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Abstract

Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emer-

gence of viral variants associated with distinct biological characteristics. While the main

research focus has centred on the ability of new variants to increase in frequency and impact

the effective reproductive number of the virus, less attention has been placed on their rela-

tive ability to establish transmission chains and to spread through a geographic area. Here,

we describe a phylogeographic approach to estimate and compare the introduction and dis-

persal dynamics of the main SARS-CoV-2 variants – Alpha, Iota, Delta, and Omicron – that

circulated in the New York City area between 2020 and 2022. Notably, our results indicate

that Delta had a lower ability to establish sustained transmission chains in the NYC area and

that Omicron (BA.1) was the variant fastest to disseminate across the study area. The ana-

lytical approach presented here complements non-spatially-explicit analytical approaches

that seek a better understanding of the epidemiological differences that exist among succes-

sive SARS-CoV-2 variants of concern.

Author summary

The evolution of SARS-CoV-2, the virus responsible for the coronavirus disease 2019

(COVID-19) pandemic, has seen the emergence of novel variants with increased trans-

missibility, virulence and/or ability to escape the immunity induced by previous infections

and vaccination. In our study, we determined to what extent these viral variants differed
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in their dispersal dynamics at a local scale. Specifically, we analysed viral genomes to

reconstruct, in space and time, the dispersal history of specific variants to subsequently

compare their ability to establish local transmission chains and spread through the same

study area. Our study focuses on the New York City area, which has been associated with

high genomic surveillance efforts. We here took advantage of the resulting genomic data

set to compare and highlight notable differences in the introduction and dispersal dynam-

ics of the Alpha, Iota, Delta, and Omicron variants in the New York City area.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has been character-

ised by the emergence of sets of mutations impacting its biological characteristics, likely in

response to the changing profile of immunity within the population [1]. In late 2020, viral line-

ages associated with spike protein mutations such as N501Y and/or E484K, began to be classi-

fied as ‘variants of interest’ (VOIs) or ‘variants of concern’ (VOCs) by public health authorities.

To monitor the emergence and spread of VOIs and VOCs, many countries began to implement

systematic SARS-CoV-2 genomic surveillance efforts [2,3]. The World Health Organisation

(WHO) defined a VOI as a SARS-CoV-2 variant involving genetic changes that are predicted or

known to affect the virus’ characteristics, and a VOC as a SARS-CoV-2 variant that meets the

definition of a VOI and that has been demonstrated to be associated with one or more of the fol-

lowing changes: increase in transmissibility, increase in virulence, or decrease in effectiveness of

public health/social measures or available diagnostics, vaccines, therapeutics (see the dedicated

WHO webpage for the detailed definition; http://www.who.int/activities/tracking-SARS-CoV-

2-variants; accessed June 30, 2022). To date, five SARS-CoV-2 variants have been classified as

VOCs: the Alpha variant (lineage B.1.1.7) first detected in late 2020 in England, the Beta variant

(lineage B.1.351) first detected in late 2020 in South Africa, the Gamma variant (lineage P.1)

first detected in early 2021 in Brazil, the Delta variant (lineage B.1.617.2) first detected in late

2020 in India, and the Omicron variant (children of lineage B.1.1.529, including lineages BA.*)
first detected in late 2021 in Botswana and South Africa [4–7].

Because VOCs have been responsible for several epidemic surges worldwide, their ability to

grow in frequency and increase the effective reproductive number of the virus has been studied

extensively in different countries [7–9]. However, whether differences exist in their relative

ability to establish sustained transmission chains into a geographic area and to further disperse

through such an area remains largely unknown. The objective of the present study is to com-

pare the introduction and dispersal dynamics of the main VOI/VOCs that have spread within

New York City (NYC) and its surrounding counties in New York State (Nassau, Suffolk, and

Westchester), hereafter referred to as the ‘NYC area’. Through our multi-center healthcare

institution at New York University (NYU), comprehensive genomic surveillance has been con-

ducted consistently since the beginning of the pandemic in the study area.

The first positive case of SARS-CoV-2 in NYC was identified on February 29, 2020, soon

after followed by the detection of community transmission and NYC being designated as the

epicentre of the COVID-19 epidemic in the United States [10–12]. As such the NYC area was

severely impacted during the first phase of the SARS-CoV-2 pandemic, which was largely

attributed to NYC being a global hub, but also to the delayed recognition of SARS-CoV-2

transmission in the city [13]. When comparing the five NYC boroughs, substantial differences

in SARS-CoV-2 transmission rates, dispersal dynamics, and hospitalizations were highlighted

[12,14]. In late 2020/early 2021, the first VOIs/VOCs started circulating in New York City/
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State (see Fig 1 for the evolution of the estimated relative abundance of the main VOI/VOCs

across New York State). VOI Iota apparently arose in NYC and caused a regional epidemic,

which also coincided with the global spread and introduction of VOC Alpha into the NYC

area [15–18]. In early 2021, VOC Gamma was also introduced into the NYC area [19], but its

circulation remained relatively limited compared to the other variants (Fig 1). In times of

increasing vaccine coverage and decreasing levels of Alpha and Iota infections in New York

(May/June 2021), a new wave was ignited by the VOC Delta and its various AY.* sublineages,

which dominated the second half of 2021 [20]. In late 2021/early 2022, the waning Delta vari-

ant co-circulated for a few months with the rapidly emerging VOC Omicron (Fig 1), first

detected in Sub-Saharan countries, including South Africa [20,21]. Overall, Omicron and its

BA.* sub-variants have predominated in New York State in 2022.

Here, we build on a previous analytical pipeline [22] to implement a phylogeographic

approach and introduce metrics to compare the introduction and dispersal dynamics of the

main VOI/VOCs that spread across the NYC area, namely Iota, Alpha, Delta, and Omicron

(BA.1). For this purpose, we exploit a comprehensive data set of SARS-CoV-2 sequences gen-

erated by a genomic surveillance effort in a large metropolitan healthcare system with hospitals

in several city boroughs and adjacent suburban areas. For each variant under consideration,

the resulting data set consists of all sequences available from the study area as well as a set of

‘background’ sequences from surrounding US states, countries and other parts of the world,

and which was used to delineate the phylogenetic clades corresponding to distinct introduc-

tion events in the study area. Our analyses allowed us to compare the abilities of the different

variants to be introduced and further disperse within the study area, and revealed that

although Delta had the highest number of detected introduction events into the NYC area, it

had a lower ability to establish sustained transmission chains throughout this area. This differs

for Omicron (BA.1) that had both the second highest number of detected introductions and

was the variant fastest to disseminate across the area.

Results

Identifying distinct introduction events into the study area

For each variant, we first performed a preliminary discrete phylogeographic analysis [24] to

identify clades (including clades of size n = 1 sequence) that likely arose from distinct intro-

duction events into the NYC area. Each of those clades, or ‘clusters’, thus corresponds to a

sample from a local transmission chain that had a distinct entry point in the study area. We

identified 319 introduction events for Iota (95% highest posterior density interval [HPD] =

304–331), 780 for Alpha (95% HPD = 752–817), 3653 for Delta (95% HPD = 3622–3691), and

2253 for Omicron (BA.1; 95% HPD = 2225–2273). For all those variants, the total number of

introduced clades contained a relatively high proportion that comprised only a single

sequence. This proportion was 65.6% for Iota (95% HPD = 63.6–68.5), 66.1% for Alpha (95%

HPD = 64.7–67.3), 83.9% for Delta (95% HPD = 75.7–76.9), and 78.8% for Omicron (BA.1;

95% HPD = 78.0–79.6). Although the sampling and identification of a single sequence per

clade does in no way prove the absence of further transmission following the introduction

event, it likely indicates limited onward circulation. Of note, we identified one particularly

large clade containing most of the Iota sequences (2040 out of 2519 sequences collected within

the NYC area), which is in line with the findings of previous phylogeographic analyses that

inferred a New York origin for that VOI [15]. Consequently, all the other Iota clades would

then correspond to re-introduction events into the study area.
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Reconstructing the local dispersal history of viral lineages

We then performed discrete [24] and continuous [25,26] phylogeographic reconstructions

along the NYC area clades identified as introductions in the previous step. These phylogeo-

graphic analyses permitted the reconstruction of the local dispersal history of sampled viral lin-

eages across the study area, as well as subsequent quantitative comparisons of the introduction

and dispersal capacities of each variant. An initial visual comparison of our discrete phylogeo-

graphic reconstructions for the four variants under consideration already revealed distinct var-

iant-specific dispersal patterns for the viral lineages (Fig 2). For example, whereas Iota and

Omicron (BA.1) exhibited numerous supported transition events among non-adjacent bor-

oughs/counties, this was not the case for the Alpha variant where most supported lineage tran-

sition events are inferred to have occurred among neighbouring boroughs/counties. In

contrast to the other variants, the discrete phylogeographic reconstruction inferred for the

Delta variant identified a restricted number of supported transition events and hardly any con-

nections with other boroughs/counties in the study area.

Comparing the introduction patterns of SARS-CoV-2 variants

To compare the introduction patterns among variants, we defined and estimated two different

metrics that aimed at quantifying the capacity of each variant to establish local transmission

chains: (i) the probability p1 that two circulating lineages drawn at random belong to the same

clade/cluster introduced into the study area, and (ii) the proportion p2 computed as the ratio

between the number of circulating clusters and the number of phylogenetic branches occur-

ring at the same time across the study area. We here define a “circulating cluster” as a clade

introduced into the study area and connecting at least three sampled viral genomes. The esti-

mation of those metrics were both based on the discrete phylogeographic reconstructions per-

formed along NYC area clades containing at least three genomes sampled in the study area.

The evolution of p1 and p2 through time clearly confirms that, because of its likely emer-

gence in the study area, Iota exhibits a strikingly different introduction pattern relative to the

other variants. First, the probability p1 that two circulating Iota lineages belong to the same

cluster was close to ‘1’ during the early months after its emergence (solid grey curve; Fig 3A).

This probability p1 tended to increase while remaining relatively low compared to the other

variants, which would then correspond to the contribution of Iota re-introduction events into

the study area. Second, the number of circulating clusters (relative to the number of circulating

phylogeny branches) tended to remain much lower for Iota compared to the other variants

(dashed curves; Fig 3A).

Alpha, Delta, and Omicron (BA.1) exhibited more similar patterns of introduction as esti-

mated by p1 and p2, however differences among them existed. For example, Delta was
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Fig 2. Investigating the dispersal patterns of sampled SARS-CoV-2 lineages in the NYC area. We here report both a discrete (left) and continuous (right)

phylogeographic reconstruction of the dispersal history of viral lineages belonging to the Iota, Alpha, Delta, and Omicron (BA.1) variants. For the discrete

reconstructions, we report the number of lineage dispersal events inferred between (arrows) and within (transparent red circles) boroughs/counties of the NYC

area, both measures being averaged over 900 trees sampled from each posterior distribution. Specifically, we only report averaged numbers of lineage dispersal

events between boroughs/counties associated with an adjusted Bayes factor support higher than 3, which corresponds to a ‘positive support’ [23]. For the

continuous reconstructions, we map the maximum clade credibility (MCC) tree and overall 80% highest posterior density (HPD) regions reflecting the uncertainty

related to the Bayesian phylogeographic inference. MCC trees and 80% HPD regions are based on 900 trees sampled from each posterior distribution. MCC tree

nodes are coloured according to their time of occurrence, and 80% HPD regions were computed for successive time layers and then superimposed using the same

colour scale reflecting time. The underlying map has been retrieved from the Database of Global Administrative Areas (GADM; https://gadm.org).

https://doi.org/10.1371/journal.ppat.1011348.g002
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associated with a relatively long period of time when the probability p1 of sampling two Delta

lineages from the same introduction event was close to zero which was not mirrored in Alpha

or BA.1 (solid curves; Fig 3A). Similarly, maximal p2 estimates for Delta were lower than the

p2 maxima estimated for Alpha and BA.1, which would further reflect a slightly lower propen-

sity to establish large clusters in the study area.

Comparing the dispersal dynamics of SARS-CoV-2 variants

To compare the dispersal dynamics among the variants considered, we proposed and esti-

mated two different metrics that quantify the capacity of a distinct introduction event to

spread across the study area. The first metric, p3, was defined as the proportion of phylogeny

branches associated with a transition event among boroughs/counties and was estimated from

our discrete phylogeographic reconstructions. This metric was averaged among clusters and

specifically allowed investigation of the extent to which distinct independent introduction

events managed to spread among given administrative units (here US counties). This time esti-

mated from our discrete phylogeographic reconstructions, the second metric was the weighted

diffusion coefficient introduced by Trovão and colleagues [27], which is a conceptually differ-

ent dispersal metric that quantifies the velocity at which lineages diffused within the study area

and was estimated from the continuous phylogeographic analyses.

For the metric p3, we estimated a value of 0.21 for Iota (95% HPD = 0.20–0.23), 0.24 for

Alpha (95% HPD = 0.23–0.25), 0.18 for Delta (95% HPD = 0.18–0.19), and 0.29 for BA.1 (95%

HPD = 0.28–0.30). Thus, according to this metric, Omicron (BA.1), once introduced, demon-

strated the highest capacity to spread across different boroughs/counties, followed by Alpha,

Iota, and Delta. The estimates of the weighted diffusion coefficient revealed that Omicron

(BA.1) was associated with a notably higher diffusion velocity compared to the three other var-

iants (Fig 3B and 3C), implying that Omicron (BA.1) were associated with a higher diffusivity.

Assessing the sensitivity of the new metrics to different scenarios

Besides the weighted diffusion coefficient that was previously introduced and applied [27], the

present study thus describes three other metrics p1-p2-p3 to characterise and compare the

introduction/dispersal dynamics of (viral) lineages in a study area. To assess the sensitivity of

those metrics to different introduction and dispersal scenarios, we simulated the invasion of

the Alpha variant while testing (i) different values for the minimum size of the introduced clus-

ters circulating in the study area (Fig 4A and 4B), (ii) different numbers of introduced clusters
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(Fig 4C and 4D), and (iii) different total numbers of transition events between counties for

that variant (Fig 4E; see the Materials & Methods section for further detail on the simulation

processes).

The minimum size of the introduced clusters had a negligible impact on the p1 metric (Fig

4A): around the peak of the epidemic wave, the probability p1 that two circulating lineages

drawn at random belong to the same cluster tends to zero in all cases. On the contrary, varying

the same simulation parameter had a notable impact on the p2 metric (Fig 4B): the ratio p2

between the numbers of co-occurring clusters and phylogenetic branches clearly tends to

increase with the minimum introduced cluster size considered in the simulations. The number

of simulated clusters introduced in the study area influenced both p1 (Fig 4C) and p2 (Fig 4D)

metrics. In particular, drastically decreasing the number of introduced clusters provokes a

shift of the p1 curve, making it closer to the pattern of the p1 curve reported for the Iota variant

(Fig 3A), i.e. the variant that was thus associated with a major clade circulating in the study

area. Finally, as expected, our results confirm that the p3 metric is very sensitive to the number

of simulated transition events among counties (Fig 4E).

Discussion

The unprecedented amount of genomic data generated through worldwide genomic surveil-

lance of SARS-CoV-2 has enabled valuable insights into the dispersal dynamics of the virus

and its different variants. In that context, numerous phylogeographic investigations have been

conducted at global [28–31] and local [32–35] scales. By placing phylogenetic trees in geo-

graphic space and time, phylogeographic reconstructions provide information on the mode

and pace of viral lineage circulation across spatial scales. For instance, phylogeographic analy-

ses have been conducted to investigate the impact of international travel restrictions [32], the

origin of specific variants [5,7], or the contribution of international travel to local epidemics

[36].
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In the present study, we exploit such phylogeographic reconstructions to compare the

capacity of important SARS-CoV-2 variants to enter into and disperse through a geographic

area. For this purpose, we propose the estimation of a series of metrics aimed at comparing the

ability of the main VOI/VOCs (i) to establish local transmission chains in the area and (ii) to

spread through it. We here apply our approach to the NYC area, for which genomic surveil-

lance has been continuously conducted throughout the pandemic. Furthermore, we take

advantage of the comprehensive data collection associated with SARS-CoV-2 genomes

sequenced at NYU Langone Health (NYULH), metadata on the county or zip code area of ori-

gin being required to conduct discrete and continuous phylogeographic analyses, respectively

(we refer to the Materials and Methods section for more detail).

Our comparison of the introduction patterns confirms that Iota likely emerged within or in

close proximity to the NY state area [18,37], and reveals that Delta had the lowest tendency to

establish large transmission chains in the NYC area. Iota is characterised by a main cluster cor-

responding to its initial emergence, as well as a series of smaller ones that emerged towards the

end of its circulation period corresponding to re-introduction events in the NYC area. While

we infer a higher absolute number of distinct introduction events for Delta, this VOC was also

found to have the highest number of introductions associated with a unique sampled genomic

sequence. The probability of sampling two Delta sequences originating from the same intro-

duction was close to zero during almost the entire corresponding epidemic phase across the

NYC boroughs and studied US counties.

As for the comparison of the dispersal dynamics, our results reveal that Delta was the vari-

ant that dispersed the least among boroughs and counties in the study area, and that BA.1 was

the variant associated with the highest diffusion velocity. The lowest rate of transition among

boroughs/counties estimated for Delta is readily apparent when comparing the supported line-

age transition events inferred by discrete phylogeography (Fig 2). Because we used Bayes factor

support adjusted for sampling heterogeneity to filter supported transition events (see the Mate-

rials and Methods section), such a limited number of supported transitions could also reflect

the difficulty of the underlying discrete diffusion model to retrace the main transition routes

when based on an uneven sampling effort among locations. This result is however in line with

the relatively lower propensity of Delta to establish sustained transmission chains within the

study area, as quantified by p1 and p2 estimates (Fig 3A). While we do not have epidemiologi-

cal evidence that could explain this different pattern for Delta, one potential explanation could

lie in the conjunction of a still high vaccine efficiency against that VOC [38,39] and the large

local vaccination coverage (www1.nyc.gov) during the Delta wave. Specifically, protection

against symptomatic disease and/or diminution of the infectious duration could have been a

factor limiting large transmission chains with Delta. The non-pharmaceutical interventions

(NPI) having varied through time, their intensity — something that could e.g. be measured by

the stringency index — could also have had an impact on the introduction and dispersal

dynamics of the successive variants studied here. This index has tended to decrease over the

epidemic waves associated with Alpha, Delta, and BA.1 (https://ourworldindata.org/), which

could be in line with the higher diffusion velocity of BA.1 and its higher capacity to spread

across different boroughs/counties.

The simulations that we conducted to assess the sensitivity of our metrics to the introduc-

tion and dispersal scenarios confirm that those metrics can capture notable variations in the

ability of specific variants to establish local transmission chains and further spread across a

study area. While we designed these introduction and dispersal metrics for the comparison of

variants with different sampling sizes, our study still exhibits a limitation related to the spatially

heterogeneous sampling effort within the study area that directly impacts the phylogeographic

reconstructions. This is particularly true for the continuous phylogeographic reconstructions
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that were only based on genomic sequences for which the zip code area of origin was known.

Because zip codes were exclusively available for the samples sequenced at NYULH, the sam-

pling focuses on the four most populous NYC boroughs (Manhattan, Brooklyn, the Bronx,

and Queens) and Nassau County where NYULH has a large hospital. Therefore, the resulting

phylogeographic reconstructions, and the continuous ones in particular, remain dependent on

each sampling pattern resulting from the genomic surveillance effort related to NYULH.

While those phylogeographic reconstructions allow estimating the dispersal history of sampled
lineages, they thus do not necessarily constitute a realistic summary of the total number of

transmission chains in the NYC area. In the present study, phylogeographic analyses were

employed to analyse and compare the introduction and dispersal dynamics of target variants

rather than trying to precisely reconstruct their overall dispersal history inside the NYC area.

Furthermore, the same spatially heterogeneous genomic surveillance effort was applied for all

four VOI/VOCs analysed and compared in the present study. In summary, while spatial het-

erogeneity affects the reconstruction of the overall dispersal history of each variant, we argue

that it marginally affects the comparison of their introduction and dispersal dynamics.

As detailed in previous work [22], we also acknowledge that an analysis where the phyloge-

netic tree and ancestral locations are jointly inferred would be preferable to explicitly take into

account the uncertainty associated with Bayesian phylogenetic inference. When dealing with

alignments gathering tens of thousands of genomic sequences, as is the case in the present

study (up to more than 60,000 sequences in the Delta alignment), such fully integrated Bayes-

ian analyses are not feasible in a reasonable amount of time. As an illustration of the computa-

tional burden associated with data sets of that size, the maximum-likelihood phylogenetic

inference performed in IQTREE for the Delta and Omicron (BA.1) variants have respectively

required more than 130 and 195 hours of running time on a high-performance workstation

(40-core/64GB RAM Dell Precision). In that context and while it comes with the limitation of

not assessing the effect of phylogenetic uncertainty on the outcomes, using an empirical time-

scaled phylogenetic tree represents an interesting compromise to run phylogeographic analy-

ses on large-scale data sets. In their study based on much smaller data set of genomic

sequences, Dellicour and colleagues assessed the robustness of their results (inferred number

of introduction events into the study area, estimates of lineage dispersal velocity) to the selec-

tion of the maximum-likelihood starting tree, and confirmed that the different estimates

remain robust irrespective of the choice of the starting tree [22].

In conclusion, we present a phylogeographic approach to compare the ability of the main

VOI/VOCs to be introduced and diffuse through the NYC area up to February 2022, highlight-

ing notable differences among Iota, Alpha, Delta, and Omicron (BA.1). By complementing

non-spatially explicit analytical approaches (e.g. focusing on the impact of variants on the

effective reproduction number), the introduction/dispersal metrics described in the present

study improve our understanding of the epidemiological differences that exist among succes-

sive SARS-CoV-2 variants of concern.

Material and methods

SARS-CoV-2 genomic sequencing

The 5,577 new genomic sequences included in this study were obtained from samples collected

in the New York University Langone Health (NYULH) system from December 1, 2020, to Feb-

ruary 27, 2022. Genomic surveillance was carried out as described previously [16,20], using

the IDT XGen (formerly Swift Normalase) SARS-CoV-2 amplicon-based library prep method

run on the Illumina NovaSeq 6000 system on SP 300 cycle flow cells. Only SARS-CoV-2

sequences that were>23,000 bp or>4000x genome coverage were considered adequate and
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were included in the analyses. Sequencing reads were demultiplexed using the Illumina

bcl2fastq2 Conversion software v2.20 and adapters and low-quality bases were trimmed with

Trimmomatic v0.36 [40]. The program BWA v0.7.17 [41] was then used for mapping reads to

the SARS-CoV-2 reference genome (NC_045512.2, wuhCor1) and duplicate reads were

removed using Sambamba v0.6.8 [42]. GATK v3.8 DepthOfCoverage and HaplotypeCaller

tools [43] were used to determine on-target viral coverage and call mutations. Finally, we used

the program Pango version v.3.1.20 [44] to determine the SARS-CoV-2 lineage of each sample.

All generated sequences were deposited on the GISAID database [45].

Time-scaled phylogenetic inference

For each variant, our time-scaled phylogenetic inference was based on a comprehensive data

set of genomic sequences made up of (i) all sequences obtained through the NYULH genomic

surveillance effort (see above) as by the end of February 2022, (ii) all sequences collected in the

study area and publicly available on GISAID (www.gisaid.org) as by the end of February 2022,

as well as (iii) a set of ‘background’ sequences which were used in the Nextstrain [46] build

focused on North America (but that also includes genomic sequences from the other conti-

nents). Specifically, for each variant, we used the North American Nextstrain build that was

available on the last collection date of the considered variant in our data set. The purpose of

the inclusion of such a background data set is to allow placing NYC clades in a broader global

context of SARS-CoV-2 phylogenetic diversity. While we cannot exclude that the selection

and/or size of the background data set could influence the subsequent delimitation of NYC

clades introduced into the study area, the same approach has here been applied to each variant

under consideration, which guarantees a form a consistency in the clade delimitation: if an

underestimation of the delineated clades applies, it should similarly affect all four variants and

still allow further comparisons of their introduction dynamics. The resulting data sets were

made up of 11,758 (Iota), 16,395 (Alpha), 60,019 (Delta), and 32,322 (Omicron-BA.1) genomic

sequences. For each data set, we mapped the corresponding sequences against a SARS-CoV-2

reference genome (Genbank ID: NC_045512.2) using minimap2 v2.24, trimmed the data to

positions 265–29,674 and padded with Ns to mask out 3’ and 5’ UTRs.

Time-scaled phylogenies were inferring using a two-step procedure consisting of (i) first

estimating a maximum-likelihood (ML) phylogeny using IQ-TREE 2.2.0.3 [47] and (ii) sub-

sequently time-calibrating the resulting maximum-likelihood tree using TreeTime 0.7.4

[48], specifying an evolutionary rate of 8x10-4 substitutions per site per year (s/s/y), as in the

Nextstrain workflow. For variants Iota and Alpha, the ML tree was inferred under a general

time-reversible (GTR) model of nucleotide substitution with empirical base frequencies and

a four-category FreeRate model of site heterogeneity, which was selected as the best-fitting

model using IQTREE’s ModelTest functionality. Because of the computational demands

required to infer trees with a large number of taxa, we performed an additional step to esti-

mate the ML phylogeny for variants Delta and Omicron (BA.1), where we first constructed

a parsimony tree using Online matOptimize [49] and used the resulting tree as a starting

candidate tree to infer a ML tree IQ-TREE under a HKY85 nucleotide substitution model

with empirical base frequencies. For the Delta variant, the tree was inferred without rate

heterogeneity in the substitution model due to the computational demands required and, in

the case of the Omicron (BA.1) variant, the tree was inferred using gamma-distributed rate

variation among sites. The initial parsimony tree was obtained after 4 rounds of optimiza-

tion using SPR radius values ranging from 10 to 100 using the method described by Thorn-

low and colleagues [50].
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Identifying the distinct introduction events

We performed preliminary phylogeographic analyses to identify internal nodes and descen-

dent clades that likely correspond to distinct introductions into, and their subsequent spread

within, the NYC area [22]. For this purpose, we employed the discrete phylogeographic model

[24] implemented in the software package BEAST 1.10 [51], and only considered two discrete

locations: ‘NYC area’ and ‘other’. Those analyses were based on the empirical tree topology

corresponding to the time-scaled phylogenetic tree obtained at the previous step for each vari-

ant. Each Bayesian inference through MCMC was run for 105 iterations and sampled every

1,000 iterations. Convergence and mixing aspects of all relevant parameters were inspected

using Tracer 1.7 [52] to ensure that their associated effective sample size (ESS) values were all

>200. After having discarded 10% of sampled posterior trees as burn-in, we constructed maxi-

mum clade credibility (MCC) trees using TreeAnnotator 1.10 [51]. The resulting MCC tree

obtained for each variant was subsequently used to delineate NYC area clades corresponding

to independent introduction events in the study area. In practice, we identified introduction

events by comparing the locations assigned to each pair of nodes connected by a phylogenetic

branch, i.e. the most probable location inferred at internal nodes and the sampling location for

tip nodes. We considered an introduction event to have occurred when the location assigned

to a node was ‘NYC area’ and the location assigned to its parent node in the tree was ‘other’

[22].

Local phylogeographic reconstructions

To infer the dispersal history of viral lineages across the study area, we subsequently performed

discrete and continuous phylogeographic analyses along the NYC area clades delineated above

that consisted of at least three NCY area genomes. In order to identify the best-supported line-

age transitions events between NYC area boroughs/counties treated as discrete locations, we

used the Bayesian stochastic search variable selection (BSSVS) approach [24] implemented in

BEAST 1.10. Each MCMC was run for 5×108 iterations and sampled every 5×105 iterations,

except the MCMC analysis dedicated to the Iota variant which was run for 109 iterations while

sampling every 106 iterations. MCMC convergence and mixing properties were inspected with

Tracer as described above. Statistical support associated with lineage transition events connect-

ing each pair of boroughs/counties were obtained by computing adjusted Bayes factors (BFs),

that is, BFs that consider the relative abundance of samples by location [12,53]. Based on a

methodology similar to the tip-date randomisation test for temporal signal [54], the adjusted

BF takes into account the relative abundance of samples by location [53]. These discrete phylo-

geographic inferences were based on the following numbers of NYC samples: n = 2182 for

Iota, 849 for Alpha, 1015 for Delta, and 728 for Omicron (BA.1).

We used the relaxed random walk (RRW) diffusion model [25,26] implemented in BEAST

1.10 to perform the continuous phylogeographic reconstructions. Continuous phylogeo-

graphic inference requires unique sampling coordinates assigned to the tips of the tree. For

each sampled genome, we retrieved geographic coordinates from a point randomly sampled

within its zip code area of origin, which is the highest level of spatial precision in the available

NYULH metadata [12]. Sampled genomes for which the zip code area of origin was unknown

or unavailable were discarded from the analyses, which resulted in the following numbers of

samples being discarded: n = 344 for Iota, 140 for Alpha, 275 for Delta, and 245 for Omicron

(BA.1). Each MCMC was run for 108 iterations and sampled every 105 iterations, and we again

used the program Tracer to inspect MCMC convergence and mixing properties, as well as

TreeAnnotator to identify and annotate MCC trees. Finally, we used functions available in the

R package ‘seraphim’ [55] to extract spatio-temporal information embedded within posterior
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trees and visualise the continuous phylogeographic reconstructions. We also used the ‘spread-

Statistics’ function of the R package ‘seraphim’ to estimate the weighted diffusion coefficient

[27]:

Dweightred ¼
X

i
d4

i

� �
=
X

i
t2

i

� �

where di and ti are, respectively, the geographic (great-circle) distance and the time elapsed

on each phylogeny branch.

Introduction and dispersal simulations

The sensitivity of the metrics p1-p2-p3 to different introduction and dispersal scenarios was

assessed by computing those metrics on simulations of the Alpha variant invasion according

to scenarios involving different introduction and dispersal dynamics of viral lineages. Specifi-

cally, we performed three distinct analyses each based on a set of 100 simulations: a first set to

investigate the impact of the size of the clusters introduced into the study area on the metrics

p1 and p2, a second one for the impact of the number of clusters introduced into the study area

on the same two metrics, and a third set of simulations to test the impact of the number of

transition events on the p3 metric. For the first analysis, simulations were performed by ran-

domly replacing the introduced Alpha clusters by Alpha/Delta/BA.1 clusters sampled with

replacement among the overall set of Alpha/Delta/BA.1 clusters associated with a specific min-

imum size (>2, >5, and>10 sampled sequences). For the second analysis, 100 simulations

were performed by randomly resampling different numbers of Alpha variant clusters (10, 50,

and 150 clusters). For this second analysis, the timing of introduction of each resampled Alpha

cluster was randomly defined by drawing a date from the distribution of inferred most ances-

tral node dates for the clusters of that variant. For the third analysis, simulations were per-

formed by randomly throwing down different numbers of transition events (40, 80, 120, 160,

and 200) along the branches of the Alpha variant clades (clusters) introduced into the study

area, with a maximum of one transition event per phylogeny branch.
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