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Abstract: 

It was assumed that salt-induced redox changes affect amino acid metabolism 

in maize (Zea mays L.), and this influence may be modified by NO. The applied 

NaCl treatment reduced the fresh weight of shoots and roots. This decrease 

was smaller after the combined application of NaCl and an NO-donor ((Z)-1-

[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, 

ETA/NO) in the shoots, while it was greater after simultaneous treatment with 

NaCl and nitro-l-arginine (l-NNA, inhibitor of NO synthesis) in the roots. The 

quantum yield efficiency of photosystem II was not influenced by the 

treatments. NaCl had a significant effect on the redox environment in the 

leaves as it was shown by the increase in the amount of glutathione 

disulphide and in the redox potential of the glutathione/glutathione 

disulphide redox pair. This influence of NaCl was modified by DETA/NO and l-

NNA. Pharmacological modification of NO levels affected salt-induced 

changes in both the total free amino acid content and in the free amino acid 

composition. NaCl alone increased the concentration of almost all amino 

acids which effect was strengthened by DETA/NO in the case of Pro. l-NNA 

treatment resulted in a significant increase in the Ala, Val, Gly and Tyr 

contents. The Ile, Lys and Val concentrations rose considerably after the 

combined application of NaCl and DETA/NO compared to NaCl treatment 

alone in the recovery phase. NaCl also increased the expression of several 

genes related to the amino acid and antioxidant metabolism, and this effect 

was modified by DETA/NO. In conclusion, modification of NO levels 

affected salt-induced, glutathione-dependent redox changes and 

simultaneously the free amino acid composition and the level of several free 

amino acids. The observed much higher Pro content in plants treated with 

both NaCl and DETA/NO during recovery may contribute to the protective 

effect of NO against salt stress. 

 

Introduction 

Adverse environmental conditions result in substantial reductions in crop yields. 

Yield losses caused by drought can be mitigated by irrigation, but this may lead to 

the deposition of salt from the river water or groundwater applied. High salt 
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concentrations induce  oxidative  stress  due  to  an  increase  in  the  amount  of  

reactive oxygen species, so antioxidants are activated as a part of the defence 

system (Foyer and Noctor, 2011). The accumulation of amino acids, especially Pro 

and Arg, contributes to the osmoprotection of plants (Rai, 2002). Increase in Arg 

content may lead to the accumulation of polyamines which protect as polycations 

the vital negatively charged, macromolecules in the cells (Alcázar et al., 2006). In 

addition, reactive oxygen species, antioxidants, amino acids and polyamines are 

all involved in signalling pathways which may activate further protective 

mechanisms. During salt stress there is cross-talk between various signalling 

pathways involving reactive oxygen, nitrogen species and plant growth 

regulators (Moreau et al., 2010; Gémes et al., 2011). 

 

The involvement of antioxidants in the response to salt stress was shown in 

maize, where NaCl treatment increased both the catalase and superoxide 

dismutase (SOD) transcript levels and the catalase activity (Menezes-Benavente 

et al., 2004). Transcriptome analysis revealed a rapid induction of genes 

encoding antioxidants  by  salt  in  a  tolerant  poplar  species,  while  their 

induction occurred only after longer exposure to salt in the sensitive one (Ding  et  

al.,  2010).  Salt  stress  increased  the  activity of SOD, ascorbate peroxidase (APX) 

and catalase in chickpea leaves (Sheokand et al., 2008). Further  evidence  for  the  

protective role of antioxidants was observed in rice, since a salt-tolerant genotype 

was found to have greater ascorbate and glutathione (GSH) contents, 

GSH/glutathione-disulphide (GSSG) and ascorbate/dehydroascorbate ratios and 

antioxidant enzyme activity than a sensitive one (Vaidyanathan et al., 2003; El-

Shabrawi et al., 2010). Similarly, the salt-tolerant species Plantago maritima 

exhibited better tolerance to salt stress than the salt-sensitive Plantago media due 

to its greater antioxidant activities (APX, glutathione reductase (GR), SOD, catalase) 

(Sekmen et al., 2007). The salinity tolerance of Medicago trunculata was found to 

be related to the induction and sustained expression of highly regulated 

antioxidant mechanisms in the roots and leaves (Mhadhbi et al., 2011). In the 

induction of antioxidants the osmotic effect of salt may be important, since osmotic 

stress induced by the water deficit also affected antioxidant levels (Varga et al., 

2012). Besides antioxidants, amino acids are also important in the response to salt 

stress. In broad bean the amino acid content was decreased by increasing salinity 

and a marked increase was only observed in the proline content (Abd El-Samad et al., 

2011). Although Wang et al. (2003) found no alteration in the overall free amino 

acid concentration in maize, the amino acid composition was  changed  by  salt  

stress,  with  an  increase in the proline and asparagine contents. Salt-induced 

changes in amino acid levels affect polyamine concentrations as it was shown in 

wheat (Simon-Sarkadi et al., 2007). All these findings indicate that the level of 

antioxidants, amino acids and polyamines are adjusted to salt stress conditions, 

which may improve salt tolerance. 

 

NO was found to serve as a signal inducing salt tolerance in reed (Zhao et al., 2004). 

NO enhanced salt tolerance in maize due to the activation of proton pumps and the 

Na+/H+ antiport, as indicated by improved growth, increased dry matter 

accumulation and greater chlorophyll content (Zhang et al., 2006). The protective 
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effect of NO  against salt stress in maize can also be linked to the enhanced activity 

of antioxidant enzymes (Bai et al., 2011; Keyster et al., 2012). The induction of 

various antioxidant enzymes (catalase, APX, SOD) by NO was also observed under 

salt stress in chickpea (Sheokand et al., 2008), wheat (Zheng et al., 2009) and rice 

(Uchida et al., 2002). The possible effect of NO on amino acids during salt stress 

was only investigated in the case of Pro in cucumber where the NO-induced 

increase in Pro was assumed to be responsible for an improved salt tolerance (Fan 

et al., 2012). 

 

According to our hypothesis salt-induced redox changes may affect amino acid 

metabolism in maize and in this process NO may be involved, too. To test this 

assumption, free amino acid concentrations were measured in plants subjected to 

salt stress without and with simultaneous modification of NO levels and possible 

redox changes were monitored by determination of GSH and GSSG 

concentrations. 

 

Materials and methods 

Plant material and growth conditions 

Maize (Zea mays L. cv. Silverking) seeds were imbibed in sterile distilled water 

for 30 min and sown in 1 l of pre-soaked (distilled water) filtered silica sand in 

15 cm diameter plastic pots. The seedlings were grown in a PGR-15 growth 

chamber (Conviron, Canada) at 22 ◦C, 400 µmol m−2 s−1 and 12 h illumination, 

and irrigated with modified Hoagland solution (Kellő  s et al., 2008) twice a week. 

The following  treatments were  applied  as  supplementation  of  the  nutrient  

solution  at the  3-leaf  stage  of  the  plants:  (1)  control  (addition  of  no 

chemical); (2) 150 mM NaCl; (3) 5 µM (Z)-1-[N-(2-aminoethyl)-N-(2-

ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO); (4) 5 µM DETA/NO 

+ 150 mM NaCl; (5) 5 µM diethylenetriamine (DETA); (6) 5 µM DETA + 150 mM 

NaCl; (7) 5 µM nitro-l-arginine (l-NNA); (8) 5 µM l-NNA + 150 mM NaCl; (9) 150 

mM KNO2. DETA/NO is a nitric oxide donor. DETA, which is produced by the 

dissociation of DETA/NO, was included among the treatments to act as a control 

for the NO treatments. Interestingly, it was found to affect the As-induced 

oxidative stress in maize (Stoeva et al., 2005). l-NNA is an inhibitor of NO 

synthesis, while KNO2 is a possible endogenous source of NO. The treatments 

were followed by a 1-week recovery phase when no chemicals were added to the 

basic nutrient solution. Sampling and the determination of fresh weight were 

done before the addition of the various compounds, after 3 and 11 days treatment 

and after 1 week recovery. Three independent experiments were performed with 

three–three parallels. 

 

Measurement of the quantum yield efficiency of photosystem II 

The maximum potential quantum efficiency of photosystem II was characterized by 

the Fv/Fm (variable to maximum fluorescence) ratio which was measured using a 

pulse amplitude-modulated fluorometer (PAM 2000, Walz, Germany). 
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Analysis of thiols 

The qualitative and quantitative identification of the thiols was performed using 

reverse-phase HPLC (Waters, Milford, MA, USA) connected to a fluorescence 

detector (W474 scanning fluorescence detector, Waters) as previously described 

(Kranner and Grill, 1996; Kocsy et al., 2001). The half-cell reduction potential of 

the thiol/thiol disulphide redox couples was calculated according to Schafer and 

Buettner (2001). 

 

Determination of free amino acid content 

Shoot samples of 300–600 mg fresh weight were crushed in liquid nitrogen and 

extracted with 2 ml cold 10% trichloroacetic acid for 1 h with gentle agitation on a 

shaker (C. Gerhardt GmbH & Co. KG, Germany) at room temperature. Each 

sample was filtered through a 0.2 µm pore membrane  filter  (Sartorius AG, 

Germany). The biochemical analysis was carried out on an automatic amino acid 

analyser (Ingos Ltd., Czech Republic) equipped with an Ionex Ostion LCP5020 

cation-exchange column (22 cm × 0.37 cm). The free amino acids were separated by 

stepwise gradient elution using a Li+-citric buffer system (Ingos Ltd., Czech 

Republic). Colorimetric detection was accomplished at 570 nm and 440 nm (for 

Pro) after post-column derivatization with ninhydrin reagent. 

 

Gene expression studies 

For the real-time PCR analysis of the genes encoding enzymes involved in the 

amino acid and polyamine metabolism or in the antioxidant defence and death 

processes, the DNase treatment of RNA and first-strand cDNA synthesis were 

carried out according to Altpeter et al. (2005). The PCR amplification mixture (20 

µl) contained 0.5 µl cDNA, 10 µl QuantiTect SYBR Green PCR Master mix (Qiagen, 

Hilden, Germany) and 0.8 µl forward and reverse primer (10 µM). The primers are 

listed in Supplementary Table S1. The amplification of DNA and normalization 

against glyceraldehyde-3-phosphate dehydrogenase (Kocsy et al., 2010) were 

performed as described earlier (Altpeter et al., 2005). 
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Statistics 

The statistical analysis was done using two-component (treatments, samplings) 

analysis of variance. Significant differences (SD) were calculated with the t-test at 

the p ≤ 0.05 level. 

 

Results 

Fresh weight 

NaCl reduced the fresh weight of both roots (to 63%) and shoots (to 38%) compared 

to the control plants, but the difference was greater for the shoots after 11 days 

(Fig. 1). The inhibition of NO synthesis in salt-stressed maize resulted in an 

additional reduction in root growth to 58% during the recovery phase compared to 

plants treated only with NaCl (Fig. 1A). DETA/NO, added simultaneously with  NaCl  

was  able  to  restore  to  74% of  control  the salt-induced growth inhibition of the 

shoots (Fig. 1B). Like the NO donor DETA/NO, the addition of KNO2, a possible 

source of NO in plants, did not affect the growth of the plants. 

 

Quantum yield efficiency of photosystem II 

The quantum yield efficiency of photosystem II decreased slightly in the course 

of the experiment but the various compounds did not induce significant changes in 

this parameter (Supplementary Fig. S1). 

 

Supplementary material related to this article found, in the online version, at 

http://dx.doi.org/10.1016/j.jplph.2013.02.006. 
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Thiols, thiol disulphides and their redox potentials 

With the exception of NaCl and l-NNA + NaCl all the compounds induced a great 

reduction (to 26–40%) in the cysteine content (precursor of GSH) during the 

recovery phase, and some of the treatments (DETA + NaCl, l-NNA + NaCl, KNO2) 

increased the cystine content (to 316%, 202% and 267%) after 11 days salt stress 

 

(Supplementary Figs. S2A and S2B). The treatments increased the redox potential 

of the cysteine/cystine couple (by 24–48%, end of recovery), except for l-NNA + 

NaCl (Supplementary Fig. S2C). 

 

Similarly to cysteine, the greatest changes in the -y-glutamylcysteine (-yEC) 

content (intermediary product of GSH synthesis) occurred during the recovery 

phase  (Supplementary Fig. S3A), when its level was greatly reduced by DETA/NO (to 

44%), DETA + NaCl (to 42%), l-NNA (to 33%) and KNO2 (to 28%). While the -y-

glutamylcystine (ESSE) content was not affected by NaCl alone, its concentration 

was increased by the other treatments (to 127–248%, end of recovery) with the 

exception of DETA/NO + NaCl (Supplementary Fig. S3B). The redox potential of the 

EC/ESSE redox pair was not affected by salt, but was increased by the addition of 

DETA/NO (by 25%), l-NNA (by 30%) and KNO2 (by 36%) during the recovery 

(Supplementary Fig. S3C). 

 

The amount of GSH exhibited only slight changes after the addition of the various 

compounds for 11 days except for its decrease after NaCl (to 67%) and DETA/NO (to 

65%) treatment (Fig. 2A), but all the treatments resulted in a great increase (8–37-

fold) in the GSSG concentration after 11 days (Fig. 2B). The greatest changes were 

induced by NaCl (37-fold) and DETA/NO (27-fold). Both DETA/NO and l-NNA 

greatly reduced (to 35% and 22%) the NaCl-induced increase in GSSG content. 

The redox potential of the GSH/GSSG couple increased (by 50–55%, 11 days) 

after the treatments, and it remained at high level during the recovery phase 

except for DETA/NO and DETA/NO + NaCl treatments (Fig. 2C). 
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Free amino acids 

All treatments increased the total free amino content at least in one sampling 

point (Fig. 3). However, the greatest increase was observed after the addition of 

DETA/NO + NaCl (to 218%), l-NNA (to 408%) and l-NNA + NaCl (to 257%) for 11 

days. Not only the total free amino acid content, but the amino acid composition 

was affected by the treatments, too (Fig. 4). The ratio of the amino acids belonging 

to the aspartate family decreased (by 17% and 15%) and that of the amino acids of 

glutamate and alanine family increased (by 7% and 5%, by 10% and 7%) after 3 

days treatment with DETA/NO and DETA/NO + NaCl. After 11 days DETA/NO partly 

neutralized the effect of NaCl, and the ratios after the application of DETA/NO + NaCl 

became more similar (1–7% difference) to control than after the addition of NaCl 

(12–15% difference) alone. 
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Interestingly, at the end of the 7 days recovery phase the ratio of the amino acids 

of aspartate family increased (DETA/NO: by 13%; l-NNA: by 26%) and that of the 

amino acids of glutamate family decreased (DETA/NO: by 12%, l-NNA: 15%) after 

the modification of NO levels, and this effect was strengthened (additional 23% and 

21% increase) by the simultaneous addition of NaCl in the case of aspartate family. 

 

The quantity of amino acids increased in the treatments, but generally decreased 

to the control level during the recovery phase (Figs. 5–9). Four amino acids of the 

glutamate family were present in detectable quantities (Fig. 5). The amount of 

glutamate increased (to 151–217%) in all treatments after 3 days, but 

subsequently (11 days treatment) decreased to the control or lower levels in the 

case of NaCl (to 59%), DETA + NaCl (to 75%), l-NNA + NaCl (to 80%) and KNO2 

(to 105%) (Fig. 5A). The glutamine concentration exhibited a great increase after 

11-day NaCl (7.6-fold), l-NNA (6- fold) and l-NNA + NaCl (5.3-fold) treatments 

https://repository.uwc.ac.za/



9 
 

(Fig. 5B). The greatest increase was observed for proline when the plants were 

treated with NaCl alone (35-fold) or in combination with other compounds (NaCl + 

DETA/NO: 58-fold, NACl + DETA: 13-fold, NaCl + l-NNA: 40-fold) for 11 days (Fig. 5C). 

 

 
 

At the end of the recovery phase, as in the case of Gln, its level was much greater 

(5.5–15-fold) after the addition of DETA/NO + NaCl than in the other treatments. 

The -y-aminobutyrate (GABA) concentration was increased (2.6–4-fold) after 11 

days by all the treatments, but decreased (by 60–92%) during the recovery 

phase except for NaCl (Fig. 5D). The greatest increase was detected when l-NNA 

was applied alone (5.7-fold) or with NaCl (6.4-fold). Interestingly, arginine could be 
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detected only in very low concentrations (0.05–0.1 µmol g FW−1) after 3 days in 

plants treated with NaCl alone or combined with other compounds (data not shown) 

which can be explained by its low basic level and by the greatly increased use of its 

precursor, Glu for Pro and Gln synthesis. 

 

 
Six amino acids of the aspartate family could be detected. All the chemicals 

induced a large increase (3–6.7-fold) in the aspartate content after 11 days, the 

greatest effect being detected after treatment with DETA/NO + NaCl (6.7-fold) and 

l-NNA (6-fold) (Fig. 6A). In contrast to Asp, the asparagine content further 

increased during recovery (Fig. 6B). Its highest concentration was observed after 

the addition of DETA/NO + NaCl, l-NNA and l-NNA + NaCl (5.2-, 4.8- and 7.6-fold 

greater) compared to the control. The threonine content was increased (2.5–5.9-

fold) by all the compounds, and this increase was especially large (5.9-fold) at 

the end of the l-NNA treatment (Fig. 6C). Although the isoleucine and lysine 

contents were increased by almost all the compounds, their levels were at least 2 

times greater after DETA/NO + NaCl addition than in the other treatments at the 

end of the recovery (Fig. 6D and E). The inhibition of NO synthesis resulted in a very 

large increase (4.6-fold) in the methionine concentration after 11 days (Fig. 6F). 

 

The investigation of the pyruvate family revealed that both the alanine and valine 

contents were increased 5-fold by l-NNA by the end of the 11-day treatment, while 

the other treatments had no or much weaker effect (Ala: max. 2.2-fold, Val: max. 1.6-

fold increase) (Fig. 7A and B). Much higher Val (4.2-fold) and Leu levels (2.2- 

fold) were found after addition of DETA/NO + NaCl compared to the other treatments 

at the end of the one-week recovery phase (Fig. 7B and C). 
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In the serine family, the serine and glycine concentrations were increased (1.5–5.2-

fold and 1.7–6.8-fold) and the cysteine content decreased (by 28–36%) by most 

of the treatments (Fig. 8). The accumulation of Ser (5.2-fold) and Gly (6.8-fold) 

was induced by 11- day l-NNA treatment (Fig. 8A and B). In addition, a great 

increase in Ser content was detected after DETA/NO + NaCl (4.8-fold) and l-NNA + 

NaCl treatments (5-fold) and the Gly concentration was elevated (4.5-fold) in the 

DETA/NO-treated plants during the recovery. 
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The Cys content was much lower (by 39–81%) in the recovery phase after the 

treatments than in the control, except  for  l-NNA + NaCl addition (no change) (Fig. 

8C). 

 

Among the members of the aromatic amino acid family, a 7.7- fold increase in the 

phenylalanine content was shown in plants treated with DETA/NO + NaCl and l-

NNA + NaCl at the end of the one-week recovery period (Fig. 9A). l-NNA induced a 

huge increase (8.3-fold) in the tyrosine content after 11 days, but this effect was 

much smaller (2.7-fold increase) when it was combined with NaCl (Fig. 9B). The 

other treatments increased (1.4–4.7-fold) the Tyr content, too. 

 

Gene expression studies 

Gene expression was investigated for several genes related to the amino acid, 

polyamine and antioxidant metabolism and to death processes. The transcript 
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level of the three aspartate aminotransferase and arginase genes was increased 

(1.5–7.5-fold) by most of the treatments, except for DETA/NO after 11 days NaCl 

treatment (Fig. 10). The expression of arginase was induced by NaCl (2.5-fold), DETA 

(2.9-fold) and KNO2 (3.5-fold) after 11 days, and that of spermine synthase by 

DETA/NO (4.1-fold), l-NNA (5.3-fold) and KNO2 (7.5-fold) during recovery. The gene 

encoding APX1 was greatly induced (3–6-fold) by the various treatments after 11 

days except DETA/NO + NaCl and l-NNA. The transcription of the GR gene was 

increased (2.2–7.5-fold, except for DETA/NO) and that of )'EC synthetase was not 

changed (except for l-NAA + NaCl – 2.7-fold increase and KNO2 – 3.4-fold 

increase) by most of the treatments. A great increase (2.8-fold) in transcript level of 

poly(ADP-ribose) polymerase1 (PARP1) and PARP2 was observed after NaCl 

treatment, while no change was detected after the DETA/NO + NaCl treatment. 

 

Discussion 

DETA/NO was successfully used to elevate the endogenous NO level and reduce 

salt-induced damage in maize (Keyster et al., 2012). This effect could be reversed 

by NO metabolic scavengers and inhibitors (Bai et al., 2011). In the present 

study, the protective role of NO against salt stress was confirmed in maize using 

DETA/NO and by inhibiting its synthesis with l-NNA. The improvement in salt 

tolerance was indicated not only by the growth data, but it was also shown at the 

gene expression level since the transcript level of PARP1 and PARP2, enzymes 

involved in the cell death process, was only increased by NaCl but not by DETA/NO 

+ NaCl treatment in maize leaves. The reduction of salt-induced injuries by NO 

was confirmed by the simultaneous decrease in cell death and caspase-like activity 

in maize roots, too (Keyster et al., 2012). 

 

Change in the GSH- and GSSG-dependent redox potential was suggested to be a 

marker of the stress-induced damages (Kranner et al., 2006). NaCl had a great 

effect on the redox environment in the maize leaves as it was shown by the 

increase in the amount of GSSG and in the redox potential of the GSH/GSSG redox 

pair. This influence of NaCl was modified by DETA/NO and l-NNA. The effect of NO 

on GSH synthesis was shown in Medicago trunculata, too (Innocenti et al., 2007). 

The protective effect of NO on tolerance to osmotic stress was mediated by GSH in 

Agropyron cristatum (Shan et al., 2012). NO-dependent changes in the amount and 

redox potential of  glutathione may  protect plants  from stress-induced injuries 

directly by the removal of the excess of reactive oxygen species and indirectly by 

activation of defence mechanisms and adjustment of metabolism to the altered 

environmental conditions (Noctor et al., 2012). In addition, the role of  the  other  

components of redox system in the mediation of the effect of NO on the response to 

salt stress is indicated by the increased expression of GR and APX in the leaves of 

maize treated with DETA/NO + NaCl in the present study. Similarly, the combined 

application of DETA/NO and NaCl increased the activity of these two enzymes, and 

also that of GPX and DHAR in the roots of maize (Keyster et al., 2012). These 

results were confirmed in salt-stressed rice, where NO pre-treatment increased the 

activity of APX, GR, catalase and SOD and also the expression of stress-related genes 

(Uchida et al., 2002). The activation of antioxidants by NO during salt stress reduces 
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injuries as it was shown in chickpea and soybean (Sheokand et al., 2008; Simaei et 

al., 2011). 

 

Salt-induced changes in the amino acid metabolism were affected by NO in maize 

as shown by the alterations in the amino acid composition and in the amount of 

several amino acids. The effect of NO2− as an NO donor in plants was also tested 

(Crawford and Guo, 2005), and it was found to have an effect very similar to that of 

DETA/NO on the time-course of changes in the concentrations of several amino 

acids (Gln, Pro, GABA, Ile, Val, Cys). 

 

Although NO affected the salt-induced accumulation of almost all the amino acids, 

its greatest effect was observed in the case of Pro, which effectively reduces 

NaCl-induced damage as an osmoprotectant (Simon-Sarkadi et al., 2007). The 

Pro content in DETA/NO-treated plants was several times higher than that in the 

other treatments both after 3 days stress and during recovery. Similarly to the 

present findings, NO affected Pro concentration during salt stress in cabbage 

(López-Carrion et al., 2008). The NO-induced Pro accumulation was a result of 

enhanced Pro synthesis and decreased degradation in maize (Yang and Gong, 

2009). Although a relationship between the NO and the Pro precursor Glu was 

found in tobacco cells, where the involvement of a Glu-receptor in NO production 

and plant defence signalling was observed (Vatsa et al., 2011), the pattern of salt- 

and NO-dependent changes for Pro and Glu was not similar in maize in the present 

experiment. This difference can be explained by the possible simultaneous use of 

Glu for Pro, GSH and/or polyamine synthesis. Both GSH and polyamines have 

important role in the reduction of injuries occurring during abiotic stress (Simon-

Sarkadi et al., 2007; Kellő  s et al., 2008). The increased need for Glu because of 

greater Pro, GSH and polyamine synthesis may be ensured from the enhanced 

catabolism of Lys described in stressed plants (Galili et al., 2001). However, NO 

did not activate Lys catabolism in the present experimental system, since greater 

accumulation of Lys was observed in maize seedlings treated with DETA/NO + NaCl 

compared to NaCl-treated ones during the recovery. 

 

Besides Pro, the branched-chain amino acids, Ile, Val and Leu, accumulated to a 

much greater extent during the recovery phase after the addition of DETA/NO + 

NaCl than after the other treatments, indicating their involvement in the NO-

mediated response to salt stress. In the case of Ile this change may be the result 

of a simultaneous increase in the level of its precursor Thr after the DETA/NO + 

NaCl treatment. A recent study emphasized the importance of branched-chain amino 

acids as osmolytes which function might contribute to the improved salt 

tolerance in the present experiment (Joshi et al., 2010). 

 

The inhibition of NO synthesis increased the Gln and GABA levels, but this effect 

was similar in both the absence and presence of NaCl, therefore cannot be related 

to a protective mechanism in maize. However, the results obtained in tobacco (Akç  

ay et al., 2012) suggest that the increase in the GABA content induced by inhibition 

of NO synthesis using l-NNA may have a protective role during salt stress. NO and 

GABA regulate mutually the concentration of each other, since GABA also affected 
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NO synthesis in potato (Floryszak-Wieczorek et al., 2012). Similarly to maize, the 

effect of NO on Gln could be shown in root nodules of Medicago trunculata, where a 

Gln synthase was found to be a target of NO (Melo et al., 2011). In contrast to Gln 

and GABA, l-NNA only increased the concentrations of Thr, Ala and Tyr to very 

high levels compared to the other treatments in the absence of NaCl, indicating 

that NO has a negative regulatory role on the concentration of these three amino 

acids. Interestingly, the Gly concentrations reached high levels after both the 

addition of NO donor and the inhibition of NO synthesis. This effect disappeared 

in the presence of NaCl. Compared to Gly the opposite changes were observed for 

Phe, the level of which was high after the combined application of NaCl and 

DETA/NO or l-NNA, but low if these compounds were added without salt. Thus, 

the Phe level was only affected by NO during salt stress. Interestingly, higher and 

lower NO levels had a similar effect on the Gly and Phe metabolism which 

contradiction may be explained by possible induction of their synthesis by high 

NO levels and by possible inhibition of their degradation at low NO concentration. 

 

In conclusion, modification of NO levels affected salt-induced, glutathione-

dependent redox changes and simultaneously the level of several amino acids. 

These could be independent effects, but it cannot be excluded that the influence 

of NO on free amino acid concentration is mediated by redox signalling. The 

observed much higher Pro content in plants treated with both NaCl and 

DETA/NO during recovery, may contribute to the protective effect of NO against 

salt stress. 
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