Library Portal | UWC Portal
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   Repository Home
    • Faculty of Natural Sciences
    • Physics
    • Research Articles (Physics)
    • View Item
    •   Repository Home
    • Faculty of Natural Sciences
    • Physics
    • Research Articles (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region

    Thumbnail
    View/Open
    Arthur_nIFTy-galazy_2017.pdf (9.035Mb)
    Date
    2016
    Author
    Arthur, Jake
    Pearce, Frazer R.
    Gray, Meghan E.
    Elahi, Pascal J.
    Knebe, Alexander
    Beck, Alexander M.
    Cui, Weiguang
    Cunnama, Daniel
    Dave, Romeel
    Metadata
    Show full item record
    Abstract
    We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated cold dark matter galaxy cluster studied by Elahi et al. at z = 0. The 1.1 × 1015 h−1M galaxy cluster has been simulated with eight different hydrodynamical codes containing a variety of hydrodynamic solvers and sub-grid schemes. All models completed a dark-matter-only, non-radiative and full-physics run from the same initial conditions. The simulations contain dark matter and gas with mass resolution mDM = 9.01 × 108 h−1M and mgas = 1.9 × 108 h−1M , respectively. We find that the synthetic cluster is surrounded by clear filamentary structures that contain ∼60 per cent of haloes in the infall region with mass ∼1012.5–1014 h−1M , including 2–3 group-sized haloes (>1013 h−1M ). However, we find that only ∼10 per cent of objects in the infall region are sub-haloes residing in haloes, which may suggest that there is not much ongoing pre-processing occurring in the infall region at z = 0. By examining the baryonic content contained within the haloes, we also show that the code-to-code scatter in stellar fraction across all halo masses is typically ∼2 orders of magnitude between the two most extreme cases, and this is predominantly due to the differences in sub-grid schemes and calibration procedures that each model uses. Models that do not include active galactic nucleus feedback typically produce too high stellar fractions compared to observations by at least ∼1 order of magnitude.
    URI
    http://dx.doi.org/10.1093/mnras/stw2424
    http://hdl.handle.net/10566/4203
    Collections
    • Research Articles (Physics) [112]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV