
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgei20

Geocarto International

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgei20

Advances in satellite remote sensing of the
wetland ecosystems in Sub-Saharan Africa

Kgabo Humphrey Thamaga, Timothy Dube & Cletah Shoko

To cite this article: Kgabo Humphrey Thamaga, Timothy Dube & Cletah Shoko (2022) Advances
in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa, Geocarto
International, 37:20, 5891-5913, DOI: 10.1080/10106049.2021.1926552

To link to this article:  https://doi.org/10.1080/10106049.2021.1926552

Published online: 03 Jun 2021.

Submit your article to this journal 

Article views: 897

View related articles 

View Crossmark data

Citing articles: 6 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgei20
https://www.tandfonline.com/loi/tgei20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10106049.2021.1926552
https://doi.org/10.1080/10106049.2021.1926552
https://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10106049.2021.1926552
https://www.tandfonline.com/doi/mlt/10.1080/10106049.2021.1926552
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2021.1926552&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2021.1926552&domain=pdf&date_stamp=2021-06-03
https://www.tandfonline.com/doi/citedby/10.1080/10106049.2021.1926552#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10106049.2021.1926552#tabModule


REVIEW

Advances in satellite remote sensing of the wetland
ecosystems in Sub-Saharan Africa
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aDepartment of Earth Science, University of the Western Cape, Bellville, South Africa; bDivision of
Geography, School of Geography, Archaeology and Environmental Studies, University of
Witwatersrand, Johannesburg, South Africa

ABSTRACT
Wetlands are highly productive systems that act as habitats for a
variety of fauna and flora. Despite their ecohydrological signifi-
cance, wetland ecosystems are severely under threat from global
environmental changes as well as pressure from anthropogenic
activities. Such changes results in severe disturbances of plant
species composition, spatial distribution, productivity, diversity,
and their ability to offer critical ecosystem goods and services .
However, wetland degradation varies considerably from place to
place with severe degradation in developing countries, especially
in sub-Saharan Africa due to poor management practices that
leads to underutilization and over reliance on them for liveli-
hoods. The lack of monitoring and assessment in this region has
therefore led to the lack of consolidated detailed understanding
on the rate of wetland loss. For example, the lack of up-to-date
and reliable spatial explicit information further complicates the
management of wetland ecosystems in semi-arid tropical environ-
ments. To monitor, understand and document wetland degrad-
ation rate, the use of remote sensing for accurate estimation and
precise mapping of present and historic information remains
imperative. Similarly, there is a need to develop robust methodol-
ogies to precisely assess and monitor wetland degradation, eco-
hydrological processes and wetland condition over space and
time. This work thereof, provides a comprehensive overview of
remote sensing applications in monitoring and mapping the wet-
land ecosystem. It also highlights the strength and challenges
associated with the use of satellite data for purposes of wetland
monitoring. Spatial explicit and periodic information offered by
satellite remote sensing demonstrate a unique opportunity for
documenting and understanding of wetlands, their ecohydrologi-
cal processes, and environmental conditions.
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1. Introduction

Wetlands are distinctive, complex ecohydrological systems that occur within a wide range
of climatic and topographic environments. They constitute one of the world’s most
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productive and important natural resources. Wetlands fall centrally under public manage-
ment and they are recognized as an integral part of the productive ecosystem capable of
supporting the 2030 UN Agenda on Sustainable Development Goals (SDGs) (Kakuba and
Kanyamurwa 2021). Wetland hydrophytic vegetation species, hydromorphic soil and
hydrology are a critical part of wetland ecosystems, contributing towards the provision of
fundemental goods and services. Wetlands, for instance, offer food and habitat for species,
maintain water quality, recharge of aquifers, control soil erosion, climate regulation and
carbon storage (McCartney et al. 2010; Adam et al. 2012; Wood et al. 2013; Meli et al.
2014; Scott et al. 2014; Sieben et al. 2016). They also provide a wide variety of goods for
local communities including reeds for weaving, grazing for domestic stock, and services
to downstream consumer facilities, such as flood attenuation and nutrient retention
(Mutanga et al. 2012; Dadson et al. 2017; Mahdavi et al. 2017). In sub-Saharan Africa,
wetlands are predominantly significant sources of forage for livestock, which supports the
livelihoods for most rural communities, as well as for the vast wildlife populations
(Marambanyika and Beckedahl 2016). Despite their 6% coverage of the earth’s surface,
wetlands offer about 40% of regulatory services (Marambanyika and Beckedahl 2016; Reis
et al. 2017). However, not all wetland ecosystems provide regulatory services; unique wet-
land services depend on the type of wetland and locational positioning within a catch-
ment ( Hu et al. 2017; Slagter et al. 2020). Due to the response to climate variability,
precipitation, evapotranspiration and anthropogenic activities, surface-water levels and
groundwater recharge in wetland ecosystems vary seasonally.

Despite the associated echohydrological benefits, wetlands are vulnerable to change in
quantity and quality and they continue to face challenges as a result of intensified
anthropogenic and natural changes globally (Sieben et al. 2016; Sutton et al. 2016; Xie et
al. 2017; Bhaga et al. 2020; Novoa et al. 2020), due to the ongoing landscapes transform-
ation and alterations (e.g. global warming, urban development, agricultural expansion),
which significantly affect the ecological attributes of wetlands. For example, the Ngiri-
Tumba-Maindombe in the western Congo Basin in the Democratic Republic of the
Congo is under apparent threat due to pressure from rapid population growth and illegal
activities which have led to overexploitation of the wetland resources (Xu et al. 2019). On
the other hand, land use land cover changes alter hydrological processes, thus influencing
flow regimes, aquifer recharge, and water storage within the catchment (de Medeiros et
al. 2019). The remaining wetland portion are exposed to a wide range of stress inducing
changes, e.g. infrastructure development, hydrologic changes, excess nutrient inputs and
invasive species (Oliver-Cabrera and Wdowinski 2016; Hu et al. 2017). These cause a dra-
matic reduction and deterioration of the natural landscapes, which in turn complicate
wetland functionality, with significant repercussions amplified on the ecological, socio-
economic, and cultural benefits (Hu et al. 2017). Therefore, it is critical to understanding
threats to wetland ecosystems, characteristics, species diversity (richness and evenness),
productivity, soil, and hydrology to safeguard the ecohydrological system.

There is a growing interest in developing new operational frameworks, as well as spa-
tial explicit and sound tools to assess wetland health conditions. Accurate information
and monitoring of wetland status is therefore the first step in determining wetland eco-
logical integrity. Dennison et al. (1993) highlighted that wetland vegetation remains an
exceptional indicator for the first signs of any biophysical or chemical degradation in wet-
land environments. However, characterization of the spatial patterns of wetland extent is
often challenging due to their heterogeneous nature (Szantoi et al. 2013). Previously, stud-
ies used traditional methodologies based on ground-based measurements, in assessing and
monitoring wetland ecosystems, such as wetland hydrology, soil, species richness and
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evenness, species composition and aboveground biomass (Luo et al. 2017). These meas-
urements were recognized as the most direct and accurate method of assessing and moni-
toring wetland ecosystems and diversity. Although the traditional approaches provide the
most accurate results, these methods are generally not effective due to limited spatial rep-
resentation. Similarly, the inherent heterogeneous species distribution and their composi-
tions (Szantoi et al. 2013) are very difficult to capture. In addition, these techniques are
time-consuming, labor-intensive, and costly, besides being difficult to carry out effectively
in assessing the spatial extent of wetlands, especially across large areas over time ( Psomas
et al. 2011; Adam et al. 2012; Han et al. 2015; Orimoloye et al. 2018). Therefore, derived
wetland information lacks the requisite spatial and temporal representation, hence there is
limited understanding on the dynamics of soil, water as well as wetland vegetation within
these ecosystems. It is important to track wetland ecosystems on a spatial and periodic
basis as it offers comprehensive information that can lead to the sustainable conservation
of ecosystem services.

Availability of automated, reliable and near-real-time remotely sensed data has
emerged as the most critical data source for gathering spatial explicit information on the
condition, distribution, and spatial configuration of wetland ecosystems, from local to a
global scale. The spatial distribution of wetlands varies at different times and can be ana-
lysed with the aid of multi-spectral and hyperspectral remote sensing satellite images such
as Landsat, MODIS, SPOT, and RapidEye. Some of these images have high spectral and
spatial characteristics, which enable enhanced monitoring and mapping of wetland ecosys-
tem characteristics. When compared to conventional labor-intensive field investigation,
remote sensing information not only saves time but also enhances the prospect of charac-
terizing wetland species through spectral and texture analytics (Vasconcelos et al. 2002;
Kokaly et al. 2003; Roberts et al. 2003). Recently, advances in remote sensing data have
shown high potential to examine land use land cover changes threatening wetland ecosys-
tem functioning and services ( Pettorelli et al. 2017). In addition, advances in sensor tech-
nologies have contributed towards the acquisition of freely available satellite imagery,
such as Sentinel dataset. For example, Sentinel-2 is characterized by finer spatial (10 m)
and higher spectral (13 spectral bands including red edge strategic bands) resolution,
essential for extraction of wetland ecosystem characteristics, with varying geographical
coverage (285 km) for the evaluation of wetland dynamics (Truus 2011; Adelabu et al.
2014; Orimoloye et al. 2018). Remote sensing technology allows repetitive image acquisi-
tions over the same area, that are required for the detection of temporal changes and pat-
tern of wetland ecosystems. For instance, Sentinel-2 offers remotely sensed data at high
revisit frequency of between 5 and nineteen days.

In the light of the advantages associated with the use of remotely sensed data, in Sub-
Saharan Africa, researchers have used both passive, optical sensors and active sensors to
map and delineate the spatial distribution of wetlands in order to understand their status
under the changing environmental and anthropogenic pressure. Knowing the past and
current distribution of wetlands in sub-Saharan Africa could ease the understanding of
the developments in wetlands or trends and improvements, as well as their contribution
to ecosystem goods and services. In addition, it is critical to obtain the status of degrad-
ation, vegetation cover, species diversity, water level, erosivity, and rates of sedimentation
in order to ensure informed decision-making for proper wetland protection and restor-
ation programs (Davidson et al. 2018; Gxokwe et al. 2020). However, major attempts are
now being made to integrate geospatial data products (e.g. water, soil moisture and vege-
tation) into various land surface models to enhance wetland ecosystems monitoring
and evaluation.
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This work provides a comprehensive overview of remote sensing applications in moni-
toring and mapping wetland ecosystems (wetland vegetation, species diversity, productiv-
ity, hydrology, soil etc.), as well as highlights the strengths and challenges associated with
the use of satellite data. To meet the above-mentioned aim, related literature information
was acquired from wetlands, ecology, water, and remote sensing journals. Numerous key-
words and expressions were used, and these included: ‘wetland’, ‘water level monitoring’,
‘wetland hydrological processes’, ‘wetland-catchment linkage’, ‘hydrological modeling’,
‘hydrophytic vegetation’, ‘vegetation diversity’, ‘biodiversity’, ‘Species richness and even-
ness’, ‘wetland productivity’, ‘wetland plant species’, ‘aboveground biomass (AGB)’,
‘remote sensing’, ‘satellite data’, ‘Synthetic Aperture Radar’.

To retrieve information during literature search, articles published in international
peer-reviewed journals were selected via relevant search engines. These include: ‘ISI
Web of Science’, ‘Google Scholar’, ‘Photogrammetric Engineering and Remote Sensing’,
‘GIScience and Remote Sensing’, ‘Applied Earth Observation and Geoinformation’,
‘IEEE Applied Earth Observations and Remote Sensing’, ‘SCOPUS’, ‘Wetland Ecology’,
‘Hydrology’, ‘Ecology’, ‘Ecohydrology and Hydrobiology’, ‘African Ecology’ and other
internationally recognized remote sensing, as well as wetland science journals. Due to a
limited number of studies on remote sensing applications, particularly in the sub-
Saharan region, the review was not limited to a specific criterion. Consequently, all
studies that utilized remote sensing for wetland monitoring and assessment
were considered.

2. Geographical distribution of wetland ecosystems

Globally, wetlands occupy an area of nearly 9.2 million km2 with 1.3 million km2 of these
found in Africa (Melendez-Pastor et al. 2010; Rebelo et al. 2010; Kabiri et al. 2020).
Finlayson et al. (2011) also showed that estimates of wetland spatial extent across the
world including Africa differ across studies due to the different definitions of wetlands
and approaches used to delineate them. The common types of wetlands found in sub-
Saharan Africa include Dambos, Lakes, Reservoirs, Freshwater marshes, floodplains,
Swampy forests, flooded forests, Coastal wetlands, Pans, Brackish/saline wetlands, and
Intermittent wetlands (Gxokwe et al. 2020). These wetlands vary with topography or land-
scape characteristics and climatic regimes, which supports diverse and unique wetland
habitats (Space Applications Centre (SAC) 2011, Rebelo et al. 2017). Xu et al. (2019) men-
tioned that about 2,303 of global wetlands are designated under Ramsar convention,
which are referred to as wetlands of international importance (Ramsar Secretariat 2013)
and these wetlands are unevenly distributed in different parts of the world (Figure 1). As
shown in Figure 1, Europe has the largest number of sites with a total of 1004, occupying
44% of Ramsar sites, 397 (17%) in Africa, 146 (6%) in South America, 368 (16%) in Asia,
309 (13%) in North America, and 79 (4%) in the Oceania region (Rebelo et al. 2010;
Ramsar Secretariat 2013; Davidson et al. 2018; Gardner et al. 2018; Xu et al. 2019).
Despite the number of wetlands designated under the Ramsar, there are many other small
wetlands (unprotected) performing potentially incredible functions to the neighboring
communities but they are continuously ignored in the policy process. As a result, some of
these wetlands are already threatened, degraded, and lost due to uncontrolled activities,
both natural and anthropogenic activities. According to the National Biodiversity
Assessment for South Africa (NBASA) carried out in 2011, wetlands occupy only 2.4% of
the country’s total area. However, 48% of these ecosystems are critically endangered, 12%
are endangered, 5% vulnerable while 35% are least affected (Macfarlane et al. 2014).
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3. Factors influencing wetland degradation

Wetlands have a long history of transformation, destruction, and degradation. Globally,
estimates suggest that about 50% of the global wetland areas have been degraded in the
20th century (Jogo and Hassan 2010; van Dam et al. 2013; . The remaining wetlands are
under threat from anthropogenic activities and impacts of climate change, despite robust
regulations for their protection and conservation or restoration (TEEB 2013). Literature
demonstrates that there are multiple factors that degrade wetland ecosystems and main-
tain their survival. Anthropogenic factors include agriculture, reclamation, water use,
infrastructure development, environmental pollution, and unsustainable use of wetland
resources (Ramsar Convention Secretariat (RCS) 2010; V€or€osmarty et al. 2010; Van
Asselen et al. 2013; Gardner et al. 2018; Xu et al. 2019). Such factors affect wetland
hydrology, soil, species diversity, productivity, and composition (Klemas 2013).Gardner et
al. (2018) stated that pollution caused by population growth and socio-economic develop-
ment is a major factor leading to degradation and loss of wetlands. Rebelo et al. (2010)
showed that gradual cause of wetland destruction is primarily the need for flat, fertile
land with water supply for agricultural purposes (both cultivation and livestock produc-
tion). These studies concur with the work by Slagter et al. (2020) demonstrated that
South Africa has lost and continue to lose wetlands due to dam construction, overgrazing,
pollution, crop production, urbanization, erosion, developments, and poor management
of land resources. Loss of connective rivers further contributes to the rate of wetland deg-
radation (IPCC 2013; Tiner et al. 2015; Oliver-Cabrera and Wdowinski 2016).

Climate change is also a major threat to wetlands, particularly, changes in rainfall pat-
terns and global warming (Boon et al. 2016). These changes result in significant biodiver-
sity configurations and wetland biochemical processes and this is quite variable over space
and time, from local to global scales (Dawson et al. 2011; Bellard et al. 2012). The rising
temperatures may aid the invasion of warmer-water species into older zones and these
species outcompete dominant species. Climate change is also considered as a cause for

Figure 1. Global wetland distribution designated under Ramsar (Xu et al. 2019).
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habitat destruction, a shift in species composition and habitat degradation in existing wet-
lands (Titus et al. 2009). Moreover, acute pollution and siltation have exaggerated these
sensitive systems in recent times (Van Asselen et al. 2013; Li et al. 2014).

Since the early 1900s, it was estimated that wetland acreage from the existing inland
and coastal marshes have been lost, with about 56% to 65% through conversion to agri-
cultural production in Europe and North America, 27% in Asia and 6% in South America
(Prigent et al. 2012). While China lost about 23% of its freshwater swamps, 16.1% of its
lakes, 15.3% of its rivers, and 51.2% of its coastal wetlands (Niu et al. 2012). In Africa, a
notable decrease in wetland areas has also been observed. For example, in Tanzania, wet-
land extent shrunk by 18% (Nguyen et al. 2017). In other parts of the African continent,
estimates of degraded wetland acreage is a challenge and still rudimentary, due to the lack
of historical documentation and monitoring of these ecosystems (Marambanyika and
Beckedahl 2016; Grenfell et al. 2019; Xu et al. 2019; Stephenson et al. 2020). The decrease
in wetland extent and quality has caused the species population to decline in many wet-
land-dependent species (Zhang et al. 2020). Although other strategies are in place to pro-
tect wetlands, many wetland ecosystems still suffer from degradation through
eutrophication, reduced water availability, as well as impacts from weeds and pests (Gopal
2016). Other major causes of wetland destruction more specifically in sub-Saharan Africa
are precisely due to the lack of awareness by planners, natural resource managers and
wetland users (Ellery et al. 2003). Lack of conformity between government policies in the
areas of economics, environment, biodiversity conservation, development planning is one
of the reasons for the continued degradation of these systems (Turner et al. 2000). Lack
of action taken to conserve wetlands, poor governance, and management further compli-
cates management strategies (Kumar et al. 2013). Monitoring of wetland hydrology, soil
and vegetation is becoming a major concern, due to the rise in anthropogenic activities
on wetlands.

4. Role of remote sensing applications in wetland ecosystems mapping

Since the 1960s, remote sensing observations, in particular satellite imagery, serves as the
most useful tool for gathering information such as in land cover change or mapping fea-
tures in wetland regions, climate warming in wetland ecosystems, species diversity and
productivity, hydrological processes in wetlands (O’Grady and Leblanc 2014; Prospere et
al. 2014; Brisco et al. 2015; Tiner et al. 2015; Guo et al. 2017). Remotely sensed datasets
and approaches provide frequent data with varying footprints and resolutions, which are
more practical and economical means to address issues of wetland identification, delinea-
tion, classification, hydrophytic vegetation or biomass, hydromorphic soil, hydrology and
vegetation characteristics, productivity, and density (Mansour et al. 2013). Literature gath-
ered from peer-reviewed remote sensing journals shows that remote sensing applications
have progressed remarkably over the years, with technological advances that have led to
efficient data processing (Figure 2) in mapping and quantifying wetland ecosystems (i.e.
forested wetlands or swamps, marshes etc.) in sub-Saharan Africa. Most of these studies
have mainly focused on wetland ecosystems that are designated under Ramsar
Convention, neglecting small or unprotected wetlands, which serve the neighboring com-
munities. There is an increase in application of remote sensing for wetlands under
Ramsar (r2 ¼ 0.884) than non-Ramsar sites (r2 ¼ 0.6545). These highlight that there are
limited studies that use remote sensing for small wetland ecosystems that provide a life
line to rural communities, particularly in sub-Saharan Africa (Guo et al. 2017; Osorio et
al. 2020; White et al. 2020). This is because in most cases the smaller sizes of wetlands
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when compared to image spatial resolutions, largely result in spectral mixing hence the
failure to derive accurate and highly informative information particularly from coarse res-
olutions or broadband satellite images like MODIS etc. Progress in remote sensing data
usage (from aerial photography to multispectral scanners) in mapping and monitoring
wetlands ecosystems is thus linked to the availability of freely accessible satellite images
(e.g. Landsat, Sentinel, etc.) as well as the recent technological capabilities (improved spa-
tial, spectral and temporal resolution) that can rapidly detect and map wetlands over large
scales. Most of the studies conducted in Africa used multispectral remote sensing dataset.
These new cutting-edge technologies substitute the use of aerial photographs, which are
not practically possible in acquiring information for large areas (Thamaga and Dube
2019). Therefore, based on the literature examined, most of the wetland studies used aer-
ial photographs, Landsat and MODIS datasets (Landmann et al. 2010; Adam et al. 2012;
Hladik and Alber 2012; Mutanga et al. 2012; Tiner et al. 2015; Guo and Guo 2016;
Gxokwe et al. 2020). These sensors (Figures 3 and 4) were mainly applied in mapping,
monitoring wetland extent, LULC impacts as well as wetland classification. Wetland vege-
tation, soil and hydrology remain understudied using remote sensing.

Previous studies have confirmed the effectiveness of satellite remote sensing tools for
wetland monitoring and classification ( Berlanga-Robles et al. 2011; Rapinel et al. 2015;
Mahdianpari et al. 2018). These approaches have effectively addressed large-scale histor-
ical challenges in managing wetlands synoptically and mapping using conventional
approaches (e.g. accessibility and repeatability) as they are time-consuming and labor-
intensive, particularly in relatively small areas. Given the sensors’ capability to collect syn-
optic observations more often remote sensing techniques have become effective in study-
ing, identifying and quantifying wetland ecosystems (i.e. plant species, diversity and
productivity, hydrological estimation) (Li et al. 2013; Han et al. 2015; Lou et al. 2016;
Pande-Chhetri et al. 2017; Chen et al. 2018), from small to large-scale projects with spa-
tially continuous coverage from several satellite datasets (Kuenzer et al. 2011; Tiner et al.
2015). Nevertheless, remotely sensed satellite datasets (Table 1) with varying spatial reso-
lution of less than 10m to several kilometers have been used globally to detect wetland
ecosystems (Laba et al. 2010; Betbeder et al. 2015; Liu and Abd-Elrahman 2018).
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Figure 2. Progress of remote sensing publications in mapping wetland ecosystems in Africa.
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Broadband multispectral and hyperspectral images are acquired in different characteristics
providing new insights or approaches in assessing wetlands. The availability of remote
sensing at affordable and freely accessible means marked the new beginning of continuous
mapping and comprehensive monitoring of wetland ecosystem. For instance, Landsat
with long history of spatial data archival was used in a variety of wetland studies; includ-
ing wetland classification, mapping, and change detection ( Guo et al. 2017). Long-term
change detection enables researchers to better understand the trends and gradual changes
of wetlands, analyse change dynamics, and protect wetlands. Rebelo et al. (2010), Adam et
al. (2012) and Gxokwe et al. (2020) have provided comprehensive reviews of remote sens-
ing datasets and methods for wetland characterization. Overall, previous studies also
showed that the probability of satellite remote sensing for detecting permanently flooded
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or intermittently exposed open water surfaces information is critical, but knowledge gaps
still exist, particularly on mapping and monitoring small wetlands (unprotected wetlands).

5. Remotely sensed applications on wetland hydrology and soil

Hydrology and hydromorphic soil sustain wetland ecosystems, but wetlands have been
drained for irrigation purposes and dam construction for drinking water. On the other
hand, pollution in wetland ecosystems has affected soil fertility, moisture, carbon seques-
tration as well as water quality thereby exerting pressure on these systems (Van Asselen
et al. 2013; de Klein and van der Werf 2014; Xiaolong et al. 2014; Zhang et al. 2015;
Were et al. 2019). Remote sensing data provide effective and efficient tool to detect water
bodies and soil extent and quality. MODIS with high temporal resolution showed its sig-
nificant advantages in mapping wetland extent and change over time (Ordoyne and Friedl
2008). In the North-Central Namibia, Mizuochi et al. (2017) to identified surface water
distribution using modified normalised difference water index (MNDWI) of MODIS
image and normalized difference polarization index (NDPI) of Advanced Microwave
Scanning Radiometer Observing System (AMSR-E). On the other hand, Zoffoli et al.
(2008) used AVHRR NDVI to analyse seasonal and annual wetland changes over-time

Table 1. Remote sensing sensor specifications and associated acquisition cost per square meter.

Sensor
Spectral
bands GSD (m) Description

Swath-width
(km)

Frequency
(days)

Cost of image
acquisition
(US $/km2)

Landsat Thematic
Mapper (TM)

7 30
120

Band (1-5 & 7)
Band 6

185 26 Free

Landsat Enhanced
Thematic Mapper
plus (ETMþ)

8 30
15

Band (1-7)
Band 8

185 18 Free

MODIS 36 250
500
1000

Band (1-2)
Band (3-7)
Band (8-36)

2330 1-2 Free

Sentinel-2 13 10
20
60

Band (2,3,4 & 8)
Band (5, 6, 7, 8a,
11 and 12)
Band (1,9 & 10)

290 5 free

RapidEye 5 5 All bands 77 1 (off nadir) /
5.5 (nadir)

US $1.28

Syst�eme Pour
I’Observation de
la Terre 5 (SPOT
5)
High-Resolution
Stereoscopic
(HRS)
High Resolution
Geometric (HRG)
Vegetation (VGT)

5 10 Band (1-3) 60 2.5 US $5.15

Quickbird 5 20
2.40

Band 4
All multi-
spectral bands

16.8 1-3.5 US $24

World View-2 8 2
0.48

All multi-spectral
bands
Panchromatic
band

16.4 1.1 US $28.5

World View-3 8 1.24
0.31

All multi-spectral
bands
Panchromatic

13.1 1 US $29

GEOCARTO INTERNATIONAL 5899



and showed that NDVI can provide useful information for wetland surface water. Klein et
al. (2015) mapped daily open water bodies using MODIS time series data and threshold
technique, the technique depicts annual water changes. Frazier et al. (2003) used Landsat
images to assess before and after flood occurrence to describe the relationship between
flow regulation and inundation of flood plain wetlands. Results from their study, high-
lighted that river regulation could reduce the duration and frequency of inundation.
Other sensors, such as Sentinel, SPOT, have been employed to examine wetland hydro-
logical regimes and mapping wetlands extent at various scales with satisfactory results
(Davranche et al. 2010, 2013; Muro et al. 2016; Xing et al. 2018; Bhatnagar et al. 2020;
Slagter et al. 2020). Indices such as Land Surface Water Index (LSWI), NDWI, NDWI
they have been extensively used to improve accuracies. For instance, LSWI is known to
be sensitive to the total amount of liquid water in vegetation and associated soil back-
ground. Using hydrological models such as soil water assessment tool (SWAT), HEC-
RAS, Geo-rus together with satellite data, soil and climatic information seem to be prom-
ising in assessing wetland hydrology as well as soil quality and quantity.

6. Wetland plant species characterization

Remote sensing has the capabilities to analyse, map, and monitor wetland plant species at
all scales, using various satellite datasets. Ecological based studies have demonstrated the
benefits of using multi-remote sensing sensors (both active and passive) providing a wide
range of data at varying resolutions with the abilities to extract various physiological,
chemical and phenological characteristics of species for determining wetland plant species
(Ustin and Gamon 2010; Pau et al. 2013). The retrieved information using remotely
sensed data provides spatially explicit data on wetland species dynamics, structure, annual
precipitation, hydrological pathways, and local physiological cycle (Gallant 2015).
Additionally, remote sensing techniques provide information from inaccessible areas that
cannot be accessed during field surveys. These contribute to enhanced estimation of wet-
land plant species, understanding and identifying key factors impacting on wetland bio-
diversity and biomass. Methods for estimating vegetation in wetland ecosystems by
remote sensing have not been treated in much detail especially in developing countries.
The detection, delineation and mapping of wetland plant species remains a challenge with
multispectral satellite imagery due to the lack of spatial resolution of most satellites with
respect to the small and sharp vegetation units present within wetland ecosystems (Brisco
et al. 2017). Therefore, with multispectral imagery spectral mixing of several vegetation
species in various proportions remains a challenge (Zomer et al. 2009). Moreover, the use
of wide spectral bands from coarse multispectral imagery for mapping wetland species
remains difficult, due to the spectral overlap among species since healthy vegetation spe-
cies typically show similar spectral responses in the visible and near-infrared region due
to similarities and limited basic components that contribute to their spectral reflection.

6.1. Mapping of wetland vegetation using remote sensing data

Wetland vegetation can be used to reflect the status of wetland ecosystems and biomass
estimates can provide basic information about a particular wetland. Knowledge on wet-
land plant species types, productivity, and diversity is key in terms of planning, conserva-
tion, and protection of ecosystem functions. Wetland vegetation spatial explicit
information retrieved from satellite imagery serves as the baseline evidence that is needed
for monitoring and assessment of wetland status and health. Wilen et al. (2002) noted
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that satellite remote sensing images offers much better results of wetland plant species.
Hence, these could be critically used for the prioritization of different purposes including
planning, environmental impact assessments, wetland assessment, and monitoring, detec-
tion of alien plant species, water flow, and level, rehabilitation and analysis of trends in
wetland status, to enhance conservation of wetland ecosystems (Wilen et al. 2002; Zheng
et al. 2014). Mutanga and Skidmore (2004); Zheng et al. (2014) and Wu et al. (2018)
highlighted that estimation, monitoring, and mapping of wetland species biomass (above-
ground biomass) is required for studying nutrient allocation, species diversity, productiv-
ity, and the carbon cycle. Furthermore, Mutanga and Skidmore (2004) and Adam et al.
(2012) emphasized that despite wetlands exhibiting discrete light-reflectance characteristics
centred in the visible or infrared region of the Electromagnetic Spectrum Radiation
(EMR), achievements in estimating biochemical and biophysical parameters in some eco-
systems revealed that the remaining challenges are strongly affected by water, atmospheric
conditions and soil. The use of vegetation indices such as NDVI, EVI and NDWI offers
opportunities that can supersede the effects of soil background, atmospheric composition
and zenith angle effects while improving the vegetation signal, when estimating wetland
plant species (Mutanga et al. 2012; Ramoelo et al. 2015; Sibanda et al. 2015). High-reso-
lution vegetation mapping of wetland complexes, with accurate distribution and popula-
tion estimates for different functional plant species can be used to analyse vegetation
dynamics, quantify the spatial patterns of vegetation evolution, analyse the effects of
environmental changes on vegetation and predict the spatial configuration of spe-
cies diversity.

6.2. Mapping species diversity in wetland environments

Many predominantly upland regions encompass small patches of wetland habitats, which
hold great potential for biological diversity conservation, however, these areas have
received little recognition (Nicolet 2003; de Meester et al. 2005). These wetlands can con-
tribute disproportionately to landscape-level diversity since they often have high levels of
species richness (alpha diversity) and spatial variations in community composition (beta
diversity) ( Tiner 2003; de Meester et al. 2005). Wet habitation patches surrounded by
uplands support unique species assemblages, different from those of large-scale wetlands
(Nicolet 2003; de Meester et al. 2005). These communities often include regionally rare
species, and they can serve wetland specialists in landscapes where major wetlands are
being destroyed, degraded, or absent (Nicolet 2003). Few studies on species diversity of
small wetlands have focused on a single wetland category, such as seasonal pools with
mineral soils , riparian areas in headwater streams (Hagan et al. 2006), or groundwater
seepage . The snapshots from a single image lackdetails. However, these wetlands often
defy simple classification the distinctions among wetland types remain largely arbitrary
and inconsistent, from inherent differences in wetland vegetation species often result in
spectral overlaps. To understand how small wetlands contribute to regional species plant
diversity, we need to consider all the wet areas within a landscape and identify them
based on the vegetation composition. Different indices for determining species diversity
have been developed. These included the widely used Shannon-Wiener Index (H’),
Simpson diversity index (1-D), Fisher’s alpha - a diversity index (a), Menhinink richness
index (DMn), Margalef richness index (DMg) and Sheldon (Buzas and Gibson) evenness
index (E3) (Kent and Cocker 1992; Barajas-Gea 2005; Mitchell et al. 2006; Jani�sov�a et al.
2014; Caranqui et al. 2016; Yaranga et al. 2018). These indices thus can be used in quanti-
fying species diversity within a wetland. Integrating diversity indices with remotely sensed
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data i.e. Landsat, Sentinel, Worldview etc provide a better understanding of wetland con-
ditions and their functioning in general.

6.3. Wetland productivity and assessment

Wetland productivity is a positive increase in vegetation species biomass per unit. This
does not only reflect vegetation, condition, but it is a central variable for carbon cycling
(Luyssaert et al. 2007). It was revealed in different studies (Cramer et al. 2001; Klemas
2013; Yin et al. 2017) that wetland productivity changes in volume and measures of pro-
spective resource products receive attention from a rising number of researchers in the
context of global change. Wetland productivity is also a function of climate variability
and hydrological fluctuations. For example, the fluctuations in water table provide a better
understanding of wetland conditions and their functioning in general with increased cli-
mate variability strongly affect wetland vegetation productivity. Work by Rivera-Monroy
et al. (2019) highlighted that Louisiana wetland in Gulf of Mexico lost 4900 km2 of wet-
land area since the early 1930s. Furthermore, the study mentioned that despite the rele-
vance of wetland biomass and net primary productivity procedures in wetland ecosystems
assessment, there is a lack of vegetation simulation models forecasting the trends of bio-
mass and productivity. Long-term overview of the wetland simulation models with remote
sensing dataset provide a better understanding of wetland plant productivity.

7. Analytical algorithms for evaluating wetland ecosystems and conditions
using remote sensing

Several algorithms and remotely sensed datasets offer opportunities to classify and quan-
tify wetland ecosystems. These algorithms can be broadly categorized into the threshold
method, unsupervised and supervised classification, object-based classification, principal
component analysis and hybrid classification (Dronova et al. 2015; Villa et al. 2015; Liu
and Abd-Elrahman 2018). Artificial neural network (ANN) (Kumar et al. 2013), decision
tree (DT) (Khosravi et al. 2017), Random Forest (RF), CART, and Support Vector
Machine (SVM) (Xie et al. 2017) are also non-parametric supervised machine learning
techniques commonly used for land cover classification. Additionally, digital data from
satellite imagery enable efficient and rapid classifications through automated methods that
have been shown to improve accuracy than simple aerial photo interpretations (Tiner et
al. 2015). The use of remote sensing techniques has been explored over large regions of
wetlands. For instance, it has been applied in species and cover type assessment, canopy
density or Leaf Area Index (LAI) estimation (Wang et al. 2012), biomass monitoring
(Mutanga et al. 2012; Byrd et al. 2014), or on quantities related to plant productivity and
stress ( Amani et al. 2017). The newly advanced methodologies such as drones, Google
Earth Engine cloud-based platform, and artificial intelligence have been adopted to under-
stand wetland ecosystems around the world (Alonso et al. 2016; Xie et al. 2019). Wu et
al. (2019) stated that moderate resolution satellite imagery cannot be used as standalone
for wetland delineation; however, they integrated automated approach to delineate wet-
land inundation extent at the watershed scales using Google Earth Engine. Outcomes of
the algorithm did not only delineate the current state of the wetland but also demon-
strated critical information on hydrological dynamics. Other studies used the drone tech-
nology to assess wetland ecological integrity . D�ıaz-Delgado et al. (2019) demonstrated
that derived thematic maps from drone data are a very valuable input to assess wetland
hydrology, soil, habitat diversity, wetlands health, dynamics, and wetland productivity as
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frequently as desired by wetland related managers or researchers. These advanced algo-
rithms are scalable for mapping and quantifying wetland inundation from small to larger
geographical scales. The integration of multispectral remote sensing imagery together with
automated algorithms enhance image classification and further, provide practical, fre-
quent, and requisite framework, which plays a critical role in delineating wetland inunda-
tion dynamics.

The increase in the use of remote sensing data in mapping wetland ecosystems is
linked to its ability to offer a variety of new applications that can quickly and synoptically
monitor and manage large areas. In Table 2, recent studies have indicated that the use of
satellite imagery provide the most reliable primary data for the detection, monitoring, and
mapping of wetland ecosystems. For example, Nhamo et al. (2017) mapped wetlands in
Mpumalanga using Landsat 8 and MODIS-based NDVI and found that thewetland extent
declined by 19%. Nineteen percent of degraded land has been mainly replaced by urban
and agricultural development, which affected the ecohydrological processes and functions.
In a different study, Orimoloye et al. (2018) assessed the potential of Landsat data to
understand the status of Isimangaliso wetland in South Africa. Results obtained from the
study showed that the extent of the wetland shrunk from 655.416 km2 (1987) to
429.489 km2 (2017) and, achieved an overall classification accuracy of 97.55% and kappa
coefficient of 0.941. Berhane et al. (2019) showed that integration of machine learning
techniques, Landsat and Pl�eiade-1B improved mapping of the wetland ecosystems, obtain-
ing an overall classification accuracy of 93% with a Kappa coefficient of 0.92.

8. Implications of remote sensing of wetland vegetation and
productivity mapping

Despite the robust advanced remote sensing techniques and modeling algorithms, spatial
assessment of wetland ecosystems at various spatial scales remains a challenging task. This
is primarily due to the heterogeneity nature of wetland ecosystems that are difficult to
capture especially when using broadband and coarse spatial resolution sensors. In add-
ition, high similarity of vegetation spectral characteristics due to wetland fragmentation,
have been noted, which contributes to confusion in species mapping (Corcoran et al.
2013; Peimer et al. 2017; Wu et al. 2018). A major reason for this difficulty is that
although each of the wetland species has several distinctive characteristics, they share
some ecological and phenological similarities (Boon et al. 2016), with non-wetland plant
species (Henderson & Lewis 2008). Therefore, this makes it difficult to spectrally distin-
guish some of the wetland plants from non-wetland plant species using remote sensing
imagery (Amani et al. 2017). Furthermore, the accuracy of monitoring and assessing
LULC change impacts on wetland ecosystems is mainly limited by the imaging character-
istics of remotely sensed data as well as the algorithms used, which have been developed
by different studies or for a specific application scale.

Previously, studies treated all vegetation communities as one single type, or they
focused only on a short period (Dronova et al. 2012; Chen et al. 2014; Han et al. 2015).
Vegetation species vary and these variations influence their functions within a wetland. In
this regard, they generally view these species as a single type which then masks consider-
able information that is critical in understanding the dynamics of wetland ecosystems.
Wetland vegetation varies over time; hence focusing on a particular period is inadequate
for the implementation of sustainable regulations and policies for their conservation.
Nevertheless, other researchers have attempted to adopt the long-term monitoring of wet-
land species. For example, Ballanti et al. (2017) used Landsat imagery to identify change
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Table 2. Summary of recent remote sensing applications in mapping wetland ecosystems.

Sensor(s) Study
Image

analysis technique(s) Major findings Reference

Pl�eiade-1B,
Landsat-8

Wetlands along the
Etrix River in North
Xinjiang, China

Random forest
Normalized
Difference
Vegetation
Index (NDVI)

RF classifier achieved
an overall accuracy
of 93% with a Kappa
coefficient of 0.92.

Tian et al. (2016)

Landsat TM,
Landsat 8 OLI,
Landsat 8 TIRS,

Isimangaliso Wetland –
Kwa Zulu Natal,
South Africa

Normalized
Difference Water
Index (NDWI)

Wetland extent shrunk
from 655.416 Km2

(1987) to
429.489 Km2 (2017)
during the study
period. The study
revealed that other
land cover features
increased from
2149.911 Km2 to
2375.838 Km2 in
1987 and 2017. The
classified imagery
managed to achieve
an overall
classification
accuracy of 97.55%
and a Kappa
coefficient of 0.941.
NDWI revealed that
there is a depletion
of water in the study
area mainly due to
environmental and
human interferences.

Orimoloye et
al. (2018)

RADARSAT-2,
TerraSAR-x
ALOS-1 & 2
Sentinel-1

Newfoundland and
Labrador (NL)
Wetlands of Canada

Random
Forest classifier

RADARSAT-2 was
superior to the other
sensors used in
terms of accuracies
except for TerraSAR-
x for which the user
accuracy was higher
than that of
RADARSAT-2.

Mahdavi et
al. (2017)

MODIS
Landsat 8

Witbank Dam
Catchment in
Mpumalanga
Province

NDWI The delineated
wetlands show a
declining extent
from 2000 to 2015,
which could worsen
in the coming few
years if no remedial
action is taken.
Current efforts to
demarcate wetland
extent varied time-
series trend analysis.
The wetland area
declined by 19%
during the period
of study.

Nhamo et al. (2017)

WorldView-2 South American Object-based Image
Analysis
approach,

Overall classification
accuracy was 81%,
and the Kappa index
was 78.1%.

Gonzalez et al. 2019

WorldView-2 Selenga River Delta of
Lake Baikal, Russia

Nonparametric
machine-learning

RF classification
outperformed both

Berhane et al. (2019)

(continued)
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within the watershed and wetland ecosystems for 58 years in Nisqually River Delta. Their
findings revealed that emergent marsh wetlands increased by 79% (188.4 ha) as a result of
rehabilitation strategies implemented in 2009. Furthermore, it was mentioned that despite
wetland gains in 2009, 35% of marsh wetland was lost between 1957 and 2015 due to
river shifting and erosion patterns. The study by Son et al. (2015) used the Landsat data-
set, dating from 1979 to 2013 (34 years) in Vietnam. Results indicated that 16% of the
wetland ecosystems was lost because of anthropogenic activities. In assessing vegetation
characteristics of the wetland, the study found that alien plant species were dominating
the wetland areas. The study further demonstrated the critical role of remote sensing in
wetland change detection, as well as future monitoring. Although long-term data have
been used in some studies to identify different vegetation communities, the phenological
disparities between different years that are associated with inter-annual water level
changes were not considered (Chen et al. 2014; Gallant 2015; Hu et al. 2017; Wu et al.
2018). The transition of different vegetation communities within a wetland, over the years,
remains largely unknown. Similarly, the processes or causes of these drastic changes are
poorly documented. Consequently, high vegetation fragmentation is observed when classi-
fying these wetland ecosystems (Henderson and Lewis 2008).

In summary, wetlands have high intra-class and low inter-class variability, which
makes their classification challenging. The use of advanced remote sensing images with
improved resolutions coupled with modeling techniques can enhance the classification of

Table 2. Continued.

Sensor(s) Study
Image

analysis technique(s) Major findings Reference

algorithms (DT,
RB, and RF)

the DT and RB
methods, achieving
overall classification
accuracy of more
than 81%.

RapidEye Peninsula,
Newfoundland and
Labrador, Canada.

Random Forest and
Support
Vector Machine

The top three convnets
(ResNetV2, ResNet50,
and Xception),
provide high
classification
accuracies of 96.17%,
94.81%, and 93.57%,
respectively. The
classification
accuracies obtained
using Support Vector
Machine (SVM) and
Random Forest (RF)
is 74.89% and
76.08%.
InceptionResNetV2
found to be superior
over all other
convnets. It can be
suggested that the
integration of
Inception and ResNet
are efficient for
classifying complex
remote sensing
scenes such
as wetlands.

Mahdianpari et
al. (2018)
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wetland ecosystems. Further, wetlands lack a defined boundary and their border is almost
fuzzy since they gradually transit from wetland to other land cover classes, such as upland
or open water, or even other types of wetlands (Dronova 2015). In addition, the ecotone
proximity to wetlands is sometimes very narrow, which makes their detection or discrim-
ination from wetlands difficult (Gallant 2015). Therefore, the quality of image interpret-
ation and feature extraction methodologies in assessing wetlands should be considered
(Dronova 2015). Remote sensing satellite images are also restricted to a specific spatial
resolution, which might limit the detection of small wetlands (Ozesmi and Bauer 2002).
Despite these limitations, there have been some notable research efforts that investigated
applications of remote sensing data for regular wetland monitoring. There is a need to
use freely available sensors such as Landsat and Sentinel with high time revisit, covering
large swath-width and improved resolutions that are authoritative in solving noted limita-
tions related to monitoring, estimation, and mapping of wetland ecosystems.

9. Future investigation for improved wetland ecosystem conservation

Significant progress has been made in the application of remote sensing techniques in
wetland ecosystems research. Remote sensing techniques play a critical role in detecting
and mapping areas impacted by different forms of anthropogenic and natural activities.
Hence, the use of remote sensing to detect and map wetland ecosystems across sub-
Saharan Africa has gained attention in the last decade. While several studies have success-
fully utilized remotely sensed data in wetland research, there are still challenges that still
need to be addressed. Spatial studies of these ecosystems require versatile and robust com-
putational methods to help deal with non-linear relationships, high-order interactions,
and missing data. Despite these difficulties, the methods used for mapping the distribu-
tion of wetlands should be clear to understand and easy to interpret . Wetland ecosystems
are important to society and there is a need to establish digital efforts for wetland conser-
vation. Furthermore, wetlands resources surveys, legislation, management, and research
need to be revised since there is still much work to be done to protect future wetlands.

10. Conclusion

Several scholars have studied various characteristics and functions of the wetland ecosys-
tem, impacts of land use land cover changes, delineation, and degradation of these ecosys-
tems. Most studies have been focusing on estimating and mapping biophysical and
biochemical parameters of vegetation in wetlands recognized under the Ramsar conven-
tion, although little emphases have been placed on small wetlands (unprotected wetlands),
which also play a critical role in adjacent communities. There is therefore little attention
given towards wetland hydrology, soil, vegetation quantification, species characteristics,
species diversity and productivity. Quantification and frequent mapping and monitoring
of these wetlands across diverse landscapes is required for sustainable and effective wet-
land management control, formulation of governmental policies that promote ecological
preservation under increased pressure from human interference and climate change.
However, long-term ecological studies revealed that human activities continue to affect
wetlands water levels, vegetation composition, structure, productivity, diversity, and func-
tioning of the ecosystems, for decades after the activity has ceased. A new crop of robust
satellite sensors e.g. Landsat with improved spatial resolutions and high record of archival
data provides the most needed spatial tool for detecting, monitoring, and understanding
wetland status at low costs. There is a data gap or undocumented information on the
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state of wetlands in developing countries, which further complicates management strat-
egies and policy development. This review, therefore, provides the insights for wetland-
related managers emphasizing on the urgent need to shift towards the use of cheap and
readily available techniques for assessing and controlling wetland degradation, especially
small wetlands dotted across under-resourced countries. Further, there is a need for future
studies to utilize new advanced satellite imagery coupled with the use of robust machine
learning algorithms such as GEE, principle component analysis, to improve modeling for
well-informed management decisions of wetland ecosystems.
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