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ABSTRACT
Autocorrelation functions (ACFs) of 119 gamma-ray bursts (GRBs) monitored by the Burst
Alert Telescope (BAT) on Swift are calculated. Contrasting with previous results for smaller
numbers of bursts from other missions, the widths of the ACFs are not bimodally distributed.
Although the distribution appears slightly asymmetrical, underlying mixtures of distributions
can also probably be ruled out. Factors contributing to differences between the results presented
here, and those in the literature, may include the differences in energy passbands used, and
the superior sensitivity of the BAT instrument (which affects e.g. the redshift distribution of
the detected GRB). The second part of the paper is concerned with the fitting of mixtures of
bivariate Gaussians to the joint duration/hardness ratio data of 325 GRBs. A careful analysis
confirms that a three-component mixture is the statistically most acceptable, but it is shown
that the implied marginal distribution of the hardness ratios does not fit the data very well.
It is also stressed that mixture components cannot automatically be assumed to represent
different classes of GRBs. The point is illustrated by showing two substantially different, but
statistically almost equivalent, mixture models for the distribution of 571 BAT-determined
GRB durations.
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1 IN T RO D U C T I O N

A number of authors have studied the autocorrelation functions
(ACFs) of gamma-ray bursts (GRBs), e.g. Borgonovo (2004, here-
after B04), Borgonovo et al. (2007, hereafter B07) and Vasquez &
Kawai (2011). References to earlier work can be found in these
papers. The three cited works considered the distribution of ACF
widths across long-duration GRBs and showed it to be bimodal, if
corrected for time dilation.

There are few formal statistical tests for the presence of mul-
timodality in data; perhaps the most widely cited is the ‘dip test’
devised by Hartigan & Hartigan (1985). The test statistic resem-
bles the well-known Kolmogorov–Smirnov (KS) statistic in that
the maximum difference D between two cumulative distribution
functions (CDFs) is considered. The first CDF is that of the actual
data, while the other is chosen to be the particular unimodal distribu-
tion which minimizes D. Large values of D indicate multimodality.
Significance levels are determined by simulations based on sam-
ples drawn from a flat (i.e. uniform) distribution – see Hartigan &
Hartigan (1985) for the motivation. For the 22 ACF widths deter-
mined by B07, D = 0.1246, with significance level 0.3 per cent
(i.e. 0.3 per cent probability of such a large value of D occurring
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by chance). (It is noted in passing that the formal p-value will be
somewhat larger, since the precise detail of the width calculations
were devised to maximize evidence for bimodality.)

The data used by B04 and B07 were taken from a num-
ber of sources – Gamma-ray Burst Monitor (GRBM), Burst
and Transient Source Experiment (BATSE) and Konus –
with the concomitant problems of different sensitivities, time res-
olutions, energy ranges, etc. In this paper, ACFs are calculated
exclusively from Swift ‘Burst Alert Telescope’ (BAT) GRB data,
since these are both abundant and homogenous. Light curves were
downloaded from ‘http://gcn.gsfc.nasa.gov/swift_gnd_ana.html’ in
the form of 64-ms (observer frame) time resolution light curves,
corrected to give on-axis count rates. Background-subtracted sums
of the counts in the four energy channels, covering the energy range
14–195 keV, are used. The calculations are described in Section 2,
and the results are given and interpreted in Section 3.

Bimodality in GRB durations, as measured by the parameter T90

(the time interval over which 90 per cent of the burst energy is ob-
served), is generally accepted as fact (e.g. Gehrels, Ramirez-Ruiz
& Fox 2009). More recently, it has been claimed that there may be
a third type of GRB, intermediate between the so-called short and
long bursts. The claim is based on the fact that the distribution of
log T90 values can be modelled by a mixture of three Gaussians.
Furthermore, there is evidence that the bivariate distribution of T90
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and radiation hardness is best described as a mixture of three dis-
tributions – see Řı́pa et al. (2009) and Horváth et al. (2010), which
also contain overviews of earlier work.

Although hypothesis tests have been carried out in these stud-
ies, in order to ascertain the correct number of components in the
mixture of distributions, these tests have unfortunately not had the
properties assumed for them. In particular, use has been made of
likelihood ratio statistics (LRSs), which compare the Gaussian-
mixture likelihoods under null and alternative hypotheses. Subject
to certain regularity conditions, the LRSs have χ2 distributions (e.g.
Andrews 2001). However, in the case of this particular problem, the
regularity conditions are not satisfied – for example, the parameters
estimated under the alternative hypothesis are not identified at all
under the null. The implication is that the true distribution of the
LRS is non-standard – see e.g. the references in Miloslavsky & Van
der Laan (2003). Similar considerations apply to the F-test which
has been used to compare χ2 statistics of different models (Řı́pa
et al. 2009) – see Protassov et al. (2002).

In Section 5 below, the likelihood ratio tests are repeated using
simulated percentage points of the statistics. Attention is also given
to the evaluation of the fit of the models, since finding the optimal
number of mixture components does not automatically guarantee
that an adequate representation of the data has been found.

Values of Swift BAT T90, peak fluxes and redshifts used
below were taken from ‘http://swift.gsfc.nasa.gov/docs/swift/
archive/grb_table/’ which is gratefully acknowledged .

Please note that in this paper all logarithms are referred to the
base 10, unless explicitly indicated otherwise.

2 TH E F O R M O F T H E AC F

We start by motivating a form of the ACF which differs slightly
from that in the recent literature. The ACF at lag � = k�t is defined
by

A(k�t) = 1

N

N−k∑
j=1

sj sj+k

/
A(0)

= 1

N

N−k∑
j=1

(mj − bj )(mj+k − bj+k)
/
A(0), (1)

where sj, bj and mj = sj + bj, respectively, denote the source,
background and total (source plus background) count rates, the
time interval between measurements (or bin width) is �t and the
duration of the burst is N�t. Neither source nor background count
rates are directly observable during the burst. The background level
can be estimated by e.g. fitting a low-order polynomial to pre- and
post-burst light curves, and interpolating across the burst, giving
estimates b̂j . For practical application, equation (1) is then replaced
by

A(k�t) = 1

N

N−k∑
j=1

(mj − b̂j )(mj+k − b̂j+k)
/
A(0). (2)

The variance of the source signal is

A(0) = 1

N

N∑
j=1

[(mj − b̂j )2 − V ] , (3)

where V is the variance of the background; V is assumed to be
constant, independent of j. It can be estimated from the out-of-burst
light curve:

V = 1

L

∑
i

(bi − b̂i)
2 , (4)

where L is the number of background-only measurements used. Al-
ternatively, if the individual background variances Vj are available,
equation (3) could be replaced by

A(0) = 1

N

N∑
j=1

[(mj − b̂j )2 − Vj ] = 1

N

N∑
j=1

(mj − b̂j )2 − V .

Equation (1) differs from previous forms in that the upper limit to
the summation here is N − k, rather than N. The latter limit requires
that data values be defined at times N + 1, N + 2, . . .; clearly, this
would contribute to greater uncertainty in A(τ ). Although not spelt
out, it appears that the definition in the literature was motivated by
the desire to have the number of terms in the summation be the same
for all τ . However, it is known that, at least for stationary series, the
ACF as defined in (1) is unbiased, i.e. it is not necessary to make
any adjustment for the dependence of the summation limit in (1) on
k.

In B04 and B07, the analogue of (3) is

A(0) = 1

N

N∑
j=1

[(mj − b̂j )2 − mj ] . (5)

To see clearly the difference between (3) and (5), consider the
following expected value (ensemble average):

E(mj − b̂j )(mj+k − b̂j+k) = E(sj + bj − b̂j )(sj+k + bj+k − b̂j+k)

= Esj sj+k + E(bj − Ebj )

×(bj+k − Ebj+k)

= Esj sj+k + cov(bj , bj+k),

where it has been assumed that source and background are uncor-
related, and also that b̂j accurately estimates the mean background
level at each time point j�t across the burst. For uncorrelated back-
ground noise,

E(mj − b̂j )(mj+k − b̂j+k) = Esj sj+k + δ(k, 0)cov(bj , bj+k)

= Esj sj+k + V δ(k, 0), (6)

where δ is the Kronecker delta. It follows that for A(0) as defined in
(3), the expected values of the individual terms are Es2

j and

EA(0) = 1

N

∑
j

Es2
j ,

which is clearly the correct normalization in (1). For A(0) as defined
in (5), on the other hand,

E[(mj − b̂j )2 − mj ] = Es2
j + [var(bj ) − Esj − Ebj ] .

If the background counts are Poisson distributed, the first and last
terms in the square brackets cancel, but the term in Esj remains.

The normalization by A(0) in (3) works reasonably well, but
is not perfect. Fig. 1 shows the light curves of three GRBs, with
the associated ACFs in Fig. 2. Close-ups of the ACFs at short lags
(Fig. 3) show that values of A(0) are too small for the GRB 100814A
and GRB 081008 data, and too large for GRB 091024.

B04 and B07 use the widths of the ACFs to derive characteristic
time-scales of the bursts. The time-scale τ of a burst is essentially
defined to be the lag at which the ACF has declined to the value
0.5. Clearly incorrect normalization will affect the results: if A(0) is
too small, τ will be overestimated, whereas if A(0) is too large, τ is
underestimated. A simple remedy is to fit a low-order polynomial to
the ACF over small lags, extrapolate to find the value A′(0) at zero
lag and then to normalize by this value. In practical application, a
quadratic is fitted to the low-lag ACF values larger than 0.8.
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Figure 1. Light curves of GRB 100814A (top), GRB 091024 (middle) and
GRB 081008 (bottom).
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Figure 2. ACFs of the bursts in Fig. 1. The time intervals over which
ACFs were calculated were (−10, 250), (−20, 55) and (−20, 150) s,
respectively.

The detail of the determination of the ACF widths by B04 and B07
is the following: the ACF is assumed to decay roughly exponentially.
A quadratic g(τ ) is therefore fitted to log A(τ ) over the interval

0.4 ≤ A(τ ) ≤ 0.6, and the lag τ 0 such that g(τ 0) = log 0.5 is
noted.

The top and bottom ACFs in Fig. 2 demonstrate that the algorithm
cannot be applied blindly, since the respective secondary peaks near
∼65 and ∼110 s also satisfy 0.4 ≤ A(τ ) ≤ 0.6. The plots furthermore
raise questions regarding the aim of the analysis, since this would
determine the most suitable measure of the width of the ACF. B07
state “ ... it was found empirically ... that at half-maximum the
separation between the two sets is most significant”, i.e. their choice
of methodology gives the clearest indication of bimodality. It would
seem also to be useful to consider measures of the overall time-scale
of a burst. A reasonable alternative is the mean τm ≡ τ of the lags
such that 0.4 ≤ A(τ ) ≤ 0.6, and this statistic will also be used in what
follows. In the case of τ 0, if ACFs have multiple maxima higher
than 0.4, then only the small-lag branch of the ACF is considered
in applying the B04 and B07 algorithm.

Nothing has been said about the choice of the burst time interval
over which ACFs are calculated. It was found that results were quite
sensitive to the assumed burst starting point, but insensitive to the
end point. This is perhaps not surprising, given the typical burst
shapes (rapid onset, slow decline). Selecting a starting point a few
seconds before the onset of the burst obviated the problem, giving
more stable results. Selection of the end points was guided by the
values of T90. Within these constraints, ACFs were calculated for
several beginning and end points; the consequent range of widths
found for a given burst is reported below.

3 W ID TH S O F TH E AC F

At the time this project was started, redshifts could be found for
162 Swift GRBs, the latest being GRB 100906A. Of these, 12 were
short bursts (T90 < 2 s), and a further 31 were either incompletely
observed or so noisy/faint that no analysis was attempted. This left
119 GRBs for which burst widths corrected for time dilation could
be estimated. Results are given in Table 1. Fig. 4 summarizes the
information in columns 2–4 of the table.

The uncertainties in τ 0 and τm, as reflected in the ranges quoted,
are, with the exception of GRB 081028, relatively small. The range
�τ 0 exceeds 1 s for only four GRBs, and �τ 0 > 1.8 s only for GRB
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Figure 3. Details of the ACFs in Fig. 2, at short lags. From left to right, GRB 100814A, GRB 091024 and GRB 081008. Note the slightly incorrect
normalizations in all three cases.
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408 C. Koen and A. Bere

Table 1. Estimated rest-frame ACF widths of 119 Swift GRBs. For each burst, a range of values
is given – these resulted from varying the burst time interval used for the ACF calculations.

GRB Duration T90 Peak flux P Redshift z τ 0 range τm range
(s) (count s−1) (s) (s)

050126 24.8 0.7 1.29 5.81 6.34 6.26 6.74
050223 22.5 0.7 0.59 8.29 8.33 8.51 8.77
050315 95.6 1.9 1.95 8.55 8.61 8.38 8.51
050319 152.5 1.5 3.24 1.03 1.06 1.15 1.19
050401 33.3 10.7 2.90 0.75 0.75 1.09 1.23
050416A 2.5 4.9 0.65 0.47 0.47 0.43 0.45
050505 58.9 1.9 4.27 1.85 2.00 1.96 2.35
050525A 8.8 41.7 0.61 1.03 1.03 2.17 2.17
050603 12.4 21.5 2.82 0.30 0.30 0.26 0.27
050730 156.5 0.6 3.97 12.97 14.76 13.18 15.69
050802 19.0 2.8 1.71 2.50 2.65 2.60 2.87
050820A 26.0 0.5 2.61 3.79 4.40 3.86 4.28
050826 35.5 0.4 0.30 4.69 5.58 4.81 5.72
050904 174.2 0.6 6.30 13.96 14.91 13.90 14.99
050908 19.4 0.7 3.34 2.21 2.32 2.19 2.34
050922C 4.5 7.3 2.20 0.54 0.54 0.55 0.55
051016B 4.0 1.3 0.94 0.49 0.53 0.83 0.93
051109A 37.2 3.9 2.35 1.15 1.28 1.14 1.30
051109B 14.3 0.6 0.08 6.04 6.10 6.18 6.51
051111 46.1 2.7 1.55 4.39 4.47 4.51 4.63
060115 139.6 0.9 3.53 3.16 3.19 11.40 11.85
060206 7.6 2.8 4.05 0.55 0.55 0.55 0.55
060210 255.0 2.7 3.91 8.89 8.91 8.78 8.83
060223A 11.3 1.4 4.41 0.78 0.79 0.79 0.82
060319 10.6 1.1 1.15 1.43 1.52 1.51 1.52
060418 103.1 6.5 1.49 8.15 8.22 7.00 7.47
060502A 28.4 1.7 1.51 4.54 4.56 4.54 4.56
060505 4.0 2.7 0.09 1.82 1.82 1.88 2.29
060510B 275.2 0.6 4.90 24.80 25.86 24.20 24.54
060512 8.5 0.9 2.10 1.98 2.09 2.02 2.23
060522 71.1 0.6 5.11 5.54 5.72 5.30 5.58
060526 298.2 1.7 3.21 1.34 1.47 1.31 1.84
060605 79.1 0.5 3.78 2.21 2.41 2.20 2.33
060607A 102.2 1.4 3.08 4.39 4.49 4.06 4.09
060614 108.7 11.5 0.13 33.42 33.64 31.60 31.83
060707 66.2 1.0 3.43 3.58 4.03 3.71 4.12
060714 115.0 1.3 2.71 5.04 5.05 12.27 13.07
060814 145.3 7.3 0.84 8.14 8.28 23.83 24.03
060904B 171.5 2.4 0.70 2.25 2.25 2.30 2.39
060908 19.3 3.0 2.43 1.68 1.72 1.97 1.99
060912A 5.0 8.6 0.94 0.63 0.63 0.64 0.66
060926 8.0 1.1 3.21 0.65 0.67 0.74 0.78
060927 22.5 2.7 5.60 0.38 0.41 0.48 0.51
061007 75.3 14.6 1.26 10.31 10.31 8.89 8.89
061021 46.2 6.1 0.35 2.32 2.32 2.42 2.47
061110A 40.7 0.5 0.76 13.09 13.60 13.59 14.12
061110B 134.0 0.5 3.44 3.20 3.55 3.18 3.69
061121 81.3 21.1 1.31 2.94 2.96 2.72 2.73
061222A 71.4 8.5 2.09 2.09 2.09 2.23 2.23
061222B 40.0 1.6 3.36 5.35 5.38 5.26 5.27
070110 88.4 0.6 2.40 8.98 9.07 8.80 8.85
070306 209.5 4.7 1.50 4.25 4.25 4.34 4.35
070318 74.6 1.8 0.84 6.37 6.50 6.80 6.97
070411 121.5 0.9 2.95 8.45 8.79 12.28 12.56
070506 4.3 1.0 2.31 0.89 0.89 0.87 0.94
070508 20.9 24.1 0.82 4.25 4.25 4.17 4.17
070521 37.9 6.5 0.55 6.89 7.02 7.08 7.31
070529 109.2 1.4 2.50 4.19 4.53 7.73 8.46
070611 12.2 0.8 2.04 1.73 1.75 1.79 1.92
070612A 368.8 1.5 0.62 23.47 24.50 67.68 73.48
070714B 64.0 2.7 0.92 0.40 0.40 0.37 0.37
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Table 1 – continued

GRB Duration T90 Peak flux P Redshift z τ 0 range τm range
(s) (count s−1) (s) (s)

070721B 340.0 1.5 3.63 2.60 2.63 2.68 2.68
070802 16.4 0.4 2.45 2.93 3.73 2.97 4.41
070810A 11.0 1.9 2.17 1.23 1.25 1.24 1.27
071003 150.0 6.3 1.10 5.52 5.52 5.14 5.20
071010B >35.7 7.7 0.95 2.69 2.72 2.74 2.77
071020 4.2 8.4 2.10 0.59 0.59 0.58 0.59
071031 180.0 0.5 2.69 3.75 4.04 4.08 5.00
071117 6.6 11.3 1.33 0.63 0.63 0.63 0.65
080210 45.0 1.6 2.64 3.25 3.48 3.31 3.71
080310 365.0 1.3 2.43 2.94 3.06 3.51 4.02
080319C 34.0 5.2 1.95 2.04 2.08 2.09 2.16
080330 61.0 0.9 1.51 0.46 0.56 1.23 1.33
080411 56.0 43.2 1.03 1.10 1.10 8.55 8.59
080413A 46.0 5.6 2.43 0.75 0.76 2.08 2.24
080413B 8.0 18.7 1.10 0.67 0.67 0.69 0.69
080430 16.2 2.6 0.77 2.28 2.31 2.30 2.37
080520 2.8 0.5 1.55 0.68 0.78 0.65 0.78
080603B 60.0 3.5 2.69 0.66 0.66 1.71 1.71
080605 20.0 19.9 1.64 2.81 2.81 2.70 2.70
080607 79.0 23.1 3.04 1.63 1.63 1.62 1.62
080707 27.1 1.0 1.23 1.15 1.18 7.80 8.67
080721 16.2 20.9 2.59 1.85 1.85 1.59 1.59
080804 34.0 3.1 2.20 2.90 2.90 3.03 3.06
080805 78.0 1.1 1.51 7.96 7.96 8.39 8.67
080810 106.0 2.0 3.35 6.14 6.16 4.98 5.04
080905B 128.0 0.5 2.37 1.61 1.69 1.76 1.80
080913 8.0 1.4 6.70 0.51 0.52 0.40 0.43
080916A 60.0 2.7 0.69 10.68 10.68 8.71 8.77
080928 280.0 2.1 1.69 3.90 4.26 3.51 4.13
081007 10.0 2.6 0.53 1.92 2.55 1.95 2.48
081008 185.5 1.3 1.97 5.67 5.71 26.00 26.36
081028 260.0 0.5 3.04 26.68 36.93 26.12 28.08
081121 14.0 4.4 2.51 2.97 3.10 2.96 3.14
081203A 294.0 2.9 2.10 9.66 9.66 10.55 10.80
081222 24.0 7.7 2.77 1.27 1.27 1.28 1.28
090102 27.0 5.5 1.55 4.99 4.99 4.94 4.96
090418A 56.0 1.9 1.61 9.15 9.27 10.04 10.10
090423 10.3 1.7 8.00 0.64 0.64 0.64 0.65
090424 48.0 71.0 0.54 1.12 1.12 1.54 1.54
090618 113.2 38.9 0.54 16.00 16.00 16.31 16.35
090715B 266.0 3.8 3.00 2.03 2.03 2.10 2.11
090812 66.7 3.6 2.45 6.75 7.09 5.74 5.78
090926B 109.7 3.2 1.24 10.31 10.40 10.56 10.63
090927 2.2 2.0 1.37 0.19 0.24 0.23 0.26
091018 4.4 10.3 0.97 0.84 0.84 0.84 0.88
091020 34.6 4.2 1.71 2.67 2.67 2.66 2.67
091024 109.8 2.0 1.09 9.68 9.71 14.61 15.02
091029 39.2 1.8 2.75 4.61 4.61 4.56 4.58
091127 7.1 46.5 0.49 0.82 0.82 0.69 0.71
091208B 14.9 15.2 1.06 0.47 0.50 0.50 0.50
100316B 3.8 1.3 1.18 0.97 1.03 1.00 1.01
100418A 7.0 1.0 0.62 2.76 3.03 3.05 3.23
100425A 37.0 1.4 1.76 1.30 1.30 4.74 6.46
100621A 63.6 12.8 0.54 18.30 18.39 16.35 16.37
100728B 12.1 3.5 2.11 1.21 1.32 1.27 1.32
100814A 174.5 2.5 1.44 5.80 5.80 16.44 17.27
100816A 2.9 10.9 0.80 0.64 0.64 0.62 0.64
100906A 114.4 10.1 1.73 3.28 3.31 3.25 3.25
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Figure 4. Histograms of the data in columns 2–4 of Table 1.
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Figure 5. Histograms of the logarithms of the estimated rest-frame ACF
widths; log (τ 0) (top), log (τm) (middle) and B07 results (bottom).

081028 (�τ 0 = 10.25). Similarly, �τm > 1 s for six GRBs, the
maximum being �τm = 5.8 s for GRB 070612A. Below, τ 0 and τm

will, respectively, be equated to the mean values of columns 5 and
6, or columns 7 and 8, i.e. to the mid-points of their ranges.

Generally speaking, there is reasonable agreement between τ 0

and τm. For 13 GRBs, the ratio |τm − τ 0|/τ 0 > 1; the greatest
discrepancies are for GRB 080411 and GRB 080707. There are few
cases where τm < τ 0, the most notable being GRB 081028, which
has a very noisy light curve (peak flux 0.5 s−1). These results could,
of course, have been anticipated from Fig. 1, which suggests that
bursts with multiple peaks will have τm > τ 0.

In what follows, ACF widths are used in logarithmic form:
τ L0 ≡ log (τ 0), τLm ≡ log(τ ). Histograms of the ACF widths are
shown in Fig. 5. For comparison, observer frame distributions of
the ACF widths are given in Fig. 6. There are suggestions of bi-
modality in Fig. 5 – there are dips in the histograms near τ L0 ≈
0.15 and τ Lm ≈ 0, respectively. Of course, this may simply be due
to the choices of bin positions and/or statistical fluctuations, so a
quantitative evaluation is desirable.

The dip statistics for the distributions τ L0 and τ Lm are D = 0.022
and 0.028, respectively, with significance levels of 98 and 78 per
cent, indicating that there is no evidence for multimodality.
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Figure 6. Histograms of the logarithms of the estimated observer frame
ACF widths; log (τ 0) (top), log (τm) (middle) and B07 results (bottom).

Kernel smoothers provide more sophisticated estimators of the
probability density functions (PDFs) of data than do histograms.
Extensive descriptions can be found in e.g. Silverman (1986) and
Wand & Jones (1995); a brief summary, repeated here, is given by
Koen & Lombard (2003). The kernel estimator of the PDF f in the
point x is defined by

f̂ (x) = 1

Nh

N∑
j=1

K

(
x − wj

h

)
,

where N = 119 is the number of data, wj is the jth ACF width, K
is a suitable kernel function and h is a smoothing bandwidth. The
commonly used Epanechnikov and Triangular kernels are defined
by

K(x) =
⎧⎨⎩

3

4
(1 − x2) |x| ≤ 1,

0 |x| > 1,

and

K(x) =
{

(1 − |x|) |x| ≤ 1,

0 |x| > 1,

respectively. The ‘normal scale’ bandwidths given by

hE = 2.34N−1/5s and hT = 2.58N−1/5s

are suitable for the two respective kernels; s is an estimate of the
spread of the wj. The outlier resistant estimator,

s = 0.741[w(0.75) − w(0.25)] ,

of the standard deviation is used: w(0.75) and w(0.25) are the 75th and
25th percentiles of the distribution of wj values.

We also apply a density estimator recently proposed by Botev,
Grotowski & Kroese (2010): it uses a Gaussian kernel with a non-
parametric bandwidth and has good performance for multimodal
data.

The results are given in graphical form in Figs 7 and 8. There is
excellent agreement between the three different kernel estimators.
The estimated PDF of τ Lm is close to symmetrical, but there is a
slight bump on the estimated PDF of τ L0.

A statistical model which may explain the PDF shapes in Fig. 7
is a mixture of Gaussians. Denote the Gaussian PDF of the random
variable w by n(w; μ, σ ), where μ and σ are the mean and standard
deviation. The mixture PDF is then

f (w) = αn(w; μ1, σ1) + (1 − α)n(w; μ2, σ2), (7)
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Figure 7. Kernel density estimates of the PDF of τL0. The dots and broken
line (obscured by the dots) denote the triangular and Epachnikov kernel
results and the solid line the Botev et al. (2010) estimate.
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Figure 8. As for Fig. 7, but for τLm.

where α is the fraction of w values with density n(w; μ1, σ 1).
Equation (7) was fitted to the τ L0 and τ Lm data sets, with the results
shown in Table 2. Centring of the second component at τ L0, τ Lm ≈
−0.2 is not surprising, given the shapes of the histograms in Fig. 5
(see especially the middle panel).

It is interesting to compare current results with those obtained
by B07 for 22 burst ACFs (last line of Table 2). There is little
correspondence between the two sets of values. This may be due to
differences in the nature of the data (Swift versus earlier missions),
slight differences in the analysis techniques and/or the fact that
our data set is substantially larger. Further discussion follows in
Section 4.

Table 2. Parameters estimated from fitting the Gaussian mixture
model (7) to the logarithms of the ACF widths. Results for log-
arithmically transformed B07 ACF widths are also shown for
comparison.

Data set μ1 σ 1 α μ2 σ 2 1 − α

τL0 0.50 0.44 0.88 −0.22 0.083 0.12
τLm 0.54 0.47 0.93 −0.22 0.081 0.07

B07 0.87 0.022 0.32 0.16 0.18 0.68
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Figure 9. Normal distribution quantile–quantile plots for the τL0 (top panel)
and τLm (bottom panel) distributions. Theoretical quantiles are based on the
assumption that the data are Gaussian.

The question of the statistical significance of describing the PDFs
of the data as a mixture of two components, as opposed to one com-
ponent, still needs to be addressed. This can be done by calculating
the LRS 
21, which essentially compares the probability of the mix-
ture model (7) to the representation of the data by a single Gaussian.
It was pointed out in Section 1 that the LRS has a non-standard dis-
tribution in this context. McLachlan (1987) suggested establishing
the distribution of the LRS by simulation under the null hypothe-
sis (i.e. a single Gaussian fit to the data). This leads to significance
levels of p = 0.12 and 0.49 for the τ L0 and τ Lm distributions, respec-
tively, i.e. favouring the single-Gaussian description. (It is noted in
passing that, similarly to Feng & McCulloch 1994, a distribution of
the LRS between χ2

5 and χ2
6 is obtained.)

It remains to be seen whether the single-Gaussian fit to the data is
in fact adequate. As a first informal test, normal quantile–quantile
plots may be examined: these are displayed in Fig. 9. There is
clearly no gross deviation from normality. This is followed up by
two formal tests, namely the D’Agostino–Pearson and Anderson–
Darling tests (see e.g. D’Agostino & Stephens 1986). The first of the
two tests combines third (skewness) and fourth (kurtosis) moment
information into a single χ2

2 statistic: significance levels are 17
and 63 per cent for the τ L0 and τ Lm data sets, respectively. The
Anderson–Darling statistic is significant at levels of 27 and 79 per
cent, respectively.

It may be concluded that the distributions of τ L0 and τ Lm are
both well described by single Gaussians. The parameter values are
(μ = 0.42, σ = 0.48) for τ L0 and (μ = 0.49, σ = 0.50) for τ Lm. The
implication is of course that τ 0 and τm are lognormally distributed.

A further point which deserves mention is the significant corre-
lation of the ACF widths with the peak fluxes – see Fig. 10. The
regression lines are given by

τL0 = 0.50(0.056) − 0.21(0.081) log(P ) σ = 0.47,

τLm = 0.58(0.058) − 0.22(0.085) log(P ) σ = 0.49. (8)

The implication is that the distributions would generally be shifted
to smaller values if bright cut-offs were introduced.

The possibility was investigated that the data in Fig. 10 would
be better modelled by a mixture of regressions (see e.g. Turner
2000; Hurn, Justel & Robert 2003). If this were the case, then it
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Figure 10. The dependence of ACF widths on the peak flux P: a probable
selection effect.
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Figure 11. As for Figs 7 and 8, but showing kernel estimates of the PDFs
of τL0 and τLm, after correction for the dependence on the peak count rate
P.

may happen that subsets of the ACF width data, selected on the
basis of P (e.g. bright, high-P bursts), could exhibit bimodality. The
analysis was done in R , using the package MIXREG. The Gaussian
LRS was used to test the null hypothesis of a single linear regression
against the alternative of two regressions. A parametric (Gaussian)
bootstrap procedure was used to find the significance levels of the
LRSs for the τ L0 and τ Lm data sets. The p-values obtained were
0.57 and 0.93, respectively, implying that a single regression line
provides an adequate fit. This is perhaps not too surprising, as the
origin of (8) may be just a selection effect: fainter narrow bursts are
missed due to the increased role of background noise.

More directly, examination of kernel density estimates of bright
subsets of τ L0 and τ Lm did not provide any evidence for bimodality.

Fig. 11 shows the kernel density estimates of τ L0 and τ Lm, cor-
rected for the dependence on P (as given by equation 8). The
D’Agostino–Pearson and Anderson–Darling test statistics indicate
that both corrected data sets have distributions consistent with nor-
mality.

4 FAC TO R S W H I C H MAY C O N T R I BU T E TO
DI FFERENCES BETWEEN SECTI ON 3
R E S U LT S A N D T H O S E IN T H E L I T E R ATU R E

There are several factors which may contribute to the differences be-
tween the B07 results and those derived above. Given the relatively
slight difference in distributions of τ L0 and τ Lm, it seems unlikely
that the differences in the methodology for estimating ACF widths
plays a major role in the difference between our results and those
in the literature. The differences in the observing platforms (Swift
BAT versus earlier missions), with the concomitant differences in
selection effects, appear much more likely to lie at the heart of
the differences. Prime differences are those in energy ranges cov-
ered, and sensitivities, which again have a bearing on the redshift
distributions of the observed GRBs.

B07 adopted BATSE as their ‘reference instrument’ and summed
the counts from its channels 2 and 3 (together covering the 55–
320 keV range). The rest of their data came from the ‘GRBM’ on
BeppoSAX, and Konus, with energy ranges 40–700 and 50–200 keV,
respectively. By comparison, BAT covers 14–24, 24–50, 50–100
and 100–195 keV in its four channels. Fluxes are generally higher
at lower energies, and bursts are wider at lower energies [Fenimore
et al. 1995; compare also the greater widths obtained by B07 for
the softer (2–26 keV) BeppoSAX Wide Field Camera observations].
It follows that, for a given GRB, pulse widths – and hence ACF
widths – measured by BAT would be larger than those observed by
BATSE, GRBM and Konus. None the less, a formal comparison,
by the two-sample KS statistic, finds a non-significant (p = 0.13)
difference between the observer-frame distributions in the top and
bottom panels of Fig. 6.

A visual comparison of the redshift distributions is shown in
Fig. 12. Given that the respective fractions of GRB with z > 2 are
48 and 14 per cent, it is hardly surprising that the two samples are
significantly different (p = 0.0019 for the two-sample KS statistic).
This implies that many of the rest-frame energy ranges observed by
BAT may be comparable to those observed by the older instruments:
this will counteract to some extent the effects of the softer observer
frame energy range, as discussed in the previous paragraph.

Repeating the calculations of τ L0 and τ Lm, but summing only the
two higher energy BAT channels (i.e. 50–195 keV), would be an
interesting exercise.
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Figure 12. A comparison of the redshift distribution of the GRBs of this
paper (top) and those of B07 (bottom).
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5 MI X T U R E M O D E L L I N G O F T90

A N D H A R D N E S S R AT I O DATA

Dr Istvan Horváth kindly supplied the data analysed in Horváth et al.
(2010). These are logarithms of the durations T90 and the hardness
ratios HR (50–100 keV fluence divided by 25–50 keV fluence) of
325 GRBs observed by the BAT on Swift.

Mixtures of two, three and four bivariate Gaussians were fitted
to the paired (log T90, log HR) data. The LRSs are 
32 = 35.85
and 
43 = 12.81. Percentage points of 
32 were calculated by
simulating 1000 data sets of size 325, using the parameters of the
optimal two-component bivariate model fitted to the observations.
The process was also carried out for 
43, using parameters of the
best-fitting three-component bivariate model. The upper percentage
points of the two simulated distributions are quite similar, as can
be seen from inspection of Fig. 13. The significance levels of the
statistics are p < 0.001 (
32) and p = 0.15 (
43), confirming the
conclusion of Horváth et al. (2010) that the best model is one with
three components.

The next task is to establish whether the three-component model
provides an adequate representation of the model, i.e. a goodness
of fit test needs to be carried out. This is considerably simpler
for univariate data; hence we first test whether the two marginal
distributions, each consisting of a mixture of three Gaussians, re-
spectively, provide adequate fits to the duration and hardness ratio
data.

A goodness of fit test such as the KS test can be used to establish
whether the fitted distribution gives a good representation of the
empirical distribution. However, the distribution of the KS statistic
is known only in the case that the theoretical distribution is fully
specified, i.e. parameters values are all known ab initio, and need
not be estimated. The same problem is encountered with other test
statistics. Use will therefore be made of the bootstrapping proce-
dure described by Stute, González-Manteiga & Presedo Quindimil
(1993). For convenience, it is assumed that the test statistic T is
based on a comparison of the empirical CDF Fn, and a partially
specified theoretical CDF F (θ ) (as in the case of the KS statistic).

(i) The theoretical PDF f (mixture of Gaussians, in the present
case) depends on a number of unknown parameters (means, vari-
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Figure 13. Bottom panel: the simulated CDFs of the LRSs 
32 (broken
line) and 
43 (inner solid line). The outer envelopes are the CDFs of the
χ2

6 (upper curve) and χ2
10 (lower curve) distributions, respectively. Upper

panel: an expanded view of the upper percentiles of the distributions.

ances and mixture proportions). Let θ be the vector of unknowns:
estimate these, and denote the estimate by θ̂ .

(ii) Calculate the statistic of interest, T0 = T [Fn, F (θ̂ )].
(iii) Simulate a sample of size n from the PDF f (θ̂) correspond-

ing to F (θ̂ ). Determine the empirical CDF Fn∗ of these synthetic
data.

(iv) From the simulated sample, estimate the parameter values,
in exactly the same manner in which θ̂ was estimated from the real
observations. Let the vector of estimates be θ̂∗.

(v) Calculate the statistic T∗ = T [Fn∗, F (θ̂∗)].
(vi) Repeat steps (iii)–(v) many (preferably a few thousand)

times and determine the percentile of T0 with respect to the collec-
tion of T∗ values.

The procedure was carried out for the three-component marginal
distributions of the durations and hardness ratios, using the
Anderson–Darling statistic A2. A thousand simulated data sets were
generated for each of the two tests. The respective significance levels
p = 0.57 (durations) and p = 0.023 (hardness ratios) were obtained:
it follows that a three-component mixture of Gaussians provides an
adequate description of the distribution of durations, but not of the
hardness ratio distribution. Inspection suggests that the discrepancy
is in the central part of the HR distribution, rather than in the tails.

Bivariate models describe the simultaneous distribution of the
two variables of interest. It is instructive to also consider the two
individual data sets of durations and hardness ratios. Univariate tests
for the number of mixture components in the distributions of log T90

and log HR give significance levels for the LRS 
32 of p = 0.021 and
0.48, respectively, indicating three- and two-component mixtures,
respectively. The Anderson–Darling goodness of fit statistics are
not significant (p = 0.88 for the three-Gaussian fit to the T90 data
and p = 0.42 for a two-component fit to the HR data).

The implication of the preceding material is the following: al-
though a three-component fit to the bivariate (T90, HR) distribution
is formally preferred, it does not fit the data very well. The distribu-
tion of the HR values alone is best described by a two-component
Gaussian. It follows that a statistically acceptable model of the data
should consist of three- and two-component mixture distributions
for the two marginals, while the interdependance of T90 and HR
needs to be described by e.g. a copula (see Genest & Favre 2007,
for an introduction). It appears unlikely that a standard bivariate
parametric distributional form could do the job of modelling the
observed distribution.

Similar considerations apply in the case of the bivariate (T90, HR)
RHESSI data studied by Řı́pa et al. (2009). The authors concluded
that the distribution of the data can be modelled by a mixture of
three bivariate Gaussian. Here we focus of the log HR component.
Based on 1000 simulations, the significance level of 
21 = 0.0013
is p = 1, implying that the HR data are unimodal. In fact, p >

0.1 for both the Anderson–Darling and D’Agostino–Pearson tests
for normality of the data, confirming that a single Gaussian is an
excellent model for the logs of the hardness ratios.

Finally, a two-dimensional KS test was applied to the Horváth
et al. (2010) data to ascertain whether the three-component bivariate
mixture fits the (T90, HR) data adequately. The test statistic was first
described by Peacock (1983), but a simplified form due to Fasano
& Franceschini (1987) was used here. The significance level was
determined by using the bootstrapping recipe given above: p = 0.43,
from 1000 simulated data sets. Contrary to what was found from
the marginal distributions, this suggests that the three-component
mixture is a good fit to the data. However, simulation experiments
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Table 3. Two competing mixture models for the dis-
tribution of 571 Swift BAT values of log T90.

Component Mean μ Std. dev. σ Proportion

1 −0.61 0.44 0.069
2 1.42 0.62 0.669
3 1.98 0.29 0.262

1 −0.52 0.47 0.080
2 0.89 0.37 0.232
3 1.83 0.42 0.688

indicate that the KS statistic may not be very powerful. Further
investigation of this point is required.

This section of the paper is closed with a note of caution: there
is no guarantee that the components of a mixture correspond to
physically distinct classes of objects. It is entirely possible that the
distributions of class properties, such as log T90, are non-normal:
in such a case, spurious classes would be identified due to the
modelling of a non-normal distribution by normal components. The
point is underlined by the following analysis. Duration data for 571
Swift BAT GRBs are currently (May 2011) available, and various
mixture models were fitted to these. The LRS which compares the
two- and three-component models is 
32 = 18.2; 5000 simulations
based on the two-component solution assigns this a significance
level of 0.36 per cent. (For values of the LRS larger than about
3, its distribution is bracketed by χ2

4 and χ2
6 distributions.) The

Anderson–Darling statistic is A2 = 0.119, with a significance level
of 67 per cent, i.e. the three-component mixture provides a good
representation of the data distribution.

The first half of Table 3 contains the estimated parameters of the
optimal three-component mixture. The log likelihood is −619.16.
The likelihood has a second local maximum, with value −619.70,
corresponding to a quite distinct solution (second half of Table 3).
The LRS comparing the two models is 
 = 1.08: 
 has the con-
ventional χ2

8 distribution in this case, and the two solutions do not
differ significantly. The two mixtures are compared in Fig. 14: al-
though the two PDFs with the lowest mean values are very similar,
the other two components identified in the rival models are entirely
different. The two sums of mixtures, shown by the dotted lines,
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Figure 14. Two different three-component mixture models of the distribu-
tion of Swift BAT GRB durations. The dotted lines indicate the sums of the
three component PDFs.

are virtually indistinguishable on the scale of these plots, as may
have been expected on the basis of their closely similar likelihoods.
This means that there are at least two quite distinct, but statistically
equivalent, descriptions of the data set.

6 SU M M A RY

(i) A slight improvement in the normalization of the GRB ACF
was suggested in the form of equation (3). This is still not always
adequate, as demonstrated in Fig. 3; hence extrapolation of A(�)
from larger lags to � = 0, in order to determine A(0), is a useful
alternative.

(ii) An alternative, more robust, measure of the ACF width was
proposed.

(iii) The distribution of the ACF widths appears to be normal,
i.e. there is no significant evidence for bimodality or mixtures of
distributions which may have suggested different classes of GRBs.

(iv) Simulated percentage points of LRSs confirm that the bi-
variate Gaussian mixture with three components is the preferred
model for the bivariate distribution of GRB durations and hardness
ratios. The model cannot be considered a good fit though, since
the marginal distribution does not fit the observed distribution of
hardness ratios.

(v) Study of the two univariate data sets shows that the durations
and hardness ratios are, respectively, best modelled by three- and
two-component Gaussian mixtures. In the case of the RHESSI data,
the distribution of log HR is that of a single Gaussian.

(vi) It is demonstrated that two very different mixtures, both of
which are statistically acceptable, can be used to model the currently
largest collection of homogenous T90 values. This casts doubt on
the interpretation of the number of mixture components as being
indicative of the number of GRB classes.
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