as the proportioning objective procedure. The authors asserted
that the approach computes the weighting parameters more accurately compared to the
subjective method developed by Shafer and Dezman (1982) [41].

The positive aspect from the studies carried out by Shafer and Dezman (1982) and
Wambua (2019) is that the SWSI can be applied at different catchments with different
geo-hydro-climatic conditions and using different input parameters. This is an indication
that the SWSI can be flexible [39,41]. Its ability to utilise various combinations of input
parameters of choice into a single index indicates that it may be possible to design or
modify the SWSI to incorporate drought indicators that account for both meteorological,
agricultural, and hydrological droughts. [42]. When appropriate parameters are utilised,
the SWSI has the capability to characterise meteorological, agricultural, and hydrological
droughts according to their duration, magnitude, intensity, severity, spatial extent, and
frequency. The SWSI is flexible enough to be applied at SA’s various geo-hydroclimatic
conditions. It performs well when using readily available and accessible data in SA, such as
rainfall, streamflow, and dam levels. However, a major drawback is its computational and
interpretation complexity, due to the uncertainty or lack of criterion for assigning weights
to the indicators used in its calculation. Hence, according to the study review criteria, the
SWSI would not be a preferred method for integrated drought monitoring in SA.

Kogan (1990) developed the vegetation condition index (VCI) using satellite-based
vegetation condition data, which is collected using Advanced Very High-Resolution Ra-
diometer (AVHRR) designed by the National Oceanic and Atmospheric Administration
(NOAA). Spectral reflectance data are used to calculate the normalised difference vegetation
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index (NDVI), which ultimately is used to calculate and compute the VCI. The VCI can be
calculated using Equation (7) [43–45]:

VCI =

(
NDVIj −NDVImin

)
× 100

NDVImax −NDVImin
(7)

where NDVIj is the average NDVI over a composite period interest, NDVImin and NDVImax
are the corresponding multi-year minimum and maximum NDVI for the specific analysed
period of a year.

This study has found that the VCI is a useful tool for monitoring agricultural drought,
in terms of its onset, duration, end, and intensity, as well its impact on vegetation. Kogan
(1995) further presented the temperature condition index (TCI) as an enhancement for
monitoring drought using remotely sensed data because it incorporates temperature related
vegetation stress [43]. Hence, by combining the VCI and the TCI, an improved method
for monitoring drought, the vegetation health index (VHI) was developed. The VHI is
more representative of the ecological/agricultural drought conditions [5,43,44]. The VCI is
advantageous because it is based on remotely sensed data, which improve spatial resolution
for drought detection. Remotely sensed data are almost always available in most areas
where in situ data are not available and/or accessible [5,43]. The VCI is simple to compute
and spatially versatile due to its use of satellite data. The VCI can provide agricultural
drought information in terms of impact on vegetation or crop health, which other indices
such as the SPI and SPEI cannot achieve. However, it must be applied with caution by
taking into consideration the anthropogenetic activities that affect the vegetation and land
cover. The summary of the review of the VCI based on the 2016 WMO Handbook of
Drought Indicators and Indices is provided in Table 2.

Winkler et al. (2017) used the VCI and the SPI to study the spatiotemporal evolution
of droughts that affected the agricultural sector in Africa and their connection to ENSO
events during the 16-year period between 2000 and 2016. Using the Tropical Rainfall
Measuring Mission (TRMM)-based SPI together with the Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived VCI, the authors identified and provided an analysis
of the spatiotemporal patterns of droughts in the African continent. The study by Winkler
et al. (2017) proved the applicability of the VCI and the SPI for a comprehensive and
integrated continental-scale monitoring of agricultural droughts and provided a better
understanding of spatiotemporal patterns of droughts affecting agriculture in Africa [45].

Kganyago et al. (2021) demonstrated that the VCI has a potential for application in
the WC province of SA by testing and comparing its performance with that of the SPI. The
authors found that the SPI-12 and VCI correlation results were consistent in identifying
drought. The results from the study by Kganyago et al. (2021) and the consideration that the
SPI and VCI represent various hydrological, environmental, and agroecological parameters
make the two indices good candidates for integrated drought monitoring in SA [44].

Table 2. Review of the VCI; based on the 2016 WMO Handbook of Drought Indicators and
Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of the
indices to characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of the
indices to SA geological,
hydrological, and
climatic
(geo-hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available and
accessible data in SA

(IV) Computational and
interpretation simplicity
of the indices

(V) Versatility of the
indices for integrated
drought monitoring
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Table 2. Cont.

Vegetation Condition
Index (VCI)

~ This study has
found that the
VCI is a useful
tool for
monitoring
agricultural
drought in terms
of its onset,
duration, end,
and intensity, as
well its impact on
vegetation
[5,43,44,46].

~ The VCI has been
tested in the
Western Cape
(WC) province in
South Africa by
Kganyago et al.
(2021) [44].

~ The VCI has been
tested in the
North West (NW)
province in South
Africa by Cole
and Dudumashe
(2021) [47].

~ The VCI has been
tested in other
African regions,
proving its
performance in
various geo-
hydroclimatic
conditions [45].

~ The VCI is
advantageous
because it is
based on
remotely sensed
data, which
improve spatial
resolution for
drought
detection.
Remotely sensed
data are almost
always available
in most areas
where in situ
data are not
available and/or
accessible [5,43].

~ The VCI is
simple to
compute and
easy to interpret
[5,43,44].

~ The VCI cannot
be applied for
meteorological
and hydrological
drought
monitoring;
however, this
study has
concluded that it
is versatile
enough to be
used in
combination with
other indices
such as the SPI
and SSI to enable
comprehensive
and integrated
drought
monitoring
in SA.

Cole and Dudumashe (2021) used the VCI, the TCI, and the VHI to study changes
in vegetation health in the North West (NW) province of SA between 2010 and 2020. The
authors calculated the VCI and TCI using data from the MODIS sensor and succeeded in
establishing spatiotemporal vegetation health trends between 2010 and 2020 and across
the NW province, wherein some regions showed a gradual decrease in drought conditions.
The authors further highlighted that the good vegetation health observed in some regions
during drought episodes may be attributed to the underlying geology, which plays an
important role in moisture retention. The authors also highlighted in their study that
mining activities, not just climate change, may also influence changes in vegetation health.
Cole and Dudumashe (2021) have thus demonstrated the important role that the VCI can
play in helping to understand the relationship between agricultural drought and climate
change and anthropogenic activities [46]. Mukwada et al. (2021) used the NDVI and the
VCI to study the effect of the recuring drought between 1980 and 2016 on the agricultural
environment. The authors reported that the VCI was able to identify major droughts
that negatively affected agricultural production, and, when compared with SPI results
in the same area and during the same period, there were some strong correlations in the
grassland and subsistence farming areas. The authors’ findings highlighted the ability of
the VCI, in combination with the SPI, to identify vulnerable agricultural sectors and assist
in policy making for improved disaster management planning and response strategies in
South Africa [47].

The literature review from this study shows that the VCI may be applicable for
integrated drought monitoring in SA. The VCI has the potential to play a significant role in
guiding policy on land recovery and mitigation opportunities, as well as prioritisation of
drought-stricken areas that seek immediate intervention [48]. The VCI is therefore expected
to provide important opportunities for improved assessment of droughts with high spatial
and temporal resolutions in SA. The VCI is capable of characterising agricultural drought,
is simple to calculate and compute, uses readily available satellite-based data, and is
applicable in SA’s geo-hydro-climatic conditions. Hence, according to the study review
criteria, the VCI is suitable for integrated drought monitoring in SA. Since the VCI cannot
be applied for hydrological drought monitoring, it must be used in combination with other
indices such as the SPI to enable comprehensive and integrated drought monitoring in SA.

The standardised precipitation index (SPI) was presented by Mackee et al. (1993). It is
based only on precipitation, making it a relatively simple method to calculate and compute
when compared with the PDSI and the SWSI. The computation of the SPI requires few
steps. The precipitation time series is averaged over the time scale of interest (e.g., 3, 6,
and 12 months). An appropriate probability distribution function (PDF) is fitted to the
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time series over the time scale of interest. After the parameters of the PDF are determined
from the historic records, the corresponding cumulative distribution function is then used
to calculate the cumulative probability of any observed value of the variable. Finally, the
inverse normal cumulative distribution function with a mean of zero and variance of one is
applied to convert the cumulative probability function of the observed value of the variable
to the SPI, where the zero value corresponds to the median precipitation [49–51]. The
cumulative probability function is given in Equation (8) [7,14]:

G(x) =
∫ x

0
g(x)dx =

∫ x

0

1
βατ(α)

xα−1e− x/βdx =
1

τ(a)

∫ x

0
ta−1e−1dt (8)

where
τ(α) is the gamma function given by Equation (9) [7,14]:

τ(α) =
∫ ∞

0
ya−1e−ydy (9)

where g(x) is the gamma distribution given by Equation (10) [7,14]:

g(x) =
1

βατ(α)
xα−1e− x/β (10)

where α > 0 represents the shape of the parameter, β > 0 is a scalar parameter, and x > 0
represents the amount of rainfall.

Drought characterisation using the SPI is also simple: The severity of a drought is deter-
mined by the departure of a negative SPI value from zero. For instance, an SPI≤ −2 indicates
extreme drought, −2 < SPI ≤ −1.5 severe drought, −1.5 < SPI ≤ −1.0 moderate drought,
−1.0 < SPI ≤ 0 minor drought, and an SPI greater than 0 indicates no drought [49–51].
The SPI allows for a selection of multiple time scales or accumulation periods (e.g., 1, 3,
6, 12, 24 months), making it more flexible and robust than the PDSI and the SWSI. It can
be used to monitor meteorological, agricultural, and hydrological droughts in terms of
their start, duration, end, intensity, and frequency, spatially and temporally [3,13,33,49].
The SPI has been used extensively to identify periods of meteorological, agricultural, and
hydrological droughts without the use of the water balance component. It can be used to
identify drought onset more effectively because its short time scale responds quickly to
meteorological drought conditions [13]. The SPI has been well tested to an extent that a
consensus has been reached that the gamma and Pearson type III (PTIII) are the PDFs that
best fit the precipitation time series over a wide range of climate regions [49,50,52]. The SPI
was endorsed by world leading institutions and research institutions as the recommended
method for the characterization of meteorological droughts [20,21]. The summary of the
review of the SPI based on the 2016 WMO Handbook of Drought Indicators and Indices is
provided in Table 3.

Rouault and Richard (2003) used the SPI to correctly identify the 1983 and the 1992
droughts as the most severe droughts that have ever happened in SA, since 1921. Using
the SPI, the authors further discovered that: since the late 1960s, drought are more often
associated with El Niño events; droughts are occurring with increasing frequency; and wet
years are enhanced since the 1970s. The authors successfully applied the gamma PDF-based
SPI in SA, which has a complex rainfall regime, and demonstrated its potential for real-time
monitoring of drought [28].

Botai et al. (2016) used the gamma PDF-based SPI and the SPEI to investigate the
historical evolution of drought in the Free State (FS) and North West (NW) provinces in
SA, during the 1985 to 2015 (30 years) period. The authors identified and characterised
the various droughts that occurred between 1985 and 2015 and quantified them according
to their intensity, duration, frequency, and severity in FS and NW provinces. The authors
reported that both the SPI and the SPEI produced similar results for mild drought occur-
rences when using the same rainfall accumulation periods. The authors emphasised that
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using the SPI and SPEI to characterise and understand the historical evolution of droughts
helps to determine the potential risk of droughts occurring in the future [14].

Botai et al. (2017) identified and assessed drought characteristics in the Western Cape
(WC) province using the gamma PDF-based SPI-3, SPI-6, and the SPI-12 during the period
between 1985 and 2016. The authors found that, although the 2015/16 WC drought events
were relatively more severe, they were a regular part of nature’s hydrological cycle. Hence,
the authors have shown that analysis of historical drought characteristics using the SPI
is an important first step towards understanding droughts and improving preparedness,
mitigation, and response [7].

Tfwala et al. (2018) used the gamma PDF-based SPI to study occurrences and severity
of droughts between 1918 and 2014 at the Ghaap Plateau, located in the Northern Cape
(NC) province of SA. The authors recommended the SPI because of its accuracy, simplicity,
and versatility, making it possible to detect the occurrence of both dry and wet spells at
different time scales. The SPI, as used by Tfwala et al. (2018), revealed that predominantly
moderate droughts have become more prevalent in the plateau after 1990. The SPI approach
is thus important in drought monitoring because it can generate information that can be
used in drought forecasting models for early warning, to improve preparedness, mitigation,
and response strategies. The authors emphasised the need to incorporate other climatic
parameters such as temperature to calculate drought indices, to fully accommodate all
aspects of climatic variability when monitoring and forecasting droughts [53].

Nkamisa et al. (2022) demonstrated the performance of the SPI at the local municipal
boundary, which is finer than the provincial boundaries in SA. The authors used the SPI and
the Meteorological Drought Monitor (MDM) software to identify and profile hydrological
drought occurrences in the OR Tambo District Municipality (ORTDM) from 1998 to 2018.
Using the SPI, the authors could identify the most vulnerable drought areas in the ORTDM,
areas of high drought intensity, and most severely affected areas in the district. This
information is crucial for preparedness, adaptation, and mitigating the impacts of future
droughts at the local municipality scale. The authors concurred with Tfwala et al. (2018)
and Botai et al. (2016), amongst others, that the SPI has a potential to be a useful tool when
forecasting and estimating the frequency, duration, and intensity of droughts [54].

More studies have been carried out using the SPI to study the socioeconomic impact
of drought. For instance, Mathivha et al. (2017) used the SPI to analyse the correlation
between drought and the number of tourist arrivals to Kruger National Park (KNP) in SA.
The authors found that 19.36% of the drought years corresponded to a negative change
in tourist arrivals, leading to the conclusion that drought is one of the natural disasters
apart from flood that negatively impact the tourism industry [55]. Smith and Fitchett (2020)
used the SPI to assess the impacts of drought periods on tourism within the Sabi Sands
Game Reserve (SSGR) in SA and emphasised the need for an improved understanding of
the relationship between weather, climate, and tourism. The study by Smith and Fitchett
(2020) has shown that the SPI is one the candidate methods that has a potential to provide
essential drought information to improve tourism management in SA [56].

Based on the study review criterion, the SPI should be highly recommended for inte-
grated drought monitoring in SA, not only because it has been tested all over the world and
extensively in SA, but mainly because it is simple to compute, robust, and spatially versatile,
requiring only rainfall data, and because it has the capability to characterise meteorological,
agricultural, and hydrological droughts according to their duration, magnitude, intensity,
severity, spatial extent, and frequency. Furthermore, rainfall data can be derived from
satellite information, which is an advantage when applying the SPI in regions where in situ
data are scarce.
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Table 3. Review of the SPI; based on the 2016 WMO Handbook of Drought Indicators and
Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of the
indices to characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of the
indices to SA geological,
hydrological, and
climatic
(geo-hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available and
accessible data in SA

(IV) Computational and
interpretation simplicity
of the indices

(V) Versatility of the
indices for integrated
drought monitoring

Standardised
Precipitation Index (SPI)

~ The SPI can be
used to monitor
meteorological,
agricultural, and
hydrological
droughts in
terms of their
start, duration,
end, intensity,
and frequency,
spatially and
temporally
[3,13,33,49].

~ The SPI allows
for a selection of
multiple time
scales or
accumulation
periods (e.g., 1, 3,
6, 12, 24 months),
making it more
flexible and
robust than the
PDSI and the
SWSI [49–51].

~ The SPI is
spatially versatile
and thus may be
applied at
various geo-
hydroclimatic
regions in South
Africa without
the need for
recalculation or
recalibration
[49–51].

~ The SPI has been
tested and
performed well
at many regions
in South Africa
with varying geo-
hydroclimatic
conditions
[7,14,28,53,54].

~ The SPI requires
only rainfall data,
which are readily
available in most
parts of South
Africa [49–51].

~ Satellite-based
rainfall data can
be used to
calculate the SPI,
which is an
advantage in
regions where in
situ data are
scarce [57,58].

~ The SPI is based
only on
precipitation,
making it a
relatively simple
method to
calculate and
compute when
compared with
the PDSI and the
SWSI [49–51].

The SPI was endorsed
by world leading
institutions and
research institutions as
the recommended
method for the
characterization of
meteorological
droughts [20,21]. The
SPI uses only
precipitation, thus
unable to account for
the direct impacts of
drought on surface and
groundwater resources;
however, this study has
concluded that it is
versatile enough to be
used in combination
with other indices such
as the VCI, SPEI, SSI,
SGI, etc., for integrated
drought monitoring in
South Africa.

For instance, Pitman (2011) assessed the state of water resources observational net-
works (rainfall, surface and groundwater, water quality) in SA and found that there existed
a decline in hydrological monitoring networks country-wide [57]. The decline continues
to deteriorate today due to inadequate maintenance of monitoring stations as well as
vandalism. In addition to precipitation data scarcity, different meteorological stations
often have different record lengths and variable data quality, which result in inconsistent
regional drought analysis when using in situ rainfall data alone. Hence, to fully capture the
spatiotemporal variability of drought using the SPI in the study area, remote sensing-based
rainfall data are recommended [58]. However, as highlighted by Tfwala et al. (2018),
there is a need to incorporate other climatic parameters such as temperature to calculate
drought indices to fully accommodate all aspects of climate variability when monitoring
and forecasting droughts. Since it uses only precipitation in its computation, the SPI is not
capable of quantifying hydrological drought in terms of its impact (supply vs. demand) on
surface and groundwater availability. Hence, the SPI should be used in combination with
other indices such as the SPEI to enable comprehensive and integrated drought monitoring
in SA.

Vicente-Serrano et al. (2010) presented the standardised precipitation evapotranspi-
ration index (SPEI), a modified version of the SPI [59]. The computation and drought
characterisation using the SPEI is the same as that of the SPI (Equation (10)) and thus
possess all the advantages of the SPI. It is different from the SPI only in that, in addi-
tion to precipitation, it uses evapotranspiration in its computation [3,59]. Thus, the SPEI
uses a simple climatic water balance calculation that is based on the Thornthwaite (1948),
Hargreaves and Samani (1985), or Penman–Monteith (1965) models for evaluating po-
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tential evapotranspiration (PET) [13]. The climatic water balance expression is given in
Equation (11):

Di = Pi − PETi (11)

where
D is the water surplus or deficit for i month (mm), and PET is the potential evapotran-

spiration for the i month (mm).
The Penman–Monteith method often requires extensive data which are usually not

readily available [23]. The SPEI has the potential to track agricultural drought more
efficiently [13]. Empirical studies have shown that evapotranspiration (PET) plays a major
role in determining drought severity. Since the SPEI accounts for temperature variability,
it can be used to monitor the effect of past, present, and future climate variabilities on
drought severity, thus providing long term early warning drought information [3,17,59].
This study has found that the SPEI has been well tested to an extent that the log-logistic
has been recommended as the preferred PDF that best fits the water balance time series
over a wide range of climate regions [50,59].

Theron et al. (2021) used the Hargreaves and log-logistic-based SPEI to study the
2015–2018 agricultural and hydrological drought events and their impact on wheat pro-
duction in the winter rainfall region of the WC province in SA. The authors generated a
historical SPEI-based drought record from 1988 to 2018 for the wheat growing areas in the
WC province and found that the 2015–2018 drought appeared to be the most severe in the
30-year study period, using a maximum of five rainfall gauging stations. The 2015–2018
drought thus had a negative impact on wheat production. A steep decrease in wheat
production was observed in 2015 and 2017, and recoveries were observed in 2016 and 2018.
The authors further reported increases in temperature trends at most stations, and, if these
are because of climate change, then similar or worse drought conditions may be anticipated
soon. The SPEI is thus a useful tool for drought early warning because of its use of the
temperature parameter [60]. The summary of the review of the SPEI based on the 2016
WMO Handbook of Drought Indicators and Indices is provided in Table 4.

Edossa et al. (2014) used the Thornthwaite-based SPEI to characterise meteorological
droughts in the central regions of SA and subsequently used the outcomes to examine the
relationship between drought and El Niño events. Using the SPEI, the authors identified
the number of major drought events, their frequency, their severity, as well as lag times
between them, and El Niño events during the 1952–1999 period. The authors further used
the SPEI to determine lag times between hydrological and meteorological drought events
in the central regions of SA. This information is vital for forecasting drought events and the
development of drought early warning systems to mitigate impacts and improve planning
and management of water resources in SA [37].

Naik and Abiodun (2019) used the Hargreaves-based SPEI to quantify drought in
terms of frequency and intensity and examine the role of potential evapotranspiration (PET)
on future drought characterization in the WC province of SA. The study was carried out
for the WC’s four river systems, viz., Berg, Olifants, Breede, and Gouritz river catchments.
The authors compared the drought patterns from the Hargreaves and Samani (1985)-based
SPEI with that from the SPI and found that changes in the drought intensity and frequency
are weaker when using the SPI than the SPEI. This suggest that SPI projections may
underestimate the influence of global warming on drought because they do not account
for the influence of PET. Naik and Abiodun (2019) thus highlighted the role of PET as a
key variable in characterizing drought in the WC. The authors further highlighted the need
for future studies to be carried out using alternative drought indices for comparison with
the SPI and SPEI or translate the SPI and SPEI drought projections to hydrological drought
impacts in selected river catchments [23]. These studies by Edossa et al. (2014) and Naik and
Abiodun (2019) demonstrated that the log-logistic or PTIII-based SPEI plays an important
role in integrated drought monitoring because it accounts for the effects of temperature of
droughts, which is crucial for climate change related drought projections [23,37].
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Table 4. Review of the SPEI based on the 2016 WMO Handbook of Drought Indicators
and Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of
the indices to
characterise
meteorological,
agricultural, and
hydrological
droughts
according to their
duration,
magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of
the indices to SA
geological,
hydrological, and
climatic (geo-
hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available
and accessible data
in SA

(IV)
Computational
and interpretation
simplicity of the
indices

(V) Versatility of
the indices for
integrated drought
monitoring

Standardised
Precipitation Evap-
otranspiration
Index (SPEI)

~ The SPEI can
be used to
monitor me-
teorological,
agricultural,
and
hydrological
droughts in
terms of their
start,
duration,
end,
intensity, and
frequency,
spatially and
temporally
[50,59].

~ Since the
SPEI
accounts for
temperature
variability, it
can be used
to monitor
the effect of
past, present,
and future
climate
variabilities
on drought
severity, thus
providing
long term
early
warning
drought
information
[3,17,59].

~ The SPEI is a
modified
version of the
SPI and thus
also spatially
versatile and
may be
applied at
various geo-
hydroclimatic
regions in
South Africa
without the
need for
recalculation
or
recalibration
[59].

~ The SPEI has
been tested
and
performed
well at many
regions in
South Africa
with varying
geo-
hydroclimatic
conditions
[37,60].

~ The SPEI
requires
rainfall and
temperature
data, which
is readily
available in
most parts of
South Africa.

~ Satellite-
based rainfall
and
temperature
data can be
used to
calculate the
SPEI, which
is an
advantage at
regions
where in situ
data are
scarce.

~ Like the SPI,
the SPEI is
relatively
simple to
compute and
interpret
when
compared
with the
PDSI and the
SWSI [23].

The SPEI uses
precipitation and
temperature, thus
unable to account
for the direct
impacts of drought
on surface and
groundwater
resources;
however, this
study has
concluded that it is
versatile enough to
be used in
combination with
other indices such
as the SPI, VCI,
SPEI, SSI, SGI, etc.,
for integrated
drought
monitoring in
South Africa.

Thus, based on the study review criteria, the SPEI is recommended for integrated
drought monitoring in SA because it is capable of characterising meteorological, agricul-
tural, and hydrological droughts according to their duration, magnitude, intensity, severity,
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spatial extent, and frequency, using both precipitation and temperature parameters. Like
the SPI, the SPEI is relatively simple to compute and interpret, and adopts well to various
SA geo-hydroclimatic conditions. However, Naik and Abiodun (2019) highlighted an
important fact that, to enable comprehensive and integrated drought monitoring, drought
indices that are capable of directly quantifying hydrological drought impacts must be
investigated and tested [23]. Hence, the SPEI should be used in combination with other
indices such as the SSI to enable comprehensive and integrated drought monitoring in SA
that caters for meteorological, agricultural, and hydrological drought impacts.

Standardised streamflow index (SSI): The description of hydrological drought as
provided in the introduction section of this paper implies that its impact affects surface
water storages and supply such as streamflow and reservoirs [61]. Streamflow appears
to be the most frequently used indicator for monitoring surface water-based hydrological
drought [62]. This study suggests that since streamflow commonly provides much wider
spatial coverage, it should be preferred for hydrological drought monitoring. The quantifi-
cation of hydrological droughts as independent phenomena has recently received much
attention in research because it allows direct quantification of water deficits in rivers [61].
Due to its computational and drought characterisation simplicity, the SPI’s calculation
methodology (Equation (10)) has been used to develop river flow indices such as the
streamflow drought index (SDI) [63], standardised runoff index (SRI) [64], and the SSI [61].
Pathak et al. (2016) studied hydrological droughts in India using the SDI and SRI for a
36-year (1972–2007) record of streamflow data. The authors observed good correlation
between 9-month SRI and 9-month SDI, and the correlation increased for 12-month SRI
and 12-month SDI. Hence, longer time scales produced better correlation between the SRI
and SDI than shorter time scales [19]. The summary of the review of the SSI based on the
2016 WMO Handbook of Drought Indicators and Indices is provided in Table 5.

Kerman and Gül (2018) carried out a study and provided a comparative analysis
of the SDI and the SSI, using selected catchments in Turkey, a 54-year monthly stream
flow record from eight stream flow gauging stations, and the gamma PDF. The authors
found that, when using the Mann–Kendall rank correlation method, both the SSI and the
SDI showed increasing trends for 6- and 12-month time scale, and both indices identified
nearly the same periods for severe and extreme drought in the catchment. The authors
thus concluded that the similarity of results from the SSI and the SDI converges when
using longer time scales [65]. This study suggests that more comparative studies may
be essential to improve confidence on the suitable method between the SSI, SDI, and the
SRI for hydrological drought monitoring in SA. In the meantime, this paper recommends
the SSI as the preferred method because it is the only recommended drought index for
streamflow drought monitoring and early warning in the 2016 version of the ‘Handbook of
Drought Indicators and Indices’ [31,66]. Furthermore, the SSI has been commonly used
and has produced promising results in some SA catchments [67,68].

The SSI is described as a standardised hydrological drought indicator, used to charac-
terise anomalies in observed streamflow and allows comparisons of drought severity across
time and space. It inherits the same simple computation and drought characterisation
method as the SPI but is different in that it uses streamflow data in its calculation [61,66].
This review study has found that the major challenge associated with standardising stream-
flow is the high spatial variability caused by varying catchment topography, lithology,
vegetation, and anthropogenic activities, leading to a high degree of uncertainty in the
choice of the PDFs that best fit the streamflow time series data [61]. For example, the
complex and interconnected interactions between vegetation and river flows affect river
flow dynamics, and this effect may vary from one catchment to another. This is mainly
due the influence of the vegetative drag forces on flow resistance, flow velocity, water
levels, etc. Approaches such as leaf area index (LAI) may be employed to provide a better
understanding of these vegetation and river flow interactions [69,70].

Nabaltis and Tsakiris (2009) and Shukla and Wood (2008) preferred the two-parameter
log-normal PDF when computing the SDI and SRI, respectively, because it was reported to
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be simple to normalise. Shukla and Wood (2008) did, however, acknowledge the need to
test other PDFs to potentially improve the SRI performance [63,64].

Vicente-Serrano et al. (2012) tested six different three-parameter PDFs and two non-
parametric PDFs to compute the SSI for a set of rivers across the Iberian Peninsula in Spain.
This large Mediterranean basin is characterised by high variability in the magnitude of
stream flows and in seasonal regimes. The authors recommended the non-parametric
best monthly fit (BMF) and the minimum orthogonal distance (MOD) to improve the
performance of the SSI. According to Vicente-Serrano et al. (2012), when using the BMF
and MOD methods, the process of selection of a unique distribution for each river flow
gauging station is eliminated, and the SSI is expected to perform better than the SDI and the
SRI. However, Vicente-Serrano et al. (2012) further concluded that, should the parametric
approach be preferred, the generalised extreme value (GEV) or log-logistic PDFs should be
preferred because they showed better performance than the log-normal, Pearson type III,
log-logistic, general extreme value, generalised Pareto, and Weibull [61].

Tijdeman et al. (2020) tested the sensitivity of the SSI by comparing 40 years of
monthly streamflow time series data computed with seven different PDFs (normal, log-
normal, gamma, Pearson type III, GEV, generalised logistic (Genlog), and Tweedie) and
with different nonparametric methods (the transformation of plotting positions (PP) to
the standard normal distribution and the kernel density estimation (KDE)) for 369 rivers
across Europe, including Southwest Germany. The authors affirmed that not all parametric
PDFs are equally suited to derive the SSI, because not all are flexible enough to describe
streamflow data. However, their goodness-of-fit tests indicated that the parametric SSI
derived with the Tweedie, GEV, or Genlog PDFs are best fitting and suitable candidates,
which agreed with the findings by Vicente-Serrano et al. (2012). Hence, the authors
found that the gamma PDF, which is recommended for SPI calculation, is not appropriate
for SSI calculation due to its non-negligible overestimation or underestimation of SSI
values. Tijdeman et al. (2020) found that the non-parametric SSI derived from empirical
PP produced large uncertainty bounds and did not resemble the spread and magnitude
of minimum SSI values expected from a probabilistic index. From the comparison of
the parametric SSI and the non-parametric SSI, the authors also suggested that using the
non-parametric PP method and the best fitting distribution approach (non-parametric best
monthly fit (BMF)), as suggested in Vicente-Serrano et al. (2012), may not be relevant for
their study setting [66].

Svensson et al. (2017) tested the sensitivity of the SSI to twelve different PDFs (kappa,
generalised logistic, Pearson type III, GEV, Tweedie, gamma, log-normal, normal, Gumbel,
and Weibull) using monthly mean streamflow datasets from 121 near-natural catchments
across the United Kingdom (UK). The aim was to systematically test the suitability of the
PDFs for describing river flow data. The authors found that when using the Shapiro–Wilk
goodness-of-fit test, the gamma PDF performed the worst and hence is not suitable. The
generalised logistic and GEV PDFs fitted the transformed stream flow data best. Despite its
relative complexity, the Tweedie PDF was the most accurate method over the generalised
logistic and the GEV because it has a lower bound at zero, not allowing negative stream
flow values [71]. This agrees with the studies performed by Vicente-Serrano et al. (2012)
and Tijdeman et al. (2020) in European and UK catchments [61,66,71]. However, according
to Svensson et al. (2017), due to recent advances in parameter estimation methods, and
implementation of these methods in the ‘R software package’, the Tweedie PDF is now a
viable option [71].

Botai et al. (2021) conducted a study to evaluate hydrological drought conditions in
the Eastern Cape (EC), Northern Cape (NC), and the WC provinces in SA. The authors
used the SSI calculated using a gamma PDF and 35 years (1985–2020) of streamflow records
from 39 stations across the EC, NC, and WC provinces to characterise drought conditions
in terms of its duration and severity. While the authors acknowledged that there currently
is no consensus on a single PDF that is most suitable for calculating the SSI, they however
selected the gamma PDF; it was successfully used by Shamshirband et al. (2020) and Salimi
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et al. (2021) at catchments in Iran and East Azerbaijan, with predominantly semi-arid, wet,
and dry climatic conditions. The authors’ results from most of the streamflow gauging
stations revealed that the EC, NC, and WC provinces experienced pronounced, yet localised
drought conditions. This may be attributed to reduced streamflow influenced by reduced
precipitation, coupled with increased temperature, among other factors. The Botai et al.
(2021) study results further affirm the need for more research to determine best fitting
PDFs to calculate the SSI in SA catchments [67,72,73]. The recent local studies such as Botai
et al. (2021) have laid an important foundation for streamflow drought monitoring in SA,
demonstrating the potential of the SSI to become a preferred hydrological drought index
for use to develop integrated drought monitoring systems.

Table 5. Review of the SSI; based on the 2016 WMO Handbook of Drought Indicators and
Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of the
indices to characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of the
indices to SA geological,
hydrological, and
climatic
(geo-hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available and
accessible data in SA

(IV) Computational and
interpretation simplicity
of the indices

(V) Versatility of the
indices for integrated
drought monitoring

Standardised
Streamflow Index (SSI)

~ The SSI is
recommended
for integrated
drought
monitoring in SA
because it is
capable of
characterising
hydrological
droughts
according to their
duration,
magnitude,
intensity, severity,
spatial extent,
and frequency,
using streamflow
data
[19,62,63,72].

~ The SSI has been
tested and has
produced
promising results
in few SA
catchments
[67,73].

~ This study has
concluded that
more studies are
required to test
the SSI at various
regions in South
Africa with
varying geo-
hydroclimatic
conditions.

~ The SSI requires
streamflow data,
which are readily
available in most
parts of South
Africa [63,64].

~ The SSI inherits
the same simple
computation as
the SPI but is
different in that it
uses streamflow
[61,66].

~ The major
challenge
associated with
computing
streamflow is the
high spatial
variability
caused by
varying
catchment
topography,
lithology,
vegetation, and
anthropogenic
activities, leading
to a high degree
of uncertainty in
the choice of the
PDFs that best fit
the streamflow
time series data
[61,72].

~ Computing the
SSI requires
testing various
PDFs to identify
best fitting PDFs
for calculating
the SSI
[61,63,64,66,72].

~ The SSI is the
only
recommended
drought index
for streamflow
drought
monitoring and
early warning in
the 2016 version
of the ‘Handbook
of Drought
Indicators and
Indices’ [31,66].

~ This study has
found that there
remains
uncertainty on
the suitable PDFs
for calculating
the SSI at
different
catchments with
varying geo-
hydroclimatic
conditions in
South Africa
[61,66].

~ With suitable,
best fitting PDFs
selected, the SSI
has the potential
for integrated
drought
monitoring in
combination with
other suitable
indices such as
the SPI, VCI, etc.

Thus, based on the study review criteria, the SSI is recommended for integrated
drought monitoring in SA because it is capable of characterising hydrological droughts
according to their duration, magnitude, intensity, severity, spatial extent, and frequency,
using streamflow data. Like the SPI and the SPEI, the SSI is relatively simple to compute and
interpret. If appropriate PDFs are selected, it has the potential to adapt well to various SA
geo-hydroclimatic conditions. This study has found that there remains uncertainty on the
suitable PDFs for calculating the SSI at different catchments with varying properties (geo-
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hydroclimatic conditions, topography, lithology, vegetation, and anthropogenic activities)
in SA [61,66]. Hence, this study proposes that the sensitivity of the SSI must be rigorously
tested in SA, leading to recommendations on the best fitting PDFs for calculating the SSI. A
good balance on the trade-offs between method simplicity and accuracy must be prioritised.

Standardised groundwater index (SGI) (Table 6): The description of hydrological
drought, as provided in the introduction section of this paper, further implies that drought
affects groundwater storages and supply from aquifers. The use of groundwater level data
and information is crucial for hydrological and integrated drought monitoring. It has thus
become essential to develop groundwater-based indices for hydrological drought monitor-
ing [74]. Bloomfield and Marchant (2013) constructed the SGI using the same calculation
approach as the SPI (Equation (10)). Thus, just like the SSI, the SGI inherits the computation
and drought characterisation simplicity of the SPI. The SGI, as constructed by Bloomfield
and Marchant (2013), differed from the SPI in that it uses monthly groundwater level data
and non-parametric normal scores transform of groundwater level data for each calendar
month. According to the authors, the non-parametric approach was selected because they
found that the monthly groundwater level time series used were highly irregular, leading
to different best fitting distribution functions at different locations and, ultimately, highly
variable and incomparable results. Hence, the authors failed to obtain a unique PDF when
using the parametric approach for calculation of the SGI. Ultimately, the authors found
that, when using the non-parametric normal scores transform (NST), the resulting SGI
distribution always passed the Kolmogorov–Smirnov (K-S) normality test [75].

By comparing the SPI with the SGI, Kumar et al. (2016) demonstrated the inability
of the SPI to characterise groundwater-based drought at local and regional scales. Their
findings revealed the pitfalls of using the SPI as a groundwater drought indicator at both
local and regional scales [74]. Hence, the use of the standardised groundwater indices such
as the SGI is recommended for hydrological drought monitoring in SA.

Bloomfield et al. (2018) used the SGI, SPI, and the standardised temperature index
(STI) to investigate the effect of anthropogenic warming on groundwater levels in a UK
aquifer, between the period 1891 and 2015. The authors followed the Bloomfield and
Marchant (2013) approach and used the non-parametric method to calculate the SGI. When
the SGI was compared with the STI and SPI, the authors observed an overall increase
in groundwater drought frequency, duration, and intensity at the UK catchments that
coincided with precipitation droughts and an increase in evapotranspiration (ET). The
authors concluded that the increase in groundwater drought frequency, duration, and
intensity is due to changes in evapotranspiration (ET) associated with anthropogenic
warming. This study by Bloomfield et al. (2018) highlights the applicability of the SGI in
combination with the SPI and SPEI in integrated drought monitoring [76].

Guo et al. (2021) used the SGI to quantitatively characterise groundwater drought at
four different geographical locations with varying hydroclimatic conditions and land use
activities in the USA. The SGI was calculated using monthly groundwater level data from
1981 to 2010 and the log-logistic PDF. Similarly, to the SSI, the authors found it essential to
test various PDFs to identify the best fitting and most suitable one for the selected aquifers.
The authors used the Anderson–Darling (AD) test to identify the log-normal PDF as the
best fitting when compared with gamma, normal, log-normal, GEV, and Weibull PDFs.
When comparing the SPI with the SGI, the authors found that the start and end times,
as well as severity of drought conditions at different time scales in the same area, varied.
They also found that groundwater drought varied significantly in different areas. The
authors attributed this to the complexity of geographical locations, agricultural irrigation
activities, as well as other natural environment and human activities. However, the higher
the computation time scales were, the better the correlation between the SPI and the SGI.
Finally, the authors attributed the inconsistencies or lag time differences between the SPI
and the SGI at the different locations, to varying conditions such as vadose zone, lithology,
soil, and human activities [51].
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Sorensen et al. (2021) investigated the relationship between groundwater level trends
and the El Niño–Southern Oscillation (ENSO) at the semi-arid Limpopo River basin,
Limpopo, between 1965 and 2013. The authors followed the Bloomfield and Marchant
(2013) non-parametric approach to calculate the SGI and were able to identify and distin-
guish between groundwater drought events that resulted from ENSO years and those that
resulted from high groundwater abstraction such as municipal wellfields and intensive
commercial agriculture [77]. The recent studies by Bloomfield et al. (2018), Guo et al.
(2021), and Sorensen et al. (2021) have laid an important foundation for groundwater
drought monitoring in SA, demonstrating the potential of the SGI to become a preferred
groundwater drought index to develop integrated drought monitoring systems.

Thus, based on the study review criteria, the SGI is recommended for integrated
drought monitoring in SA because is capable of characterising groundwater-based hydro-
logical droughts according to their duration, magnitude, intensity, severity, spatial extent,
and frequency. Like the SPI, SPEI, and the SSI, the SGI is relatively simple to compute and
interpret, and has the potential to adapt well to various SA geo-hydroclimatic conditions.
However, further investigations will be required on the suitable method (parametric vs.
non-parametric) as well as suitable PDFs for calculating the SGI at different catchments
with varying properties (hydroclimatic conditions, topography, lithology, vegetation, and
anthropogenic activities), especially in SA. A good balance on the trade-offs between
method simplicity and accuracy must be reached. The review of the SGI based on the 2016
WMO Handbook of Drought Indicators and Indices is summarised in Table 6.

Multivariate drought indices: During the late 20th century and into the 21st cen-
tury, drought characterisation from a multivariate perspective was introduced to mitigate
the shortfalls that result from drought monitoring using individual drought indices. In
this approach, the existing individual indices are combined to form blended or hybrid
or multivariate indices. The main advantage of the multivariate approach is that it en-
ables the development of comprehensive, integrated, multi-indicator drought indices that
incorporate the quantifiable impacts of meteorological, agricultural, and hydrological
droughts [12,16,17]. For example, the United States Drought Monitor (USDM) integrates
multiple indices (such as SPI and PDSI), vegetation and hydrologic drought indicators, and
expert observations to generate drought monitoring information such as weekly drought
maps. The USDM is a useful tool for drought monitoring for both operational and research
purposes and can respond to the needs of various water users including water planners and
the agriculture industry. The USDM has proved useful in the provision of reference data
and information when examining the performance of multivariate drought indices [17].
Hence, this study recommends that investigations be conducted to test the performance
and applicability of multivariate drought indices in SA.

Some of the multivariate indices that may be considered for investigation are the
aggregate drought index (ADI), which integrates the meteorological, agricultural, and
hydrological drought indicators using a linear approach called the principal component
analysis (PCA). As described by Hao and Singh (2015), the ADI is a linear combination
of drought indices based on precipitation, streamflow, soil moisture, evapotranspiration,
reservoir storage, and snow water content. According to Hao and Singh (2015), the ADI
is flexible, allowing selective use of preferred combination of indices, depending on the
region’s characteristics of interest, which is an appealing feature for integrated drought
monitoring in SA. However, using the ADI comes with uncertainties; for instance, the
linear combination of drought indices does not adequately represent the actual non-linear
relationship between meteorological, agricultural, and hydrological drought characteristics.
Furthermore, indicator weighting applied in the ADI introduces further uncertainties
because they are usually subjective and relatively difficult to determine [17].
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Table 6. Review of the SGI; based on the 2016 WMO Handbook of Drought Indicators and
Indices [31] (pp. 5–6).

Reviewed Drought
Indices

Review Criteria [31] (pp. 5–6)

(I) Capability of the
indices to characterise
meteorological,
agricultural, and
hydrological droughts
according to their
duration, magnitude,
intensity, severity,
spatial extent, and
frequency

(II) Sensitivity of the
indices to SA geological,
hydrological, and
climatic
(geo-hydroclimatic)
conditions

(III) Performance,
strengths, and
weaknesses of the
indices when using
readily available and
accessible data in SA

(IV) Computational and
interpretation simplicity
of the indices

(V) Versatility of the
indices for integrated
drought monitoring

Standardised Ground
water Index (SGI)

~ The SGI is
recommended
for integrated
drought
monitoring in SA
because it is
capable of
characterising
groundwater-
based
hydrological
droughts
according to their
duration,
magnitude,
intensity, severity,
spatial extent,
and frequency,
using streamflow
data [75].

~ The SGI has been
tested and has
produced
promising results
in some
catchments
around the world
[51,74,76,77].
However, it has
not been tested in
South African
catchments.

~ This study has
concluded that
studies are
required to test
the SGI at
various regions
in South Africa
with varying geo-
hydroclimatic
conditions.

~ The SGI requires
groundwater
data, which are
relatively more
readily available
in most parts of
South Africa [75].

~ The SGI is
computed using
the same
calculation
approach as the
SPI. Thus, just
like the SSI, the
SGI inherits the
computation
simplicity of the
SPI. [75].

~ The major
challenge
associated with
computing SGI is
the high spatial
variability
caused by
varying
catchment
topography,
lithology,
vegetation, and
anthropogenic
activities, leading
to a high degree
of uncertainty in
the choice of the
PDFs that best fit
the groundwater
time series data
[51].

~ Computing the
SGI requires
testing various
PDFs to identify
best fitting PDFs
for calculating
the SSI [51].

~ This study has
found that there
remains
uncertainty on
the suitable PDFs
for calculating
the SGI at
different
catchments with
varying geo-
hydroclimatic
conditions in
South Africa.

~ With suitable,
best fitting PDFs
selected, and an
informed choice
on parametric
versus
non-parametric
approach, the
SGI has the
potential for
integrated
drought
monitoring in
combination
with other
suitable indices
such as the SPI,
VCI, SSI, etc.

On the other hand, the blended drought index (BDI) uses a non-linear copula function
to combine the SPI, SPEI, standardised soil moisture index, and the VCI, which, individ-
ually, are standardised single drought indices that use precipitation, evapotranspiration,
soil moisture, and vegetation conditions to monitor drought. However, when combined
using the BDI, they form a comprehensive, integrated, multi-indicator drought index that
incorporates the quantifiable impacts of meteorological, agricultural, and hydrological
droughts. An advantage of using the non-linear copula method over non-linear methods
is that the mathematical models used are developed to closely preserve the relationship
between selected drought indices, enabling the provision of an objective description of the
overall conditions [18].

This study therefore recommends that investigations be carried out to test the perfor-
mance and applicability of both the linear ADI and the non-linear BDI to combine the SPI,
SPEI, VCI, SSI, and the SGI for integrated drought monitoring in SA. The investigations
should not be aimed at suggesting a superior approach for multivariate drought monitoring
in SA, but to establish and present the trade-offs and cost benefit analysis leading guidelines
on the selection of the preferred method at various SA catchments.
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GRACE (Gravity Recovery and Climate Experiment) groundwater drought index
(GGDI): The study has found that the major challenge associated with developing the SGI is
groundwater data scarcity. In many instances, this challenge makes it impossible to monitor
groundwater-based hydrological droughts at larger temporal and spatial scales [10,62].
Several studies have suggested exploiting total water storage data from the GRACE satellite
gravity mission to analyse groundwater droughts. This has led to the development of
GRACE-based drought indices [62]. Some of them are the “Zhao Method”, which uses the
GRACE derived monthly gridded total water storage changes (TWSC) to define drought
severity index (GRACE-DSI) as a standardised anomaly. The “Houborg Method”, which
uses percentile approach to surface soil moisture, root zone soil moisture, and groundwater
storage. The “Thomas Method” defines a drought by considering the number of consecutive
months below a threshold of total water storage change (TWSC) and identifies drought
events through the computation of their magnitude, duration, and severity. These GRACE-
based drought indices are discussed in detail by Gerdener et al. (2020) [62]. Gerdener
et al. (2020) further presented a modified version of the three methods, based on time-
accumulated and time-differenced GRACE data and proposed that future work should
focus on better defining the onset and end of a drought and developing a signature for a
TWSC drought [62]. Thomas et al. (2017) introduced the GRACE groundwater drought
index (GGDI) which uses normalised GRACE-derived groundwater storage deviations to
quantify groundwater storage deficits during the GRACE record.

According to Thomas et al. (2017), the GGDI is capable of capturing characteristics
of groundwater drought that occur because of both complex human activities and nat-
ural changes. Hence, as demonstrated by Thomas et al. (2017), the GGDI is capable of
characterizing groundwater drought in regions without adequate in situ observations [78].

Van Loon et al. (2017) evaluated two approaches to monitor groundwater drought
as alternatives to real-time groundwater observations at aquifers in Germany and the
Netherlands. The first approach is based on spatially explicit relationships between me-
teorological conditions and historic groundwater level observations, while the second
approach used the GRACE terrestrial water storage (TWS) and groundwater anomalies
derived from GRACE-TWS and (near-)surface storage simulations by the Global Land
Data Assimilation System (GLDAS) models. The authors found that the first approach
performed better than the satellite-based GRACE-TWS and GRACE-GLDAS groundwater
anomalies and attributed it to the coarse resolution of the GRACE-TWS and the inability of
the GRACE-GLDAS models to simulate groundwater anomalies realistically. As a result,
the authors concluded that GRACE-based groundwater anomalies, as evaluated in their
study, were not suitable for use in real-time groundwater drought monitoring in Germany
and the Netherlands [79].

To enable groundwater droughts monitoring at finer resolutions, the GRACE informa-
tion must be downscaled from the original monthly spatial resolution of approximately
150,000 km2 into local study area scale. Thus, assimilation of GRACE data must therefore
be carried out to enable vertical disaggregation as well as spatial and temporal downscaling
of the data such that groundwater can be monitored at scales finer than that of the original
GRACE. This is essential for drought monitoring at local scales and on a weekly basis.

Li et al. (2019) demonstrated the use of an “ensemble Kalman smoother” to assimilate
GRACE-derived total water storage (TWS) into a catchment and land surface model (CLSM),
which, according to their study, enabled vertical disaggregation as well as spatial and
temporal downscaling (to 0.25◦ resolution and daily intervals in this study) of GRACE TWS
data. This has the potential to generate near real-time groundwater GRACE data. They
concluded that, in general and across the world, GRACE data assimilation improves the
simulation of groundwater storage variations in comparison to in situ measurements [10].
It is therefore recommended that research be conducted to assimilate, compute, and test
the GGDI in SA.
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5. Conclusions

This review study has shown that extensive research progress has been made on
the development of drought indices, especially during the 20th and into the 21st century.
Overall, the literature review has shown that most of the drought indices that have been
developed and tested throughout the 20th and the 21st century perform well for the
purposes for which they have been developed for. Furthermore, it has revealed that no
drought index can be universally applicable at all regions across the world, and that
none of them has the capacity to individually account for the impacts on meteorological,
agricultural, and hydrological drought monitoring in an integrated manner. (Masih et al.,
2014; Bachmair et al., 2016). This is an affirmation of the study’s hypothesis. Hence, the
study recommends that there must exist processes for the selection of suitable or feasible
indices that must either be used directly or be ‘re-calibrated’ or ‘re-configured’ to adapt to
different geo-hydroclimatic conditions in SA.

In this study, the performance and applicability of the PDSI, SWSI, VCI, SPI, SPEI, SSI,
SGI, GGDI, and multivariate indices were evaluated using a review approach described in
Section 3. The aim of this review study was to evaluate the performance and applicability
of the PDSI, SWSI, VCI, SPI, SPEI, SGI, GGDI, and multivariate indices and provide
guidelines on the selection of suitable and feasible candidates for integrated drought
monitoring in SA. Published empirical studies were synthesised to acquire empirical
evidence on the performance and applicability of the selected drought indices. The primary
focus was on the ability of the indices to characterise meteorological, agricultural, and
hydrological droughts according to duration, magnitude, intensity, severity, spatial extent,
and frequency; interpretation and computational simplicity, their sensitivity to varying
SA geo-hydroclimatic conditions; their performance when using readily available and
accessible data in SA; and their versatility for integrated drought monitoring in SA.

This review study has found that, despite their good performance and applicability in
the regions for which they were developed and calibrated, the PDSI, ScPDSI, and the SWSI
are not feasible candidates in the SA context, because they are relatively computationally
complex, data intensive, and not spatio-temporally flexible, hence, not versatile enough
for integrated drought monitoring in SA. Credible data such as soil moisture is not readily
available and accessible in SA compared to precipitation, streamflow, and groundwater
levels. The method development uncertainty in the SWSI due to subjective determination
of parameter weights estimations eliminates the SWSI for integrated drought monitoring in
SA. On the other hand, the SPI, SPEI, VCI, SSI, and SGI were found to be the most feasible
candidates for integrated drought monitoring in SA because they met the study review
criteria more than the PDSI and the SWSI. Key to the findings is that the empirical studies
have shown that they are capable of characterising meteorological, agricultural, and hydro-
logical droughts according to their duration, magnitude, intensity, severity, spatial extent,
and frequency. They are relatively simple to compute and interpret, less data intensive,
and spatio-temporally flexible. Their use of simple, similar, and internationally recognised
standardisation and drought characterisation methods makes them good candidates for
combining them into multivariate indices. Furthermore, the standardisation approach
is approved by the WMO as common practice for characterising droughts using the SPI
and the SSI.

However, this review study has found that there is not yet consensus or common
practice regarding suitable PDFs for calculating the SSI and the SGI. This is due to the high
spatial variability of streamflow and groundwater levels, caused by varying catchment
geology, topography, lithology, vegetation, and anthropogenic activities, leading to a
high degree of uncertainty in the choice of the best fitting PDFs to the streamflow and
groundwater time series data. Since the gamma distribution was found to be unsuitable
for calculating the SSI, this study thus proposes that investigations be carried out to
recommend suitable distribution functions for calculating the SSI and the SGI as common
practice in SA. Furthermore, since insufficient empirical studies were found to suggest that
a consensus may have been reached on the choice between parametric or non-parametric
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approaches for calculating the SGI, this paper calls for research on the evaluation of the
performance of parametric and non-parametric approaches to improve confidence in the
preferred method for computing the SGI in SA. Due to the scarcity of groundwater data, the
study recommends that research be carried out to investigate the assimilation of GRACE
information to generate GRACE-based groundwater drought indices in SA.

Hence, when combined, and with suitable best fitting distributions used, and informed
choice between parametric and/or non-parametric approaches, the combination of the
SPI, SPEI, VCI, SSI, and SGI have the potential to produce comprehensive and integrated
drought monitoring and early warning information system in SA. Hence, this study calls
for an improved approach for monitoring of droughts in SA, which is the integrated ap-
proach, using the combination of the SPI, SPEI, VCI, SSI, and the SGI. To achieve this, this
review study recommends that investigations be carried out to evaluate the performance
and applicability of both the linear ADI and the non-linear BDI to combine the SPI, SPEI,
VCI, SSI, and the SGI for integrated drought monitoring in SA. It is anticipated that these
findings and recommendations, if implemented, will contribute to the development and im-
provement of integrated drought monitoring systems as well as drought risk management
policies in SA.
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