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Abstract
We present a comparison between the performance of a selection of source finders using a new software
tool called Hydra. The companion paper, Paper I, introduced the Hydra tool and demonstrated its
performance using simulated data. Here we apply Hydra to assess the performance of different source
finders by analysing real observational data taken from the Evolutionary Map of the Universe (EMU)
Pilot Survey. EMU is a wide-field radio continuum survey whose primary goal is to make a deep
(20µJy/beam RMS noise), intermediate angular resolution (15′′), 1 GHz survey of the entire sky south
of +30◦ declination, and expecting to detect and catalogue up to 40 million sources. With the main
EMU survey expected to begin in 2022 it is highly desirable to understand the performance of radio
image source finder software and to identify an approach that optimises source detection capabilities.
Hydra has been developed to refine this process, as well as to deliver a range of metrics and source
finding data products from multiple source finders. We present the performance of the five source finders
tested here in terms of their completeness and reliability statistics, their flux density and source size
measurements, and an exploration of case studies to highlight finder-specific limitations.
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1 INTRODUCTION

We are entering a new era of radio surveys, digging
ever deeper and with greater sky coverage, providing
catalogues with tens of millions of sources (Norris, 2017),
with increasing data rates, up to hundreds of gigabytes
per second (Whiting & Humphreys, 2012). This has
created a need for source finder (SF) software tools
that are up to the challenge (as discussed in Paper I).
The motivation to assess the performance of and to
characterise such tools has led to a number of data
challenges in recent years (e.g., Hopkins et al., 2015;
Bonaldi et al., 2021).

As a consequence, so-called NxGen SFs, capable
of efficiently handling large image tiles through mul-
tiprocessing (see Paper I) have been developed, and
include Aegean (Hancock et al., 2012, 2018) and Selavy
(Whiting & Humphreys, 2012), for handling compact or
marginally extended sources, and Caesar (Compact And
Extended Source Automated Recognition, Riggi et al.,
2016, 2021), for handling compact and extended sources
with diffuse emission. SFs developed initially for use with
optical images have also been explored to understand
their performance on radio image data. These include
CuTex (Curvature Threshold Extractor, Molinari et al.,
2010) for its ability to extract compact sources in the
presence of intense background fluctuations, SExtractor
(Source Extractor, Bertin & Arnouts, 1996) for its ability
to handle extended sources, and ProFound (Robotham
et al., 2018; Hale et al., 2019; Boyce, 2020) for its abil-
ity to handle extended sources with diffuse emission.
Traditional Gaussian fitting SFs, capable of handling
compact sources, such as APEX (Astronomical Point
source Extractor, Makovoz & Marleau, 2005), PyBDSF
(Python Blob Detector and Source Finder, Mohan &
Rafferty, 2015), and SAD (Search and Destroy, Condon
et al., 1998), have also been tested in such challenges.
These SFs are just the tip of the iceberg, with new tools
and approaches continuing to be explored (e.g., Hop-
kins et al., 2015; Wu et al., 2018; Lukic et al., 2019;
Sadr et al., 2019; Koribalski et al., 2020; Bonaldi et al.,
2021; Magro et al., 2022). This wide variety of tools and
techniques makes comparison studies challenging, as it
requires expertise spanning an extensive set of quite
diverse SF tools, and hence often requires large collabo-
rative efforts (e.g., Hopkins et al., 2015; Bonaldi et al.,
2021). We have developed a new software tool, Hydra
(see Paper I), to ease this effort.

Hydra is an extensible multi-SF comparison and cata-
loguing tool, requiring minimal expert knowledge of the
underlying SFs from the user. Hydra is extensible, with
the scope for adding new SFs in a modular fashion, using
containerisation. Hydra currently incorporates Aegean,
Caesar, ProFound, PyBDSF, and Selavy.1

1Hydra is available, along with the data products presented in
this paper, by navigating through the CIRADA portal at https:

Hydra is designed for SFs with RMS and island-like
parameters, which are optimised by reducing the False
Detection Rate (FDR, Whiting, 2012) through a Percent-
age Real Detections (PRD, e.g., Williams et al., 2016;
Hale et al., 2019) metric (we use a 90% PRD cutoff, see
Paper I). It also provides optional RMS box parameter
pre-optimisation, using bane (Hancock et al., 2012)
in a process to minimize the background noise (referred
to as µ–optimisation, see Paper I). Hydra is designed
to handle simulated images with injected (J ) sources,
and real (i.e., deep or D) images through comparison
of detections in shallow (S) images (i.e., images with
5σ noise added), for which detections in the D-images
are assumed as real. This leads to a rich set of statistics,
including completeness (C) and reliability (R) metrics.
We define C as the ratio of SF detections to real sources,
and R as the ratio of SF detections that are real to
detected sources. In our terminology, for D or S images
with known input sources J , these are CD and RD, or
CS and RS , respectively. For real images, we use CDS
and RDS describing sources detected in an S image with
respect to sources in D assumed to be real. For formal
definitions see Paper I.

A match is defined as the overlap between source
components (components or sources, interchangeably,
herein), which is achieved through a clustering technique
(see Paper I). The technique is also used to associate SF
components, from all SF D and S catalogues (including
J ), spatially together into clumps.

Hydra produces a cluster catalogue with sets of rows
marked by clump ID (clump_id), defining image depths
(D, S), spatial positioning, component sizes, flux den-
sities, etc., with links to SF D and S (including J )
catalogues. It also includes a match ID (match_id), in-
dicating the closest D and S associations. This cata-
logue is used to create a rich set of diagnostic plots and
and cutouts of annotated and unannotated images and
residual images, which can be accessed through a local
web-browser based Hydra Viewer tool (Paper I). The
user can also mine Hydra’s database to produce other
diagnostics.

This paper is part two of a two part series. In Paper I,
we introduced the Hydra software suite and evaluated
the tool using 2◦ × 2◦ simulated-compact (CMP) and
simulated-extended (EXT) images. In this paper, a com-
parison study of Aegean, Caesar, ProFound, PyBDSF,
and Selavy is performed using a real 2◦ × 2◦ EMU pilot
survey (Norris et al., 2021) image sample, along with the
previous simulated data. We precede this with a brief
overview of relevant radio surveys.

//cirada.ca.
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2 RADIO SURVEYS

Over the last two decades radio surveys have progressed
in depth (σrms), resolution (δθres.), and sky coverage,
due to technological advancements. At the Karl G. Jan-
sky Very Large Array (JVLA, or VLA) in New Mexico,
the ongoing VLA Sky Survey (VLASS, Lacy et al., 2020;
Gordon et al., 2020, 2021) has better angular resolution
and sensitivity than its predecessors, the National Ra-
dio Astronomy Observatory (NRAO) VLA Sky Survey
(NVSS, Condon et al., 1998) and the Faint Images of the
Radio Sky at Twenty-cm survey (FIRST, Becker et al.,
1995; Helfand et al., 2015). Other surveys with North-
ern hemisphere telescopes include the Tata Institute of
Fundamental Research (TIFR) Giant Metrewave Radio
Telescope (GMRT) Sky Survey – Alternative Data Re-
lease (TGSS–ADR, Intema et al., 2017) at the GMRT
(Khodad India), the Low-Frequency Array (LOFAR)
Two-metre Sky Survey (LoTSS, Shimwell et al., 2017,
2019, 2022) at the LOFAR network (spanning Europe,
Röttgering, 2003; van Haarlem et al., 2013) survey, the
Westerbork Observations of the Deep APERture Tile In
Focus (APERTIF) Northern-Sky (WODAN, Röttgering,
2010; Riggi et al., 2016) at the Westerbork Synthesis
Radio Telescope (WSRT; Netherlands, Oosterloo et al.,
2009; Apertif, 2016), and the Allen Telescope Array
(ATA) Transients Survey (ATATS, Croft et al., 2011) at
the ATA (California). The upper partition of Table 1
summarises the characteristics of these surveys.

Table 1 Radio surveys in the Northern (upper partition)
and Southern (lower partition) hemispheres, with columns
indicating the telescope (Telescope), radio survey (Survey),
percentage sky-coverage (Sky), resolution (δθres.), frequency
(ν), and depth (σrms).

Telescope Survey Sky δθres. ν σrms(
µJy

beam
)

VLA NVSS 82% 45′′ 1.4 GHz 450
FIRST 25% 5.4′′ 1.4 GHz 130
VLASS 82% 2.5′′ 3.0 GHz 70

GMRT TGSS-ADR 90% 25′′ 150 MHz 5
LOFAR LoTSS 50% 6′′ 144 MHz 70
WSRT WODAN 1% 15′′ 1.3 GHz 10
ATA ATATS 1.7% 150′′ 1.4 GHz 150
ASKAP EMU 75% 14′′ 940 MHz 15

WALLABY 75% 30′′ 1.4 GHz 1 600
VAST 1.8–24% 10′′ 1.1–1.4 GHz 10–500
RACS 83% 15′′ 890 MHz 250

MWA GLEAM 60% 2′ 200 MHz 50 000
MeerKAT MIGHTEE 0.05% 6′′ 0.9–1.7 GHz 1
SKAMP SUMSS 25% 45′′ 840 MHz 8

MGPS-2 25% 2′′ 840 MHz 8
ATCA SCORPIO 0.0097% 10′′ 2.1 GHz 30

ATLAS 0.0090% 6′′ 1.4 GHz 10

Surveys with Southern hemisphere telescopes include
those with ASKAP (Johnston et al., 2007, 2008), at the

Murchison Radio Observatory (MRO) in Australia, such
as EMU (Norris et al., 2011; Norris et al., 2021), Wide-
field ASKAP L-band Legacy All-sky Blind surveY (WAL-
LABY, Koribalski et al., 2020), Variables and Slow Tran-
sients (VAST, Banyer et al., 2012; Murphy et al., 2013,
2021), and Rapid ASKAP Continuum Survey (RACS,
McConnell et al., 2020; Hale et al., 2021). MRO is also
home to the Murchison Widefield Array (MWA, Lons-
dale et al., 2009; Tingay et al., 2013; Wayth et al., 2015)
which conducted the GaLactic and Extragalactic All-
Sky MWA (GLEAM, Wayth et al., 2015; Hurley-Walker
et al., 2017) survey. These facilities along with the Hy-
drogen Epoch of Reionisation Array (HERA, DeBoer
et al., 2017) and Karoo Array Telescope (MeerKAT,
Jonas, 2009, 2018), in the Karoo region South Africa,
are precursors to the SKA.2 MeerKAT is conducting the
MeerKAT International GigaHertz Tiered Extragalac-
tic Exploration survey (MIGHTEE, Jarvis et al., 2018;
Heywood et al., 2022). The lower partition of Table 1
summarises the characteristics of these surveys.

An earlier SKA precursor is the SKA Molonglo Pro-
totype (SKAMP, Adams et al., 2004), in South Eastern
Australia, which conducted the Sydney University Mo-
longlo Sky Survey (SUMSS, Mauch et al., 2003) and Mo-
longlo Galactic Plane Survey (MGPS-2, Murphy et al.,
2007) surveys. Other surveys of note include the Stel-
lar Continuum Originating from Radio Physics In Our-
galaxy (SCORPIO, Umana et al., 2015) and Australia
Telescope Large Area Survey (ATLAS, Norris et al.,
2006), conducted with the Australia Telescope Compact
Array (ATCA) facility,3 in New South Wales, Australia.

As radio telescope technology improves, radio surveys
are becoming rich in the number and types of sources
detected. EMU is expected to detect up to about 40 mil-
lion sources (Norris et al., 2011; Norris et al., 2021),
expanding our knowledge in areas such as galaxy and
star formation. VAST, operating at a cadence of 5s,
opens up areas of variable and transient research: e.g.,
flare stars, intermittent pulsars, X-ray binaries, magne-
tars, extreme scattering events, interstellar scintillation,
radio supernovae, and orphan afterglows of gamma-ray
bursts (Murphy et al., 2013, 2021). In short, surveys are
approaching a point where the data volumes make trans-
ferring and reanalysis challenging at best. This places
a strong demand on SF technology, requiring near- or
real-time processing strategies.

3 ANALYSIS

In this section we use Hydra to do a comparison study
between the Aegean (Hancock et al., 2012, 2018), Caesar
(Riggi et al., 2016, 2019), ProFound (Robotham et al.,
2018; Hale et al., 2019), PyBDSF (Mohan & Rafferty,

2https://www.skatelescope.org/
3https://www.narrabri.atnf.csiro.au

https://doi.org/10.1017/pasa.2023.29 Published online by Cambridge University Press

https://www.skatelescope.org/
https://www.narrabri.atnf.csiro.au
https://doi.org/10.1017/pasa.2023.29


4 Boyce et al.

2015), and Selavy (Whiting & Humphreys, 2012) SFs.
The image data consists of three 2◦×2◦ images. These are
the simulated-compact (CMP) and simulated-extended
(EXT) images from Paper I, and a subregion of a real
EMU image (see § 3.1 below). The simulated images are
detailed in Paper I, which also assessed the value of the
CDS and RDS metrics. The image sizes were restricted
to 2◦ × 2◦ in order to keep processing times manageable
through the development of Hydra.

In the analyses presented here, the total flux densities
and component sizes are obtained from the component
catalogues generated by each of the SFs. ProFound’s
total flux densities are computed through pixel sums,
whereas the other SFs obtain their total flux densities
and component sizes from Gaussian fits (see detailed
discussion in Paper I). ProFound characterises compo-
nents through flux-weighted measurements of its de-
tected segments (comparable to “islands”). Accordingly,
they are constrained to lie within segment boundaries.
This should be kept in mind when comparing total flux
densities and source component sizes derived from Pro-
Found with those of the other SFs, as they are measured
differently.

3.1 Image Data

The simulated images are described in Paper I, and
we summarise the key points here for convenience. The
simulated beam size is set to 15′′ FWHM at a 4′′/pixel
image-scale, with a 20µJy/beam (RMS) noise floor. The
CMP and EXT images consist of 9 075 sources at 15′′ in
size, and 9 974 sources varying from 15′′ to 45′′ in size
(with axis-ratios varying between 0.4 and 1), respectively.
The CMP sources have a maximum peak flux density of
1 Jy and minimum of 50 µJy. The EXT is a combination
of simulated compact and extended sources with maxima
of 1 Jy and 1 mJy, respectively. For our CMP and EXT
images, the ratios (σA) of the total component area
(i.e., πΣN

i=1aibi for N components with semi-major axes,
ai, and semi-minor axes, bi) to total image area (i.e.,
2◦ × 2◦) are 0.031 and 0.055, respectively, and are thus
still above the confusion limit.

Figure 1 shows a 2◦ × 2◦ cutout from the centre of an
EMU Phase 1 Pilot tile that we use for this analysis. This
region provides a good mixture of compact, extended,
and complex sources including diffuse extended emission.
The simulated images do not include diffuse emission.

3.2 Processing Speeds

In the course of our analyses we were able to use Hydra to
assess and compare the processing speeds of the different
SFs. Table 2 shows order of magnitude CPU times for one
PRD calculation step, during the optimisation process
(Paper I).

The wide range in CPU times is due to the back-

Figure 1. 2◦ × 2◦ central cutout of an EMU pilot tile.

Table 2 SF order of magnitude PRD CPU times (rounded
to one significant figure) for CMP, EXT, and EMU images.
The processing was done on a 2GHz 16 core (single threaded)
Intel Xeon Processor with 60G of RAM running Ubuntu
20.04.3 LTS.

PRD CPU Time (s)
SF CMP EXT EMU
Aegean 300 600 200
Caesar 1 000 4 000 500
ProFound 90 90 40
PyBDSF 90 90 40
Selavy 1 000 4 000 3 000

ground and noise estimators being used. For Caesar
and Selavy we are using robust statistics (Whiting &
Humphreys, 2012; Riggi et al., 2016, Paper I), which
has time complexity (Knuth, 2000) O(n log n). Aegean
also has the same time complexity, however it uses an
Inter-Quartile Range (IQR) estimator (Hancock et al.,
2012). PyBDSF uses the typical µ/σ estimator (Mohan
& Rafferty, 2015), which goes as O(n). ProFound uses
σ-clipping (Robotham et al., 2018), which is also of that
order. The CPU times can be seen to vary, sometimes
significantly, between images.

3.3 Typhon Statistics

3.3.1 Optimisation Run Results
Hydra’s Typhon software module (Paper I) was used
to optimise Aegean, Caesar, ProFound, PyBDSF, and
Selavy’s RMS and island parameters to a 90% PRD
cutoff (Table 3). Aegean, PyBDSF, and Selavy RMS box
parameters were pre-optimised (Table 4) using bane
(Hancock et al., 2018) as part of a process to minimise
the mean noise (i.e., µ-optimisation, Paper I). Here we
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Table 3 Typhon run statistics for 2◦ × 2◦ CMP and EXT and EMU images, with SF, image depth (D = D, S), RMS
parameter (nrms [σ]) island parameter, (nisland [σ]), source numbers (N), residual RMS [µJy/beam], and residual MADFM
(median absolute deviation from the median) [µJy/beam] columns.a The CMP and EXT results are reproduced from Paper I.

SF D CMP Sources EXT Sources EMU Sources
nrms nisland N RMS MADFM nrms nisland N RMS MADFM nrms nisland N RMS MADFM

Aegean D 3.074 3.070 6 016 20.0 19.0 3.074 3.070 4 112 67.0 56.0 2.676 2.674 8 538 91.0 26.0
Caesar D 3.074 3.000 4 084 19.0 16.0 3.206 3.000 3 618 54.0 44.0 2.809 2.806 7 838 27.0 23.0
ProFound D 2.412 2.409 4 997 18.0 16.0 2.412 2.409 3 730 52.0 43.0 2.279 2.277 11 484 24.0 19.0
PyBDSF D 2.809 2.806 5 991 22.0 19.0 2.809 2.806 4 688 106 54.0 2.941 2.938 8 292 1080 26.0
Selavy D 3.206 3.203 3 225 45.0 20.0 3.206 3.203 2 544 982 58.0 2.941 2.938 5 880 566 27.0
Aegean S 3.868 3.864 747 110 110 3.603 3.599 1 287 321 317 3.603 3.599 926 192 169
Caesar S 4.000 3.000 657 109 106 3.603 3.000 1 297 310 295 3.735 3.000 885 169 166
ProFound S 3.074 3.070 642 109 107 2.941 2.938 1 138 311 298 3.735 3.732 778 169 165
PyBDSF S 3.735 3.732 598 111 109 3.338 3.335 1 312 316 313 3.735 3.732 794 409 169
Selavy S 4.000 3.996 427 114 110 3.735 3.732 787 623 320 3.603 3.599 789 169 169
aThe MADFM estimators are normalised by 0.6744888 (Whiting, 2012).

present the EMU D/S-image results, with relevant CMP
and EXT image results from Paper I incorporated as
appropriate for comparison.

Table 4 Hydra µ-optimised Aegean, PyBDSF, and Selavy
box_size and step_size input parameters,a for CMP, EXT,
and EMU D/S-images. The CMP and EXT results have
been incorporated from Paper I.

Image Image µ box_size step_size
Type Depth (µJy/beam) (′′) (′′)
CMP D 21.81 240 120

S 108.2 180 88
EXT D 68.01 480 240

S 325.3 240 120
EMU D 35.28 720 270

S 171.23 216 80
aSelavy only accepts box_size.

Table 3 summarises the Typhon run statistics for our
image data. As noted in Paper I, the RMS and island
parameters are similar for CMP and EXT D-images for
a given SF; however, they are slightly lower for the real
D-image. As for the S-image, the simulated and real
parameters are similar.

Table 4 summarizes the EMU D/S-image optimized
RMS box parameters for Aegean, PyBDSF, and Selavy.
First, we note that µS/µD ∼ 5 for all images. This is
consistent with the factor of 5 noise increase for the
S-image. Secondly, µEMU

D ∼ 35 µJy/beam falls between
µCMP

D ∼ 22 µJy/beam and µEXT
D ∼ 68 µJy/beam (and

similarly for S-images), suggesting the simulated images
are well suited for our analysis.

Figure 2 shows stacked measures of D/S source detec-
tions (N) for the D/S-images, where we have included
the simulated data from Paper I. For the S-images, for
a given SF, N is similar between the CMP and EMU
sources, but slightly higher for EXT sources. With the

Figure 2. SF CMP, EXT, EMU D/S-image detection stacked
plots (from the N columns of Table 3).

exception of Selavy, N is similar between SFs. As for
the simulated D-images, the relative proportion of N
between SFs is roughly the same for CMP and EXT
sources, except for Selavy. In the EMU image there is
a significant increase in the relative proportion of N by
ProFound. This suggests a possible excess of spurious
detections, an increase in real detections missed by other
SFs, real detections being split into more components
than by other SFs, or a combination of these.

In Paper I we examined the ratios of deep-to-injected
(D : J ) and shallow-to-deep (S : D) source detections,
or recovery rates. Table 5 shows the S : D recovery rates
for our image data. The S : D recovery rates are roughly
of the same order between the CMP and EMU images,
indicating the real image has a large population of com-
pact sources (c.f. Figure 1). The recovery rate is higher
for the EXT image, by a factor around 2 − 3, likely a
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Table 5 S : D recovery rates.

SF CMP EXT EMU
Aegean 12.4% 31.3% 10.8%
Caesar 16.1% 35.8% 11.3%
ProFound 12.8% 30.5% 6.8%
PyBDSF 10.0% 28.0% 9.6%
Selavy 13.2% 30.9% 13.4%

reflection of the different flux density distribution of
sources in this image. This would seem to suggest that
the CMP image more closely models our real sample.
This is also evident when the real image (Figure 1) is
compared with the simulated images in Paper I.

Table 6 D/S (D) residual (res.) |RMS−MADFM|/MADFM
(%), RMS [µJy/beam], and MADFM [µJy/beam] statistics
extracted from Table 3.

SF/Res. D CMP EXT EMU
Aegean D 5.3% 19.6% 250.0%
Caesar D 18.8% 22.7% 17.4%
ProFound D 12.5% 20.9% 26.3%
PyBDSF D 15.8% 80.4% 58.5%
Selavy D 125.0% 69.3% 109.6%
RMS D 24.8 ± 10.2 56.4 ± 28.2 41.9 ± 28.8
MADFM D 18.0 ± 1.7 51.0 ± 6.3 24.2 ± 2.9
Aegean S 0.0% 1.3% 13.6%
Caesar S 2.8% 5.1% 1.8%
ProFound S 1.9% 4.4% 2.4%
PyBDSF S 1.8% 1.0% 142.0%
Selavy S 3.6% 94.7% 0.0%
RMS S 110.6 ± 1.9 376.2 ± 123.5 221.6 ± 94.1
MADFM S 108.4 ± 1.6 308.6 ± 10.2 167.6 ± 1.7

For simulated and real images there is some vari-
ability in the residual RMS values, with Selavy be-
ing consistently high for D-images and consistently
low for S-images. On the whole, however, the resid-
ual MADFMs are consistent between all SFs for a
given image. Table 6 summarises these results. The
|RMS − MADFM|/MADFM percentage differences are
a measure of the robustness of the SF residual mod-
els (which is also reflection of the Hydra optimisation
schema, Paper I).

3.3.2 Source Size Distributions
Figure 3 shows the major-axis distribution for the EMU
image data. Both the D and S source detections are
combined, as the S data provides additional informa-
tion. Although the underlying sources are in common
between D and S, the higher noise level means that the
SFs are operating on quantitatively different pixel values,
and may well derive different size estimates. Also, the
numbers of detections for S are relatively small (Fig-

ure 2), so incorporating them here is unlikely to bias
the results. Recall that size estimates for different SFs
use different methods and are not necessarily directly
comparable.

Figure 3. Major-axis distributions for EMU sources (showing size
distributions from both D and S image measurements together).
NB: Size estimates between SFs are not necessarily directly com-
parable as they are estimated using different methods (Paper I).

In Figure 3, all but one of the distributions peak at
the scale corresponding to the beam size, consistent with
point (i.e., compact) source detections. Caesar shows a
distribution systematically offset by a factor of about
1.5 toward larger sizes. The results for Aegean, PyBDSF,
and Selavy are similar, which is reassuring given that
they use similar approaches in fitting elliptical Gaussians
to source components (see Paper I). ProFound shows
an excess of very small sources. Some of these will be
due to noise spikes, and others to faint sources close to
the detection threshold (Table 3) where ProFound only
has a few pixels available from which to calculate its
flux-weighted sizes, leading to underestimates. Caesar’s
excess at small sizes is less than that from ProFound,
although were the Caesar results to be shifted left by the
factor 1.5 noted above, it would be roughly comparable.
The origin of small sizes reported by Caesar might be
due to deblending issues, as it has a relatively lower
source detection number (Figure 2). In general, all SFs
with detections below the beam size are expected to be
contaminated, to some degree, by noise spikes.

As for EXT images, they have a similar behaviour to
the EMU case, except to a lesser degree (Paper I). In
the CMP case, there are significantly fewer detections
below the beam size, with some overestimates of source
sizes in the case of ProFound and PyBDSF. The overes-
timates are most likely due to nearby noise peaks being
incorporated into a source fit, artificially enlarging the
size.
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Figure 4. CMP and EXT CD (a and g), RD (b and h), CS (c and i), RS (d and j), CDS (e and k), and RDS (f and l) vs. S/N. These
results are reproduced from Paper I, Figures 14, 15, and 16.

3.4 Completeness and Reliability

In Paper I we explored CD (and CS) and RD (and RS)
for CMP and EXT sources; for ease of discussion and
comparison here, we have duplicated the relevant results

in Figure 4, along with the new measurements from the
EMU data in Figure 5. Aegean was found to have the
best C statistic followed PyBDSF, ProFound, Caesar,
and Selavy. Selavy, followed by Caesar, tended to miss
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bright sources, and were less reliable (R) at high S/N.
In general, the statistics for all SFs are poorer for the
EXT case, but followed the same performance trends
as the CMP case. Some of this can been attributed to
confusion.

Figure 5 shows the newly measured CDS and RDS
metrics for the EMU image. The results are similar
to the CMP image case (Figure 4). Here, the detec-
tions appear fairly complete for all SFs, with high com-
pleteness (CDS ≳ 0.9) above S/N ≳ 10 dropping to
CDS ∼ 0.5 by S/N ∼ 5. Reliability is also generally high
(RDS ≳ 0.9) for most SFs, although Selavy’s perfor-
mance here is notably poorer (0.7 ≲ RDS ≲ 0.9) across
almost the full range of S/N. All SFs drop in reliability
below S/N ∼ 10 − 20.

Figure 5. EMU-image CDS vs. S/N (a) and RDS (b) vs. S/N,
with S/N expressed as D-signal/S-noise and S-signal/S-noise,
respectively.

3.5 Flux Density Ratios and nσ Scatter

Figure 6 shows the flux ratios, Sout/Sin, for each of
the SFs. For the simulated images, Sin (expressed as

S/N) represents the J -signal over the D-noise. For the
real images it represents the D-signal over the S-noise.
Sout represents the detected measurement. The horizon-
tal (dotted) lines represent Sout = Sin, and the solid
and dashed curves about these lines are the 1σ and
3σ deviations from Sin, respectively. The dot-dashed
curves are the detection thresholds (i.e., the RMS pa-
rameters, nrms, in Table 3, corresponding to 90% PRD),
and the dotted curves represent nominal 5σ thresholds
(c.f. Hopkins et al., 2015). The sharp vertical cut off
below S/N ∼ 2 for the CMP images is a consequence of
having no artificial input sources fainter than that level.

The form of the flux ratio diagrams for the EMU
image follow that of the simulated images, however its
DS source numbers are lower due to relying on detections
in the S-image. Similar DS flux ratio statistics can be
measured for the simulated cases (not shown). We use
D diagnostics for the simulated images, as they are the
most robust, whereas the S and DS metrics provide no
extra useful information.

For the simulated cases all SFs, with the exception of
Selavy, are seen to detect sources down to the specified
RMS threshold (dot-dashed line). Selavy was given a
∼ 3.2σ threshold (Table 3), but only appears to recover
sources down to a 5σ level (Figure 6 (m) and (n)). For the
real image case, though, Selavy does appear to recover
sources down to the nominal S/N threshold.

Figure 7 is a complementary diagnostic to Figure 6,
and shows the corresponding false-positive distributions.
This emphasises in another way the SF characteristics we
have seen in earlier R distributions (§ 3.4). Specifically,
for CMP sources (i.e., comparing Figures 4b and 7a),
Aegean picks up false detections predominantly close to
the S/N threshold, with ProFound and PyBDSF having
false detections peaking between about S/N∼ 5 − 10,
arising from blended sources and overestimated source
sizes. The false sources seen by each SF correspond to
their deficit in R (Figure 4 and Figure 5). In particular,
Aegean displays higher levels of completeness, but at the
expense of reliability at low S/N, with the converse be-
ing true for Selavy and Caesar. In this analysis, Aegean
shows arguably the best performance, as is evident from
its false-positive distribution being limited to low S/N,
generally reliable flux densities seen in the limited scat-
tering beyond Sout/Sin > 3σ, and good completeness to
low S/N. This is not surprising, though, as Aegean is well
designed for identifying and fitting point sources, and
the simulated data used here do not include anything
else.

The false-positive distributions for the EXT case (cf.,
Figures 4h and 7b) have similar characteristics to the
CMP case (Figures 4b and 7a), but are broadened some-
what. As for the real case (Figure 7c), the distribution
for Selavy becomes more prominent, as reflected in its
RDS (Figure 5b).

Pleasingly, none of the SFs show any systematic over-
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Figure 6. Flux density ratios (Sout/Sin) for CMP (left), simulated-extended (middle), and real (right) sources for Aegean (a, b, and c),
Caesar (c, e, and f), ProFound (g, h, and i), PyBDSF (j, k, and l) and Selavy (m, n, and o) vs. S/N, expressed as J -signal/D-noise and
D-signal/S-noise for simulated and real sources, respectively. The 1σ (solid) and 3σ (dashed) curves are RMS noise (σ) deviations from
the flux-ratio = 1 lines (dotted). Also shown are the detection threshold (nrms; dot-dashed curves) and nominal 5σ threshold (dotted
curves). These curves are annotated in (c).
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Figure 7. False positives vs. S/N for CMP (a), EXT (b), and real (c) sources, with S/N expressed as J -signal/S-noise and D-signal/S-
noise for simulated and real sources, respectively.

Table 7 3σ scatter (s3σ(Ŝi), Equation 2) at Ŝi = 3, 5, 10, for SF CMP, EXT, and EMU source flux density ratios (Figure 6).
Also shown are averaged 3σ scatters.

3σ Scatter Averaged 3σ Scatter
CMP EXT EMU ⟨[s3σ(3), s3σ(5), s3σ(10)]⟩

SF s3σ(3) s3σ(5) s3σ(10) s3σ(3) s3σ(5) s3σ(10) s3σ(3) s3σ(5) s3σ(10) CMP EXT EMU
Aegean 3.49% 3.91% 4.27% 9.20% 7.98% 7.48% 3.40% 4.88% 5.59% 3.89 ± 0.32% 8.22 ± 0.72% 4.62 ± 0.91%
Caesar 6.93% 7.11% 6.65% 11.02% 9.92% 9.08% 4.62% 4.33% 6.76% 6.90 ± 0.19% 10.01 ± 0.79% 5.24 ± 1.08%
ProFound 14.55% 16.70% 21.74% 14.20% 15.93% 20.28% 6.60% 6.94% 10.72% 17.66 ± 3.01% 16.80 ± 2.56% 8.09 ± 1.87%
PyBDSF 8.85% 6.20% 6.64% 10.80% 9.55% 9.57% 3.43% 3.18% 5.88% 7.23 ± 1.16% 9.97 ± 0.58% 4.16 ± 1.22%
Selavy 6.43% 6.92% 6.63% 10.25% 8.91% 9.06% 3.94% 3.77% 5.99% 6.66 ± 0.20% 9.41 ± 0.60% 4.57 ± 1.01%

estimate or underestimate of the flux densities (Fig-
ure 6). To quantify the reliability of the flux density
measurements, we focus on the scatter in the distribu-
tion of Sout/Sin as a function of S/N. We first define
the fraction of sources rnσ(Ŝi) above a S/N limit, Ŝi,
with Sout/Sin lying between 1 − nσ and 1 + nσ:

rnσ(Ŝi) =

∣∣∣∣{Sout

Sin

∣∣∣∣1− n

Ŝin

≤ Sout

Sin
≤ 1+ n

Ŝin

∋ Ŝin ≥ Ŝi

}∣∣∣∣∣∣∣∣{Sout

Sin

∣∣∣Ŝin ≥ Ŝi

}∣∣∣∣ ,

(1)
where S represents flux density, and Ŝ represents S/N.4
Using this, we define the scatter in Sout/Sin outside an
nσ range as

snσ(Ŝi) = 1 − rnσ(Ŝi) . (2)

Table 7 shows the compiled statistics for 3σ scatter.
For the CMP case, Aegean and Selavy tend to show

the least scatter. The scatter for PyBDSF and Selavy
is slightly higher than that reported by Hopkins et al.
(2015), who saw scatters above a 5σ detection threshold
of 4.9% for PyBDSF and 3.3% for Selavy, compared to
the values of ∼ 6% seen here.

On the whole, the scatter is comparable between the
CMP and EMU sources, with the highest scatter for

4So Sout/Sin = Ŝout/Ŝin.

EXT sources. Aegean tends to deliver the least scatter
in the flux density estimates, with Caesar, PyBDSF,
and Selavy showing similar results at the next level, and
ProFound always with the highest scatter. The results
in the EMU image appear to show the least scatter
overall, but recall that these measurements result from
comparing the detections in the S-image against those
in the D-image for each SF against itself. These are
not directly comparable with simulated image cases
where the scatter compares measured against known
input values. The implication here is that flux density
estimates inferred from D/S comparisons may not reflect
the full extent of the true underlying uncertainties.

3.6 Hydra Viewer Cutout Case Studies

Here we present a gallery of Hydra Viewer cutouts, for
the purpose of analysing frequently encountered anoma-
lies and artifacts utilising the metrics explored in the
previous subsections. They have been sorted into broad
categories: edge detections (sources near image edges),
blending/deblending, faint sources, component size er-
rors, bright sources, and diffuse emission. With the ex-
ception of diffuse emission (seen only in the real image),
all such artefacts are found in the SF catalogues in all
of the images, to varying degrees.
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Figure 8. Edge Detection Infographic: Edge detection example cutouts for (a) CMP D-image (from the S/N ∼ 1 600 ± 110 bin of
CD , Figure 4a), (b) CMP S-image (from the S/N ∼ 42.6 ± 2.9 bin of CS , Figure 4c), and (c) EXT D-image (from the S/N ∼ 0.318 ± 0.036
bin of CD, Figure 4g). In examples (a) and (b), Caesar and Selavy failed to detected the injected sources at match_ids 4 and 7270,
respectively. In example (c), there is an injected source at match_id 6607 (S/N ∼ 0.34) which is detected by ProFound (S/N ∼ 4.82)
and PyBDSF (S/N ∼ 6.39). The remaining detections, by both SFs, at match_ids 6608 and 6609 are spurious, due to noise fluctuations.

3.6.1 Edge Detections
Detecting sources at or near the edges of images is
problematic, as it can be difficult to estimate the noise
and sometimes the source itself is truncated. For sources
truncated near an edge, Aegean tends to extrapolate
their shape, while ProFound estimates the remaining
flux, and PyBDSF treats them as complete sources: e.g.,
for the CMP source in Figure 8a, Caesar and Selavy
do not record this source, and hence it contributes to
an underestimate of CD at S/N ∼ 1 600 ± 110 for those
finders (Figure 4a). Here S/N ∼ 1 519 for the injected
source, and 621, 263, and 277 for Aegean, ProFound,
and PyBDSF, respectively. So the source flux-density is
underestimated. This does not appear as degradation
in CD, but is reflected in the scatter of the flux-ratio
(Figure 6).

SF performance is better when sources are just touch-
ing an edge: e.g., for the CMP source in Figure 8b. Here
again Caesar and Selavy do not report this source, which
falls in the CS S/N ∼ 42.6 ± 2.9 bin (Figure 4a). The
other finders detect it and estimate the flux density for
this source reliably. The injected source S/N is ∼ 41.66,
and it is measured at 44.82, 44.92, and 45.19 for Aegean,
ProFound, and PyBDSF, respectively.

Figure 8c shows an example of noise spikes appearing
as low S/N detections, surrounding an S/N ∼ 0.34 EXT
source, near an edge. Only ProFound and PyBDSF make
detections, and only in the D-image. There is little
difference in apparent flux density between the injected
source detection at match_id 6607 and the spurious
adjacent detections at match_ids 6608 and 6609.

A cursory scan suggests Caesar finds sources at im-
age edges less often than other SFs, and Selavy tends
not to identify them at all. Most likely, the island is
there, but the fit has failed and no source component

is recorded.5 As ProFound is capable of characterising
irregularly shaped objects it tends to perform well for
such truncated sources.

3.6.2 Blended Sources
For the simulated images there are example cases of unre-
solved compact sources: e.g., Figure 9a. Here match_ids
6200, 6202, and 6203, with injected flux densities of
0.0529, 0.4032, and 0.6928 mJy, respectively, appear as
a single compact unresolved source. All SFs detect it,
with measured flux densities of 1.1118, 1.1113, 1.2481,
1.1296, and 1.1230 mJy, for Aegean, Caesar, ProFound,
PyBDSF, and Selavy, respectively. These values are con-
sistent with the total injected flux ∼ 1.1489 mJy. So
the total flux is accounted for. Regardless, this causes a
degradation in the CD; in particular, the S/N ∼ 20 bin
of Figure 4a.

Blending is also encountered with overlapping point
and extended sources, with the former having slightly
lower S/N. Figure 9b shows an example of a very low
S/N detection being influenced by an even fainter adja-
cent source. Here, only ProFound and PyBDSF, which
have the lowest detection thresholds (Table 3), make
detections, and only in the D-image. Both SFs treat the
two adjacent injected sources as a single source. This
leads to a degradation in CD, but not RS (Figure 4a–b).

For simple cases of real sources with diffuse emission,
such as a compact object with a diffuse tail, Aegean,
ProFound, PyBDSF, and Selavy tend to characterise
them with a single flux-weighted component position,
whereas Caesar tends to resolve them in D-images, but
not S-images where the diffuse emission is diminished:
e.g., Figure 9c–f. Here Caesar decomposes this object

5NB: Island output information is not completely supported
in the current version of Hydra.
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Figure 9. Blended Sources Infographic: CMP (a–b) and real (EMU; c–f) D-image examples of blended sources. In example (a)
(from the S/N ∼ 19.6±1.3 bin of CD, Figure 4a), only ProFound missed detection of the isolated source at match_id 6201. The remaining
injected sources overlap to make up a single unresolved compact object, which is identified as match_id 6203 by all SFs. In example
(b) (from the S/N ∼ 0.318 ± 0.036 bin of CD, Figure 4a), there are two injected sources at match_ids 6665 (S/N ∼ 0.070) and 6666
(S/N ∼ 0.336). Only match_id 6666 is detected by ProFound (S/N ∼ 7.468) and PyBDSF (S/N ∼ 12.446). Examples (c) and (d) show a
D-image and S-image cutouts, respectively, of a compact object with a diffuse tail. Only Caesar is able to resolve the D-image (into two
components; top), but not the S-image (bottom) as the diffuse emission is washed out. Examples (e) and (f) are the corresponding a
D-residual and S-residual image cutouts in the previous example, respectively, for Caesar. All SFs make D and S detections at match_id
742. Caesar separately detects the bright peak at match_id 743 in the D-image, but with no corresponding S match. This contributes to
a reduction in the inferred CDS for Caesar at S/N ∼ 3.4 in Figure 5a.

into two sources in the D-image (e), but not in the S-
image (f). The remaining SFs detect this as a single
source in both the D and S images. The diffuse emission
is washed out in the S-image, leading to a slight (∼ 3%)
drop in the overall S/N.

3.6.3 Deblending Issues
Deblending issues can occur in systems having a rela-
tively low S/N neighbour to a brighter object, causing a
positional fit which is offset from the true centre of the
bright object: e.g., Figure 10a. This leads to a degrada-
tion in RD (and RDS). In such cases, PyBDSF tends to
bias its position estimates towards flux-weighted centers.
The other SFs tend to be less biased in such a fashion:
e.g., Figure 10b. ProFound tends to extend its compo-
nent footprint to include faint sources: e.g., Figure 10d.

Figure 11 shows an example of an injected source

with a flux density of ∼ 291 µJy which is erroneously
measured by Caesar as ∼ 0.664 µJy. This is likely to be
a consequence of a poor deblending of the two adjacent
sources, initially identified by Caesar as a single island.
The position is accurate, so it is counted as a correct
match, but because RD (Figure 4b) is calculated using
the measured S/N, this source contributes to RD at the
unreasonably low value of S/N ∼ 0.033. For this source,
Aegean, PyBDSF, and Selavy correctly estimate the flux
density as 281.9+4.2

−8.4 µJy, and it contributes to RD for
those SFs at S/N ∼ 12. It is worth noting here that
requiring flux-density matching in the reliability metric
calculation would lead (for Caesar) to this source being
deemed a false detection, although it has been detected
at the correct location. ProFound does not separately
detect match_id 6668 (Figure 10d) as it has blended it
with match_id 6669. Comparing Figure 11 and 10d we
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Figure 10. Deblending Issues Infographic: CMP PyBDSF D-residual-image (a) with Selavy S-residual-image (b) (from clump_id
875), CMP D-image (c) with ProFound D-residual-image (d) (from clump_id 4672), and real (EMU) D-image (e) with Aegean D-residual-
image (f) (from clump_id 875) cutout examples of deblending issues. In example (a), only PyBDSF makes a detection at match_id 1287.
In example (b), only Selavy makes a detection at match_id 1287. In example (c–d), ProFound provides a single flux-weighted component
that blends these two adjacent sources, and which is best matched to match_id 6669. This leads to the result that match_id 6668 is
deemed undetected in the CD statistics (Figure 4a). In example (e–f), Aegean overestimates the extent of the vary faint (diffuse) source
at match_id 1698 (bottom image, middle): i.e., (a, b, θ) ∼ (130′′, 57.6′′, 45.8◦), with major, minor, and position-angle components,
respectively. There is no corresponding S match. This leads to a degradation in the CDS S/N ∼ 25 bin of Figure 5a.

can see the similar islands detected by ProFound and
Caesar, although ProFound’s boundary is tighter, which
provides a clear indication of why only a single match
was identified.

Figure 10e–f shows an example of a compact system
with two roughly opposing diffuse tails, along with a faint
diffuse neighbour to the south. All SFs detect the core at
match_id 1697, in both the D and S images: e.g., Aegean
in Figure 10f, and PyBDSF in Figure 12. Caesar and
Selavy further detect aspects of the diffuse emission, with
Caesar fitting it as an extended halo (with its fit slightly
biased towards the faint neighbour at match_id 1698)
and Selavy as a tail (match_id 1699), but only in the D-
image. As for the faint neighbouring source, only Aegean
and PyBDSF detect it (match_id 1698), and only in the
D-image (Figure 10f). Aegean overestimates its extent
(leading to an overestimated S/N ∼ 25), likely due to
inclusion of emission from the diffuse tails in its fit. As
there are no corresponding S detections for match_ids
1698 and 1699, they contribute to a degradation in CDS .

ProFound, on the other hand, includes both the bright
source and the faint southern neighbour together in
the D-image (with its fit slightly biased towards the
faint source, S/N ∼ 154) but detects only the bright
source core in the S-image (S/N ∼ 145). This is a further
example of the impact on CDS of extended or faint diffuse
emission, characterised differently by different SFs in
the D-image but absent in the S-image, resulting in
mismatches between the reported sets of sources.

3.6.4 Noise Spike Detection
All of the SFs detect noise spikes at low S/N that are
impossible to distinguish from true sources, e.g., Fig-
ure 13. Such cases must be handled statistically, with a
knowledge of the reliability of a given SF as a function of
S/N, in order to treat the properties of such catalogues
robustly. As image (and survey) sizes become larger,
such false sources will be detected in higher numbers, as
the number simply scales with the number of resolution
elements sampled (Hopkins et al., 2002).
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Figure 11. Caesar clump_id 4627 D 0.916′ × 0.916′ residual-
image cutout for simulate-compact sources. Caesar underestimates
the flux density for match_id 6668 (∼ 0.664 µJy, compared to
∼ 291 µJy for the injected source), resulting in an artifact in
the calculated reliability, placing this source at an artificially
low S/N. This information was extracted from the RD S/N ∼
0.0331 ± 0.0036 bin (Figure 4b).

3.6.5 Bright, High S/N Sources Missed
Figure 14 shows an EXT D-image example of a bright
source (clump_id 4142 /w S/N ∼ 226) near a fainter
source to the south (clump_id 4141 /w S/N ∼ 19),
representing a high CD S/N ∼ 220 bin (Figure 4g) failure
mode. All SFs detected the bright source, except for
Caesar. Only Selavy detects the fainter source.

Even at the brightest end, sources can be missed by
SFs. An example is Selavy failing to detect one of two
injected sources in the CD S/N ∼ 4130 ± 460 bin (Fig-
ure 4g): i.e., it fails to detect the first of (S/N)Injected

D ∼
4320 and 4540 at clump_ids 2363 and 270, respectively.
Oddly, Selavy does detect this source in the S-image
(matching (S/N)Injected

S ∼ 1365 with ∼ 1364), suggest-
ing the failure in the D-image may be related to its
background estimation in this case.

3.6.6 Simulated Anomalies
Figure 15 shows an example of injected sources spanning
0.28 < S/N < 80 in clump_id 50, with details in Table 8,
for our EXT D-image. This is an informative clump, as
it encapsulates a moderately rich environment in which
to explore detection anomalies. The D-residual-image
cutouts from the four SFs that make detections are
shown in Figure 16. All SFs make detections in the D
and S images, except for Selavy which only finds sources
in the S-image. This may arise from Selavy’s underlying
Duchamp-style thresholding (Whiting, 2012).

Figure 12. PyBDSF clump_id 1472 D (top) and S (bottom)
1.69′ × 1.69′ residual-image cutouts for real (EMU) sources.
PyBDSF fits the core of the source shown in Figure 10a, while
leaving out the diffuse emission (i.e., it over-subtracts), in both
D and S images. This contributes to the CDS S/N ∼ 152 bin
(Figure 4a).

For simulated images, based on the flux ratios in
Figure 6, Selavy appears to produce a catalogue with
an effective detection threshold of 5σ, regardless of its
RMS parameter setting. Recalling that the EXT image
contains extended-component elements with a maxi-
mum peak flux density of 1 mJy, as opposed to 1 Jy for
its compact-component elements (§ 3.1), this suggests
the issue may be related to the extended low surface
brightness emission around such objects. There is a
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Figure 13. Noise Spike Detection Infographic: CMP D-image (a), EMU PyBDSF D-residual-image (b), and EMU D-image (/w
ProFound residual-image inset) (c) cutout examples of noise spike detection. In example (a) (from the S/N ∼ 12.4 ± 1.4 bin of RD,
Figure 4b), the detections within this clump are anomalous, as there is no injected source. In example (b), Aegean and PyBDSF detect
a D source (match_id 1549) here, although visually this object is consistent with a noise spike. With no corresponding S detection, such
results contribute to the inferred CD at low S/N (Figure 5a). Example (c): At first glance, match_id 9535 appears to be part of a faint
ring structure, something for which ProFound is uniquely suited. The size of the emission is on the order of common EMU’s beam size
(18′′), making it consistent with either a noise spike or a faint compact source.

Figure 14. 3′ × 3′ image cutout of clump_id 2071 of the EXT
D-image. All SFs detected the injected source (S/N ∼ 226) at
match_id 4142, except for Caesar. Only Selavy detects the adjacent
fainter source, match_id 4141, where (S/N)injected ∼ 19. This
information was extracted from the CD S/N ∼ 220 ± 25 bin of
Figure 4g.

roughly 10% degradation in CD, comparing the results
for CMP sources alone (Figure 4a) to the EXT sources
(Figure 4g). While this degradation approximates the
fraction of injected EXT sources, not all the missed
sources are extended. It does seem likely, though, that
it is the EXT sources that contribute disproportionately
to the shortfall in CD.

Figure 15. 3′×3′ cutout of clump_id 50 of the EXT D-image. The
orange ellipses indicate injected sources, summarised in Table 8.
The associated SF detections are shown in Figure 16. These sources
span 0.28 < S/N < 80 in CD (Figure 4h).

Comparing CS (Figure 4i) and CD (Figure 4g) for
EXT sources, the distributions are consistent with the
addition of the 5σ noise level (shifting the S/N axis by
5 units), for most SFs (e.g., the value of CS at S/N = 10
is similar to the value of CD at S/N = 5). Selavy shows
a different behaviour in that its performance in the S-
image appears to be better than in the D-image. At
the lowest S/N end this is related to faint low surface
brightness objects lying below the detection threshold
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Figure 16. 2.51′ × 2.51′ cutout, without (top) and with (bottom) annotations, of clump_id 50 of the EXT D-image. The corresponding
injected sources are shown in Figure 15. Aegean (green), Caesar (cyan), ProFound (red), and PyBDSF (gold) make D and S detections
at match_ids 110 and 114 only, except for Selavy which only finds them in the S-image (not shown).

Table 8 Summary of injected EXT-sources in Figure 15. The
Detected column indicates if at least one SF has detected an
injected source.

CD S/N Bins Injected RMS match_id Detected
(Fig. 4g) S/N (mJy/beam) (Fig. 15) (Fig. 16)

0.318 ± 0.036 0.287 0.130 113 False
0.784 ± 0.088 0.810 0.129 112 False
2.42 ± 0.27 2.30 0.115 109 False
3.80 ± 0.43 4.01 0.114 111 False
36.2 ± 4.0 37.4 0.0949 110 True
71.2 ± 8.0 69.2 0.114 114 True

in the S-image, and not contributing to the CS and CD
distributions. At moderate and high S/N, though, the
reason for the difference is less clear. It may be that
faint extended emission around bright objects misleads
Selavy in the D-image, by being pushed below the noise
level in the S-image it makes the bright central region
of those sources more easily detectable.

It is clear from the details in Table 8 that the sources
not explicitly detected by any SF are at low S/N. Their
detection is also confounded by the overlap with the
brightest source (match_id 114). Aegean and ProFound
have handled this by extending the size of the detection
associated with match_id 114, influenced by the addi-
tional low S/N emission. This leads to over-estimation
by Aegean of the source flux density and mischaracteri-
sation of its orientation (evidenced by the oversubtrac-
tion in its residual). ProFound simply associates all the

flux with the single object, which leads to a flux den-
sity overestimate compared to the input flux density of
match_id 114. Caesar searches for blobs nested inside
large islands, allowing a more accurate characterisation
of such overlapping sources. These residual statistics
are demonstrated in Table 3. Here the residual statistic
values are significantly lower for ProFound and Caesar
than the other SFs.

3.6.7 Oversized Components
For CMP sources, PyBDSF sees the largest number
of false detections within the RD S/N ∼ 12 bin of
Figure 4b (a false/true ratio of 86/522). Figure 17a
shows an example of one of these, illustrating a major
failure mode for PyBDSF. It tends to overestimate source
sizes due to inclusion of nearby noise spikes. At low or
modest S/N even small noise fluctuations can lead it
to expand its island in fitting to the source. Figure 17b
shows another example, here with an excessively large
size (∼ 67′′), associated with the dip in the RS S/N ∼ 12
bin of Figure 4d. Figure 17c shows an example where
a real injected source is the centre of a 10-component
PyBDSF clump, spanning ∼ 156′′.

Turning to RD (Figure 4b) and RS (Figure 4d), at
the lowest S/N levels (S/N ≲ 3) Caesar appears to be
reporting large numbers of false sources, leading to poor
reliability. All of these artifacts are of the same nature
as shown in Figure 17d. They spatially coincide with the
injected sources, but overestimate the flux density due
to fitting an extreme ellipse with artificially large major
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Figure 17. Oversized Components Infographic: CMP PyBDSF D ((a) and (c)) and S (b) residual-image, Caesar D (d) residual-
image, and EXT D-image (e) and Caesar D-residual-image (f) cutout examples of oversized components. Example (a) (from the
S/N ∼ 12.4 ± 1.4 bin of RD, Figure 4b) is a spurious detection as there is no injected source. In example (b) (from the S/N ∼ 12.4 ± 1.4
bin of RD, Figure 4b), the detection by PyBDSF at match_id 1225 is spurious, as there is no injected source at this location. In example
(c), the large-footprint detection by PyBDSF at match_id 2796 demonstrates one of its most frequent failure modes. Its flux density is
1.84 mJy, as compared to 0.0798 mJy for the injected source. In example (d) (from the S/N ∼ 20.7 ± 1.4 bin of CDS , Figure 4a), Caesar’s
Gaussian fit at match_id 5806 extends well beyond its island. Its flux density estimate is 2.18 mJy compared to 0.14 mJy for the injected
source. (For clump_ids 5804 and 5805 the injected flux densities are 0.07 mJy and 0.12 mJy, respectively.) In examples (e–f) (from the
S/N ∼ 259 ± 39 bin of CS , Figure 4a), Caesar overestimates the flux density at match_id 2639, with 18 mJy, compared to 0.074 mJy for
the injected source. Its respective semi-major and semi-minor axes are 920′′ and 11′′, compared to 20′′ and 10′′ for the injected source.

axis. A catastrophic example of this effect is found in
the CS S/N ∼ 260 bin of Figure 4g for EXT sources,
shown in Figure 17 (e–f).

3.6.8 Oddities
There are some oddities that occur less frequently, such
as Caesar underestimating flux (Figure 10d) or Selavy
detecting bright sources in the S, but not D (Figure 16),
images, where all the other SFs succeed. In the former
case, it is a deblending issue with mixtures of low and
high S/N sources in close proximity. The latter case is not
easily explained, but may be related to poor background
estimation.

3.7 Diffuse Emission Case Study

We now consider an example of a source with a combi-
nation of complex structures. The system is introduced

in Figure 18, with bright compact features labelled (a)
through (e), and diffuse extended emission as (χ), (ϵ),
and (λ). We distinguish the main complex, broadly re-
ferred to herein as a bent-tail source, although the details
of its nature are likely much more complex, from the
bright adjacent component. This main complex is given
the label B2293 (not marked in the figure, with the pre-
fix “B” for “bent-tail”). The bright adjacent component
(labelled C2294, with the prefix “C” for “compact”) is
identified here as a separate clump. While the emission
in C2294 seems highly likely to be related to the emission
from B2293, our approach to associating detections into
clumps relies on their component footprints touching or
overlapping. The compact nature of C2294 leads the SFs
to characterise it with ellipses that do not overlap with
any ellipse in B2293, and these are consequently marked
as independent clumps. The source at match_id 2667,
indicated in the figure, does end up being associated
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with clump B2293, although it is not physically associ-
ated with the complex system (B2293+C2294). Details
are given in Table 9, where we have chosen to list the
MADFM as a representative statistic to characterise
residuals (e.g., Riggi et al., 2019), although the other
statistics are still computed, and give similar results.
This complex of emission provides a good illustration of
how the different SFs perform with multiple overlapping,
extended and diffuse structures.

C2294 corresponds to match_id 2668 of clump_id
2294. The clump information for this object is given in
the lower partition of Table 9. We have not included the
cutout images for this system (whose SF components
are greyed out in Figure 19e–h), as, in general, we are
focusing our attention on the complex source (B2293).
The following discussion arises from consideration of the
detections and residuals shown in Figures 18 and 19, and
Table 9, with explicit reference where clarity is required.

The interpretation of (ε) and (λ) as purely diffuse
emission is subjective, based only on their appearance
in this radio image, without consideration of possible
optical or infrared counterparts. Similarly, the compo-
nent labelled (χ) appears subjectively to be a bright
extension from (a). The annotations (a) through (e) are
likewise subjectively identified as compact components.
This choice is adequate for the current discussion given
that this is the same information being used by the SFs.

Aegean cleanly identifies C2294 (match_id 2668) and
the component at (a) (match_id 2660) in the D and
S images. While it identifies several additional compo-
nents (match_ids 2661, 2662, 2663, 2664, 2665, 2666) to
characterise the complex of compact and diffuse emis-
sion, these poorly model the emission itself as evidenced
in the residuals, for both D and S images. It is clear
from the annotations, too, that the components identi-
fied in the S-image (match_ids 2661, 2663, 2664 only)
are markedly different from their counterparts in the
D-image. The component sizes tend to overestimate the
extent of the true emission and are often poorly aligned
with the structure. Such mismatches, as discussed above,
lead to a reduction in CDS and RDS . For these complex
structures, Aegean generally identifies source positions
biased towards flux-weighted centers, with fitted compo-
nent sizes compensating for the total flux within. This
affects the position and size accuracy of the region it is
trying to characterise.

Caesar robustly identifies C2294 (match_id 2668) and
(a) (match_id 2660) in the D and S images. In the
D-image, (χ) is incorporated into its estimate of the
source (a). In the S-image, it resolves the two separately
into (a) and (χ) (match_id 2667). Recall that Caesar is
designed to be sensitive to diffuse emission (Riggi et al.,
2016), which is evident in the extent of its residual-image
footprint (representing the parent-blob, Figure 19). It
correctly characterises the extent and overall shape of
the emission. The individual components (child-blobs)

Figure 18. D (top) and S (bottom) real image (EMU) cutouts
of clump_id 2293 (see also Figure 19 and Table 9). The elements
of the main clump (referred to as B2293) are labelled (a) through
(e) for bright compact emission, and (χ), (ϵ), and (λ) for diffuse
emission. Also shown is match_id 2667, which is identified as part
of this clump, although not physically associated. While highly
likely to be related to the emission from B2293, the clump labelled
C2294 is separated in our analysis. Its compact nature leads the
SFs to characterise it with ellipses that do not overlap with any
ellipse in B2293, resulting in these being labelled as independent
clumps.

are determined in its second iteration. Refinement of
the parameters for that step may lead to improvements
in the way the various components are characterised.
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Figure 19. 4.73′ × 4.73′ D and S real-image (a–b), and Aegean (c–d), Caesar (e–f), ProFound (g–h), PyBDSF (i–j), and Caesar (k–l)
residual-image cutouts for clump_id 2293 of the B2293+C2294 bent-tail system. Only the Caesar and ProFound cutouts are annotated
with match_id information (Table 9) for clarity.
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Table 9 Cluster table information for clump_ids 2293 (upper partition) and 2294 (lower partition). The cutouts shown in
Figure 19 are for the upper partition. The source component footprint parameters, a, b, and θ, correspond to the major axis,
minor axis, and position angle, respectively. The S/N is calculated using the noise in the S-image, estimated using bane.
The MADFMs are computed within the source component footprints and normalised with respect to their areas for the
residual images. The values for ProFound are its flux-weighted estimates (Paper I).

Match SF Image RA Dec a b θ S S/N MADFM
ID Depth (◦) (◦) (′′) (′′) (◦) (mJy) mJy/(′2beam)

2660 Aegean Deep 320.614 -56.011 33.75 22.85 82.447 51.0417 105.4360 2.4513×103

2660 Aegean Shallow 320.614 -56.012 31.88 22.87 82.612 49.0351 101.2908 1.0319×102

2660 Caesar Deep 320.614 -56.011 53.35 19.46 -79.362 52.5567 108.5653 5.5643×104

2660 Caesar Shallow 320.612 -56.012 39.18 19.61 -76.716 37.7645 79.6115 5.0744×103

2660 ProFound Deep 320.619 -56.013 43.97 26.57 109.235 69.8364 136.9028 6.1224×105

2660 ProFound Shallow 320.624 -56.016 68.82 35.74 141.154 85.2258 159.2764 5.6682×103

2660 PyBDSF Deep 320.619 -56.017 128.89 62.74 155.166 126.1139 246.0558 1.2288×102

2660 Selavy Deep 320.615 -56.012 42.40 23.71 102.080 61.3140 125.3935 2.6793×103

2660 Selavy Shallow 320.613 -56.012 31.47 22.05 100.170 46.5150 97.0618 1.0414×102

2661 Aegean Deep 320.642 -56.017 55.90 48.05 -84.490 17.5477 37.3929 2.4513×103

2661 Aegean Shallow 320.642 -56.017 73.95 27.27 -49.783 17.7016 38.2606 1.0319×102

2661 Caesar Deep 320.638 -56.016 165.70 78.08 8.087 73.9215 151.3647 5.5643×104

2661 Caesar Shallow 320.644 -56.020 248.30 90.18 20.210 90.2743 195.1955 5.0744×103

2661 Selavy Shallow 320.634 -56.014 112.44 46.23 163.650 60.2680 118.3390 1.0414×102

2662 Aegean Deep 320.636 -56.024 83.96 64.66 -55.037 17.7797 34.2307 2.4513×103

2662 Caesar Deep 320.627 -56.021 10.93 6.24 -78.426 0.1349 0.2410 5.5643×104

2662 PyBDSF Shallow 320.624 -56.018 111.50 56.04 162.988 156.9845 293.7207 1.7932×102

2663 Aegean Deep 320.639 -56.027 157.56 52.04 38.318 3.2044 6.4656 2.4513×103

2663 Aegean Shallow 320.639 -56.029 106.85 35.06 -4.002 21.3041 44.3798 1.0319×102

2663 ProFound Deep 320.641 -56.030 61.32 32.77 29.961 21.4079 46.5896 6.1224×105

2664 Aegean Deep 320.630 -56.048 98.68 47.38 5.068 14.5981 43.9117 2.4513×103

2664 Aegean Shallow 320.627 -56.052 36.73 34.34 -12.335 6.0130 21.4578 1.0319×102

2664 ProFound Deep 320.621 -56.053 47.60 35.67 5.535 7.5893 28.1344 6.1224×105

2664 ProFound Shallow 320.625 -56.054 41.23 34.49 173.862 10.5205 39.3395 5.6682×103

2664 Selavy Shallow 320.628 -56.052 50.22 43.97 128.550 10.8400 37.7821 1.0414×102

2665 Aegean Deep 320.640 -56.055 19.85 17.86 -84.110 0.8030 3.3544 2.4513×103

2665 ProFound Deep 320.641 -56.056 29.00 23.98 178.631 2.4034 10.3152 6.1224×105

2666 Aegean Deep 320.599 -56.056 57.28 28.06 85.426 0.9795 4.0272 2.4513×103

2666 ProFound Deep 320.593 -56.056 19.18 16.12 31.535 0.3273 1.3524 6.1224×105

2666 PyBDSF Deep 320.593 -56.056 17.38 15.17 80.152 0.1721 0.7110 1.2288×102

2667 Aegean Deep 320.666 -55.989 18.68 14.42 2.981 0.1361 0.5255 2.4513×103

2667 Caesar Deep 320.666 -55.989 22.20 17.07 -76.756 0.1552 0.5994 5.5643×104

2667 Caesar Shallow 320.626 -56.012 59.98 23.76 -62.079 22.7529 42.1717 5.0744×103

2667 ProFound Deep 320.651 -55.995 18.49 9.79 54.245 0.1416 0.3971 6.1224×105

2667 PyBDSF Deep 320.666 -55.989 19.98 14.83 7.938 0.1606 0.6202 1.2288×102

2667 Selavy Deep 320.666 -55.989 19.92 14.88 12.690 0.1610 0.6216 2.6793×103

2668 Aegean Deep 320.595 -56.004 18.82 18.40 -87.136 20.9655 53.8435 1.3433
2668 Aegean Shallow 320.595 -56.004 18.65 18.41 87.954 20.9354 53.7664 1.1211
2668 Caesar Deep 320.595 -56.004 27.80 16.61 -68.410 20.6564 53.0499 0.0000
2668 Caesar Shallow 320.595 -56.004 25.56 20.72 -48.870 21.5519 55.3497 0.0000
2668 ProFound Deep 320.596 -56.004 16.68 16.01 141.799 21.8717 55.5098 0.0000
2668 ProFound Shallow 320.596 -56.004 16.05 14.91 132.551 21.5683 54.7398 0.0000
2668 PyBDSF Shallow 320.595 -56.004 19.06 18.04 123.511 20.8894 53.6482 7.8357
2668 Selavy Deep 320.595 -56.004 18.53 17.57 99.270 19.9640 51.2715 1.1786
2668 Selavy Shallow 320.595 -56.004 19.04 18.21 123.250 21.3080 54.7232 4.7455×10−1
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This step was not deemed to be practical for the current
implementation of Hydra, and it is also unclear whether
fine-tuning for such an individual source would have
unintended effects for rest of the image. This is an aspect
that can be explored in future developments of the tool.
Having acknowledged this point, in this implementation
Caesar does poorly in terms of characterising most of
the components, with the exception of detecting (ε)
in the D-image (match_id 2662 with S/N ∼ 0.2 mJy).
It attempts to fit everything by a single component
(match_id 2661), both in the D (a ∼ 166′′, b ∼ 78.1′′,
and θ ∼ 8.09◦ with S ∼ 73.9 mJy) and S (a ∼ 248′′,
b ∼ 90.2′′, and θ ∼ 20.2◦ with S ∼ 90.3 mJy) images.
Here a, b and θ are the fitted major and minor axes and
position angle respectively. These correspond to S/N
bins 152 and 181, respectively. The mismatch between
these components in the D and S images contribute to
a degradation in CDS (Figure 5a).

ProFound does a good job of characterising the fea-
tures of B2293+C2294 in the D-image, but less so in the
S-image. As with Caesar, ProFound accurately charac-
terises the extent and overall shape of the emission in gen-
eral, as seen in the residual images for both D and S. It
tends to merge brighter peaks with adjacent diffuse emis-
sion. The combinations (a)+(χ), (e)+(ε)+(d)+(λ), (b),
and (c) are identified in match_ids 2660, 2663, 2664, and
2665, respectively. This is consistent with ProFound’s de-
sign, identifying diffuse islands and characterising them
through such flux-weighted components. In the S-image,
ProFound does not do as well because much of the diffuse
emission is washed out. This becomes clear by compar-
ing the D and S residual images in Figure 19 through
the reduction in its island size (this is also apparent
with Caesar, but to a lesser degree). In the S-image
ProFound breaks B2293 into two main components, ev-
erything along the chain from (a) − (λ) in match_id
2660, and (b) + (c) in match_id 2664. This again results
in a mismatch between the components in the D and S
images.

PyBDSF does not perform well for extended sources
with diffuse emission. It tends to merge things together
and attempt to fit complex regions with a single Gaus-
sian. In the D-image it merges the B2294+C2294 system
into one component (match_id 2660), whereas in the
S-image they are separated into two components, B2263
(match_id 2662) and C2294 (match_id 2668). Clearly
it is representing the system largely as a single island in
the D-image, due to the presence of the extended diffuse
emission. In the S-image it is resolved into two, as the
diffuse emission linking B2294 and C2294 is masked
by the higher noise level. With our settings (Paper I),
PyBDSF uses the number of peaks found within the
island as its initial guess for the number of Gaussians to
fit, iteratively reducing them until a good fit is achieved
(Mohan & Rafferty, 2015). Here, presumably, it is the
diffuse emission that is affecting the fit quality, as can be

seen in the residual images. This is also consistent with
the failure modes seen in our simulated point source
image, (Figures 17a–c). Figure 17c may be a good anal-
ogy, where PyBDSF fits a single component to a large
region encompassing multiple injected sources presum-
ably influenced also by peaks in the background noise,
mimicking the diffuse emission in this case.

Selavy accurately characterises C2294 (match_id
2668) in the D and S images, but does poorly with
B2294. B2294 is characterised by a single component in
the D-image, at match_id 2660, and by three compo-
nents in the S-image, at match_ids 2660, 2661, and 2664.
It appropriately characterises (a) + (χ) in the D and
(a) in the S, at match_id 2660. This is not unexpected,
given the diffuse emission is reduced in the latter. Per-
haps surprisingly, though, it misses the remainder of the
emission beyond (χ) in the D-image. In the S-image it
detects two components here, linking the emission span-
ning (χ) − (λ) (match_id 2661) and (b) + (c) (match_id
2664). Selavy’s approach also includes a stage of rejecting
poorly fit components (Whiting & Humphreys, 2012),
and that may be the issue with the lack of components
reported for the emission in the D-image. This may have
been slightly more successful in the S-image (due to
a reduction in the diffuse emission). This contributes
to a reduction in RDS (Figure 5b), as the S detection
at match_id 2661 has no D counterpart, seen in the
degradation in the S/N ∼ 125 bin. This effect occurs
elsewhere at similarly high S/N from other sources.

3.8 Discussion

The Hydra software was used to compare the Aegean,
Caesar, ProFound, PyBDSF, and Selavy SFs by first min-
imising the FDR based on a 90% PRD cutoff, through
Typhon. Aegean, PyBDSF, and Selavy RMS box pa-
rameters were µ-optimised prior to the main run. The
process was done for both D and S images for 2◦ × 2◦

CMP, EXT, and real (EMU pilot) images.
The RMS box optimisation produces a S-to-D noise

ratio of 5 for all images (Table 4), validating the rou-
tine. In addition, the baseline statistics show that the
CMP source distribution is closer to the real (EMU)
image than the EXT results. This is also reflected in
the CDS and RDS plots, for CMP (Figure 4 (e-f)) and
EXT (Figure 4 (k-l)) sources, when compared with the
real image (Figure 5). For the simulated D/S-images,
the source detection numbers (N, Table 5) are consis-
tent between SFs, with the exception of Selavy being
unusually low. As for the real image, the number of
sources detected by Aegean, Caesar, and PyBDSF are
comparable, while ProFound is significantly high and
Selavy is low. In the case of ProFound, this is attributed
to noise, or potentially to splitting sources more than
done by other SFs, whereas for Selavy it is not as clear.
In general, the residual RMS values vary between SFs
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Figure 20. Diffuse Emission Case Study Summary: Summary of bent-tail system (B2293+C2294) diffuse emission case study (see
§ 3.7, Figures 18 and 19, and Table 9).

for each image case, whereas the residual MADFMs are
consistent (Table 6). This should not be surprising as
MADFM (or robust) statistics tend to miss outliers,
such as bright sources (Whiting & Humphreys, 2012).
This could provide a viable explanation as to Selavy’s
behaviour, in this regard, as it has a tendency to miss
bright sources in D-images more often than S-images,
and we have its robust statistics flag set (Paper I). This
line of reasoning is consistent with Whiting (2012), and
so warrants further investigation.

In our analysis we examined major-axes, complete-
ness, reliability, flux-ratio, and false-positive statistics
(Figures 3 through 7). This was later framed in the con-
text of residual/image cutouts case studies, in which
we investigated anomalies regarding edge detection,
blending/deblending, component size estimates, bright
sources, diffuse emission, etc. (Figures 8 through 17):
Aegean, ProFound, and PyBDSF are good at detecting
sources at the edge of images, while it is more prob-
lematic for Caesar and Selavy (Figure 8). As expected,
all SFs detect tightly overlapped sources as single unre-
solved compact sources (Figure 9), at the expense of a
degradation in completeness. This is of course somewhat
artificial, since with real images this situation cannot
be distinguished. For D compact sources with diffuse
emission, Aegean, ProFound, PyBDSF, and Selavy tend
to flux-weight (blend) their components position and
sizes (Figure 9c), characterising the core, whereas Cae-
sar and Selavy tend to characterise (deblend) the core
and diffuse halo separately (Figure 10f). For the S case
(Figure 9d), the diffuse emission tends to be somewhat
washed out, so that the SFs see predominantly com-
pact sources (Figure 9f). Similar issues can occur for
systems with a bright source among low S/N sources,
contributing to a degradation in reliability (Figure 10a–

b). For low S/N thresholds, all SFs are susceptible to
noise spike detection, particularly so for ProFound (Fig-
ure 13c); as can be seen from its scatter, Table 7. Noise
spikes also affect PyBDSF, in that it tends to collect
them together, sometimes with true sources, producing
oversized components (Figure 17a-c). Caesar also over-
estimates component size on occasion, however this is
related to deblending issues (Figure 10d). It also un-
derestimates on occasion, leading to a degradation in
reliability (Figure 11).

A detailed diffuse emission case study was also ex-
plored (Figures 18 and 19) with Figure 20 summarising
the results. Aegean characterises B2293 by fitting its
bright spots and diffuse emission as separate compo-
nents, but ignores the diffuse emission in the S-image.
Caesar detects (a) in both the D/S-images, but only
identifies (χ) in the S-image; the remaining information,
is approximated by a single component. ProFound cor-
rectly characterises the shape of B2293 in the D-image,
however its components only highlight the flux-weighted
centers of each segment (“island”); for the S-image, only
(a) + (χ) and (b) are detected. PyBDSF treats the com-
plex largely as a single source (it also picks up the faint
isolated SW D source). Finally, for the D-image, Selavy
treats B2293 as a single system centered at (a), whereas
it seems more successful at characterising the system in
the S-image.

4 FUTURE PROSPECTS

4.1 Detection Confidence

Given Hydra uses multiple SFs, it leads to the possibil-
ity of exploring cross-comparison metrics. For example,
Figure 21 shows detection confidence charts, indicating
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coincident detections between SFs. The bar on the far
left shows the number of sources detected in common
between all 5 SFs. The next bar shows the numbers of
sources from each SF detected in common by 4 SFs, and
so on. This metric uses a “majority rules” process to
help determine whether a detection is more likely to be
real. If a source is only picked up by a single SF, chances
are that detection is spurious (e.g., Figure 13c). The
more SFs that agree on a source, the more likely it is to
be real. This could be used to constrain metrics, such
as completeness, reliability, flux-ratios, etc. This could
be particularly useful in refining such statistics for real
images, where the true underlying source population is
not known a priori.

Figure 21. Real image D (top) and S (bottom) detection con-
fidence charts. The stacked bars indicate agreement between SF
detections. From left to right, 5 SFs agree, 4 SFs agree, etc.

One should be cautious, however, not to take this
as ipso facto true. For example, a detection by all SFs
could be a bright artifact or noise spike that mimics a
source. At the other extreme one could end up excluding

real sources only detected by finders well-adapted to
recognising them (e.g., Figure 22). The middle ground
may indicate the nature of detection, such as compact
and/or extended sources with or without diffuse emission,
depending on a SF’s strengths (Paper I).

Figure 22. Example of a diffuse VLASS source, uniquely de-
tected by ProFound in a comparison study with PyBDSF (Boyce,
2020). The source was found in a 3′ × 3′ region centered at
J112328+064341. The cutout was extracted from a QL image
tile, available at NRAO (https://science.nrao.edu), and then
processed using ProFound in R Studio.

The number of possible cross-source-SF diagnostics
that could be developed is substantial. Consequently we
have only briefly touched on this subject here, leaving
further details for future investigation.

4.2 Processing Residual Images

The existence of initially undetected sources in the resid-
ual images suggests that running a second iteration of
the SFs on such residual images may potentially im-
prove on the completeness of the delivered catalogues.
This may not be practical for Caesar or ProFound, how-
ever, as they compute residuals by subtracting out all
of the flux within an island; although, one could create
residual images from their island components. Aegean,
PyBDSF, and Selavy are perhaps more suitable, as they
are Gaussian-fit based. There is, however, a challenge
that arises from over-subtraction, where the initial source
list includes overestimated sources (e.g., Figure 10a).
Here the residuals reflect a poor initial fit, rather than
true sources remaining to be detected in such a second
pass.

The PyBDSF residual D-image in Figure 16, which
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emphasises the undetected sources at match_ids 109,
111, 112, and 113, suggests that a second detection pass
on such residual images may have merit. How best to
implement such an approach remains a challenge, as it
may introduce new false detections if residuals such as
seen in Figure 16 with Aegean dominate, and likewise
for more complex objects, containing diffuse emission.

In order to explore this further, let us consider
the residual statistics of our case-study system (i.e.,
clump_id 2293 in Table 9) and the full EMU image
(Table 3), summarized in Table 10. Three potential ap-
proaches for reprocessing residual images are:

1. process all 2◦ × 2◦ residual images,
2. process the 2◦ × 2◦ residual image with the best

MADFM,
3. process an aggregate clump-based residual-image

consisting of the best MADFM’s on a clump-by-
clump basis.

Approach 1 is ruled out as being computationally im-
practical. To explore the other options we consider the
MADFMs for CMP and EXT sources in Table 3, and
real sources in Table 10.

Table 10 Residual image statistics for the full 2◦ × 2◦ EMU
pilot sample image and for clump_id 2293 drawn from it
(extracted from Tables 3 and 9, respectively). The MADFMs
are normalised by cutout area, and are in units of mJy
arcmins−2 beam−1). N is the component count.

Residual Image EMU Sample Cutout 2293
Source Image 2◦ × 2◦ 4.73′ × 4.73′

Finder Depth N MADFM N MADFM
Aegean Deep 8,538 2.60×10−5 8 2.45×10−3

Caesar Deep 7,838 2.30×10−5 4 5.56×10−4

ProFound Deep 11,484 1.90×10−5 6 6.10×10−5

PyBDSF Deep 8,292 2.60×10−5 3 1.23×10−2

Selavy Deep 5,800 2.70×10−5 2 2.68×10−3

Aegean Shallow 926 1.69×10−4 4 1.03×10−2

Caesar Shallow 885 1.66×10−4 3 5.07×10−3

ProFound Shallow 778 1.65×10−4 2 5.67×10−3

PyBDSF Shallow 794 1.69×10−4 1 5.67×10−3

Selavy Shallow 789 1.69×10−4 3 1.04×10−2

Given that ProFound and Caesar assign all flux in
an island to a source, their residuals are zero by default
at the location of sources, leading to their MADFM
statistics understandably being the lowest. In order to
compare them fairly to the other SFs, residual images
created instead from their inferred Gaussian components
would be necessary. The analysis of the complex sys-
tem B2293+C2294 (Figure 18) suggests that ProFound
would likely produce residual MADFMs similar to the
other SFs, and potentially perform better in the case of
complex extended sources with diffuse emission. Caesar
would probably not fare as well, given that Hydra is not

implementing its full capability for decomposing com-
plex structures. For simplicity in the remainder of this
discussion we focus on the other three SFs as potential
starting places for image reprocessing.

Considering approach 2, we see that Aegean and
PyBDSF have identical MADFMs in the full image.
It would be easy to choose one at random, or invoke the
other residual image metrics as a further discriminator.
Regardless, the next challenge will be understanding and
accounting for the artifacts associated with the residuals
of the chosen SF. Discriminating in a second SF run
between a truly overlooked component and a residual
peak left by a poor first-pass subtraction seems on its
face to be intractable. One approach may be not to treat
each iterative pass as independent and concatenate the
output catalogues, but instead to first combine the com-
ponents together where they overlap in order to better
reconstruct the true underlying flux distribution for each
complex.

Approach 3 is perhaps more unconventional, as it
draws on the aggregate of results from the different SFs.
By using the cutouts with the best MADFM in each
case, though, it is likely to contain fewer artifacts than
the monolithic approach 2 above. Figure 23 shows a dis-
tribution of MADFMs for Aegean, PyBDSF, and Selavy.
Here we only include a MADFM if it is the lowest for
each clump. In other words, each clump is represented
only once, and the best MADFM for it contributes to
the distribution for that SF. At low MADFM values
each SF appears to contribute roughly equally to the set
of best residual cutouts. The corresponding aggregate
residual image would be roughly a homogeneous mixture
of results from the three SFs. For increasing MADFM,
Selavy contributes fewer of the best residuals, followed
by PyBDSF, with Aegean contributing the most at the
higher values of MADFM. For our sample complex sys-
tem, the aggregate would include 8 components within
clump_id 2293 (which contains B2293) arising from
Aegean (Table 10) and one component within clump_id
2294 (which only contains C2294) from Selavy (Table 9
bottom partition). This approach may have some merit,
but clearly also adds a layer of complexity that may
prove more challenging than desired.

An alternative approach would be to first identify
compact components only and produce a residual image
by subtracting those, presuming that all finders per-
form (reasonably) well on such compact emission. This
would leave a residual image consisting only of emission
with more complex structure. This would then need to
be processed using a SF that has demonstrated good
performance with complex structures, established with
another run of Hydra. This may provide the opportunity
to better characterise extended emission in the vicinity
of bright compact emission. If this model of multi-pass
source-finding is promising, it could be further imple-
mented iteratively, perhaps with S/N limits imposed on
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Figure 23. Distribution of clumps with the lowest MADFM wrt
Aegean, PyBDSF, and Selavy.

the initial pass(es) to first characterise and remove the
bright sources, and progress to the faint population in
later iterations. Either of the approaches 2 or 3 could be
considered in these scenarios. The results from each pass
in such approaches would then have to be incorporated
with the existing cluster catalogue and appropriately
tagged. While this iterative approach was one of the
motivations for developing Hydra, it is clear that a con-
siderable amount of further analysis would be required
to demonstrate its value.

5 SUMMARY AND CONCLUSIONS

In Paper I we introduced the Hydra tool, and detailed its
implementation, demonstrating its use with simulated
image data. In this second paper of the two part series
we use Hydra to characterise the performance of five
commonly used SFs.

5.1 Source finder comparison and
performance

Hydra was used to explore the performance of SFs
through C and R statistics, and their size and flux-
density measurements, as well as through targeted case
studies (§ 3.6). The most significant differences ap-
peared when encountering real sources with diffuse emis-
sion. Other frequently encountered anomalies were with
sources at image edges, blending/deblending, component
size errors, and poorly characterised bright sources.

In terms of characterising sources, all SFs seem to
handle compact objects well. With the exception of
Selavy, this generally applies to extended objects as well.
In the case of compact objects with diffuse emission,
Aegean, ProFound and PyBDSF tend to characterise

them as point sources, whereas Caesar deblends them
into cores with diffuse halos, and Selavy as cores with
jet-like structures. This is all consistent with how the
SFs are designed (Paper I). For more complex sources
with diffuse emission, Aegean performs best at character-
ising their complexity through a combination of elliptical
Gaussian components, with PyBDSF and Selavy over-
estimating component sizes, missing regions of flux, or
fitting components misled by adjacent flux peaks. Caesar
and ProFound characterise extended islands well, but
their corresponding components are not always robust
representations of the whole.

In moving from simulated to real images, we find the
major distinction comes when considering diffuse sources.
ProFound performs the best when it comes to complex
sources with diffuse emission, characterising them as
islands of flux, but without resolving them further (by
design, Robotham et al., 2018). Caesar in general per-
forms similarly, although it is not implemented optimally
in the current version of Hydra. Caesar can implement
different RMS and island parameters for the parent and
child segments in order to improve the deblending of
complex structures (Riggi et al., 2016, 2019). These are
currently defined by Hydra to have the same settings,
though, due to its present implementation requiring a
single pair of RMS and island parameters for each SF
(Paper I). In short, given the SCORPIO survey analysis
by Riggi et al. (2016), Caesar is expected to outperform
ProFound in terms of its deblending approach, although
it may still not characterise diffuse emission to the same
degree (e.g., compare Caesar and ProFound footprints
in Figure 19e–f and g–h, respectively). PyBDSF and
Selavy have similar performance issues. They both tend
to merge together sources embedded in regions of diffuse
emission, leading to different characterisations in the D
and S images depending on the degree of diffuse emis-
sion present, with a corresponding impact on CDS and
RDS . Aegean is similar, but performs slightly better in
CDS and RDS perhaps due to its approach of using a
curvature map to tie its Gaussian fits to peaks of nega-
tive curvature, which may reduce the degree to which
the fitting differs in the D and S images.

Figure 3 shows that all but one of the SFs have source
size distributions peaking at the scale corresponding
to the beam size, consistent with point source detec-
tions. Caesar’s distribution is systematically offset by a
factor of about 1.5 toward larger sizes, consistent with
its performance seen in the examples so far, where its
attempts to capture diffuse emission can lead to overes-
timates of source sizes. The distribution for ProFound
has fewer very extended sources, suggesting the largest
sources identified by Aegean, PyBDSF, and Selavy are
likely to be poor fits with overestimated sizes. ProFound
also shows an excess of very small sources, likely to be
noise spikes or faint sources where the true extent of
the flux distribution is masked by the noise. This is a
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consequence of the size metric given by ProFound which
is linked to the size of the island containing only those
pixels lying above the detection threshold, in contrast
to the fitted Gaussian sizes from the other SFs. It is
natural that these sizes will be smaller than the beam
size for faint objects. Caesar shows similar results to
ProFound at the small scales albeit offset to larger sizes
by the factor 1.5 already noted. These outcomes are in
line with the specific examples described above for the
B2293+C2294 complex structure. Comparing Figure 3
with the distributions for EXT sources in Paper I, the
distributions show largely the same characteristics, in
particular with ProFound fitting fewer extreme extended
sources, and Caesar performing similarly at those large
sizes to the remaining SFs. The main difference in the
real image appears to be the excess of artificially small
source sizes fit by ProFound and Caesar, and Caesar’s
systematic overestimate of sizes.

5.2 Processing of Residual Images

Hydra produces an aggregated clump catalogue consist-
ing of one row per clump ID, from the cluster catalogue
of the SFs with best residual RMS, MADFM, and ΣI2

metrics, normalised by clump cutout area. Hydra also
has summary information of residual RMS, MADFM,
and ΣI2 statistics for the entire D and S images, and
independent D and S catalogues for each SF. There are
cases where taking a catalogue generated from the SF
that provides the “best” fit on a source-by-source basis
(a heterogeneous catalogue) may be advantageous, and
Hydra provides this option. This is not possible with
individual SFs alone. The more traditional homogeneous
catalogue, separated by SF, is also available.

This leads to the concept of creating residual images
from either heterogeneous or homogeneous catalogues.
In either case, the residual image would be created based
on either of the residual RMS, MADFM, and ΣI2 met-
rics, or some other metric. The simplest concept would
be to create the residual D-images by subtracting out
only compact sources (i.e., clumps consisting only of
single components from any of the SFs). Running Hy-
dra again on the residual may deliver better results for
extended emission in the vicinity of bright compact emis-
sion. This approach is promising, as it is very similar
to the operations of Caesar, which reprocesses its blobs
after subtracting their compact components (Riggi et al.,
2016). This is also planned for future versions of Hydra.

5.3 Final thoughts

The past two decades have seen an explosion in tech-
nologies, providing radio telescope facilities with the
ability to perform deep large sky-coverage surveys (Lacy
et al., 2020; Norris et al., 2011; Norris et al., 2021), or
transient surveys with modest sky coverage at high ca-

dence (Banyer et al., 2012; Murphy et al., 2013). This
has led to researching and developing SF technologies ca-
pable of handling such data volumes and rates (Hopkins
et al., 2015; Riggi et al., 2016, 2019; Robotham et al.,
2018; Hale et al., 2019; Bonaldi et al., 2021). These case
studies involved the fine tuning of parameters by the
SF experts in order to get the best performance. The
advent of large scale surveys such as EMU (Norris et al.,
2021), aiming to detect up to 40 million sources, makes
such fine-tuning difficult at best.

We developed Hydra to automate the process of SF
optimisation and to provide data products and diagnos-
tics to allow for comparison studies between different
SFs. Hydra is designed to be extensible and user friendly.
Each SF is containerised in modules with standardised
interfaces, allowing for optimisation through RMS and
island parameters, which are common to the traditional
class of SFs. The parameters are optimised by constrain-
ing the false detection rate (e.g., Williams et al., 2016;
Hale et al., 2019). New modules can be added to Hydra
by following a standardised set of rules.

Future improvements to Hydra include adding the
island catalogues where provided by SFs, improvements
to optimisation schemes through using parameters more
finely tuned for different SFs, development of complete-
ness and reliability metrics for handling complex sources
with diffuse emission, and methods of flux recovery
through processing residual images with compact com-
ponents removed. Catalogue post-processing is also an
option. Once the false-detection fraction has been es-
tablished for a given SF, a user-specified limit to false
detections can be translated to an effective S/N thresh-
old and only sources detected above that threshold will
be provided to the user. In such a scenario the full set
of detected sources would still be retained in Hydra’s
tar archives for subsequent exploration as needed, but
only those above the requested threshold will be pre-
sented in the Hydra viewer tools. Implementation of
multi-processor options where SFs support that is also
planned. Hydra is being explored for integration into
the EMU and VLASS pipelines. The heterogeneous na-
ture of Hydra data, arising from multiple SFs, will add
versatility to future radio survey data processing.
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