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Abstract    

This paper treats a time-dependent singularly perturbed reaction-diffusion problem. We 

semidiscretize the problem in time by means of the classical backward Euler method. We 

develop a fitted operator finite difference method (FOFDM) to solve the resulting set of linear 

problems (one at each time level). We prove that the underlying fitted operator satisfies the 

maximum principle. This result is then used in the error analysis of the FOFDM. The method 

is shown to be first order convergent in time and second order convergent in space, 

uniformly with respect to the perturbation parameter. We test the method on several 

numerical examples to confirm our theoretical findings. 

 

1 Introduction 

When solving numerically time-dependent singularly perturbed problems, it is customary to 

consider dimension splitting: The problems are semidiscretized in time (for example by 

using the classical backward Euler or Crank–Nicolson scheme). Then, at each time level, a 

set of stationary problems is solved using a suitably designed numerical method. Singularly 

perturbed problems involve a (perturbation) parameter which multiplies the highest derivative 

term in the model-equation of the problem. The solution to such problems is characterized by 

layer regions which are narrow parts of the domain over which the solution undergoes abrupt 

changes. It is well known that classical methods are not appropriate when the perturbation 

parameter becomes small unless very fine meshes are used for spatial discretization. However, 

this approach has two side effects: it increases the round-off error and the computational cost. 

There is a vast literature about non-classical numerical methods. In the context of finite 

differences, we can group these methods into two classes: the class of fitted mesh methods 

and the class of fitted operator methods. Both these types of methods have been used to solve 

stationary singularly perturbed problems in one and several dimensions. As examples, see 

Linß and Stynes (1999), Lubuma and Patidar (2006), Miller et al. (1996), Munyakazi and 

Patidar (2010a,b, 2012), Patidar (2005, 2007), Roos et al. (1996), Shishkin (1986, 2005). It 

should be noted that the discovery/development of fitted mesh methods is anterior to that of 

the fitted operator ones. The analysis of the latter is simpler due to the fact that they are based 

on uniform meshes unlike the former where non-uniform meshes are designed. 
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This paper is concerned with the problem of finding a numerical solution of the following time-

dependent singularly perturbed reaction-diffusion equation 

 

 
 

subject to the initial and boundary conditions 

 

 
 

The spatial differential operator is defined as 

 

 
 

where ε > 0, b ≥ β > 0, for all (x, t) ∈ Q̄  and the data b, f ∈ C(4,2)(Q̄  ). Also, we impose the 

following compatibility conditions between data of problem (1), (2) so that the exact 

solution u(x, t) ∈ C(4,2)(Q̄  ): 

 

 
 

The solution of problem (1), (2) is such that Hemker et al. (2000) 

 

 
 

where 0 ≤ k + 2m ≤ 4. Bounds (4) highlight the fact that the solution of (1), (2) has a 

boundary layer at x = 0 and x = 1. 

 

Many researchers have treated time-dependent singularly perturbed problems. Below, we 

mention a few examples. A uniformly convergent scheme for convection-diffusion parabolic 

problems is developed on a nonuniform mesh in Clavero et al. (2003). Numerical methods are 

designed in Jorge and Bujanda (2004) to integrate reaction-diffusion parabolic problems with 

non-linear reaction terms. An alternating direction method applied to singularly perturbed 

reaction-diffusion problems is analyzed in Linß and Madden (2010). In Clavero and Gracia 

(2010), a uniformly convergent finite difference method is designed for parabolic reaction- 

diffusion problems in one dimension. A Schwarz domain decomposition method is designed in 

Rao and Kumar (2011) for a system of coupled singularly perturbed reaction-diffusion 

equations. 

 

All the above methods are applied on nonuniform meshes (of Shishkin, Bakhvalov or 

Vulanovic types). Inspired by the simplicity of analysis on uniform meshes and having 
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noticed that, up to the best of our knowledge, no fitted operator finite difference methods 

developed for problems of the type (1), (2), our aim in this paper is to design one such 

method. Also, we prove that the method is second order uniformly convergent with respect 

to the singular perturbation parameter. We test the method on several numerical examples to 

confirm our theoretical findings. 

 

The remainder of this paper is organized as follows: in Sect. 2, we discretize problem (1), 

(2) in time by using the classical backward Euler scheme. This results in a set of linear 

reaction-diffusion problems (one at each time-level). These problems are discretized in Sect. 

3. A result on the stability of this method is proved in this section as well as the discrete 

maximum principle satisfied by the underlying discrete operator. Section 4 is devoted to the 

analysis of the fully discrete method presented in Sect. 3. Through this analysis, we show 

that the method is uniformly convergent with respect to ε. Several numerical examples are 

provided in Sect. 5 to confirm in practice the theoretical findings. Some concluding remarks 

and future plans end the paper. 

 

2 The time semidiscretization 

In this paper, we first discretize the problem in time by means of the backward Euler method. 

This results in a linear problem in space at each time level which we discretize using a fitted 

operator method in next section. The time interval [0, T ]  follows: 

 

 
 

Then the problem (1), (2) is discretized on ω̄  K  in the following manner: 

 

 
 

We now introduce auxiliary problems in order to define the local error. We have 

 

 
 

We rewrite Eq. (8) as 

 

 
 

Subtracting Eq. (9) from (1) and expanding u(x, tk−1) in Taylor series we obtain 
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where Ek = u(x, tk) − ẑ (x , tk) is the local error associated with method (6) and utt is the 

second derivative of u with respect to time. Since ||(I + τ Lx,ε)−1||Q̄  ≤ 1/(1 + τβ) and in 

virtue of (4), we see that Lemma 2.1 (Clavero et al. (2000)) The local error associated with 

method (6) satisfies 

 

 
 

The result on the global error follows naturally. 

Theorem 2.2 (Clavero et al. (2000)) The global error associated with method (6), defined 

by ek = u(x, tk) − z(x, tk), satisfies, 

 

 
 

and therefore the backward Euler method is a first order uniformly convergent scheme. 

 

The next Lemma gives the bounds of the solution of the semidiscrete problem (6) as well as 

those of its derivatives. 

 

Lemma 2.3 Let z(x, tk) be the solution of problem (6) at the time level k. Then, we have 

 

 
 

Proof See Clavero and Gracia (2010) At each time level, a boundary value problem is 

obtained by using the backward Euler method. In the next section we design a fitted operator 

finite difference (FOFDM) to solve this set of linear reaction-diffusion problems. 

 

3 The fully discrete method 

Let N be a positive integer. We consider the following partition of the interval [0,1] which we 

denote by : 

 

 
 

and let Q̄  N,K  = × ωK be the grid for the x, t -variables, and . 

 

http://repository.uwc.ac.za



5 
 

In the rest of this paper, we adopt the notation  = w(xj , tk) and denote the 

approximations of the   at the grid points (x j , tk) by the unknowns  . 

 

Using the theory of difference equations for problems in one dimension Mickens (1994), we 

construct the following scheme: 

 

 
The scheme (10)–(17) is a tridiagonal system of linear equations 

 
where the corresponding entries of A and F are 

 

 
With 

 
 

We refer to the method developed above as the FOFDM for the parabolic problem (1), 

(2). 
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In the discussion below, M may denotes a positive constant which may take different values in 

different equations and inequalities but is always independent of ε and the step-sizes h and 

τ . 

Before we embark on the analysis of the scheme developed above, we will present a 

number of results in the form of Lemmas which play a crucial role in the said analysis. 

 

 
 

which is a contradiction. 

 

http://repository.uwc.ac.za



7 
 

 
 

 
 

We are now ready to analyze the method. 

 

4 Error analysis of the fully discrete method 

For the sake of simplicity, we will ignore the time level index. The local truncation error of our 

FOFDM is obtained from (10) in the following manner: 
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The following Lemma will be useful in the continuation of this discussion. 

 

Lemma 4.1 For a fixed mesh and for all integers m, we have 

 

 
 

Proof See Munyakazi and Patidar (2010a) or Patidar (2007) 

 

Using Lemmas 2.3 and 4.1, we obtain 

 

 
 

Then by Lemma 3.2 and re-instating the dropped time level index, we have proved the 

following theorem.                                                                                                            

Theorem 4.2 Let be the numerical solution of (10) and z(x, tk) the solution of (6) both 

at the time level k. Then and therefore the FOFDM is a second order uniformly convergent 

scheme in space. 
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The global error satisfies 

 

 
 

thus, combining Theorems 2.2 and 4.2 leads to the final result of this work: 

 

Theorem 4.3 Let  be the numerical solution of (10) and u(x, t) the solution of (1), (2). 

Then 

 
5 Numerical results 

In this section, we illustrate our method with four numerical examples. The exact solutions to 

our test examples are not known. We therefore use a variant of the double mesh principle to 

estimate the errors of the computed approximations. 

 

The maximum errors at all mesh points are calculated using the formulas 

 

Where  is the approximate solution obtained using a constant time step τ and space 

step h. Likewise, is computed using the constant time step τ/4 and space step h/2. 

The numerical rates of convergence are computed using the formula Doolan et al. (1980): 

 

 
 

Furthermore, we compute 

 
 

and the numerical rate of uniform convergence as 

 
Example 5.1 Clavero and Gracia (2005) 
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Our theoretical analysis shows that the method developed is second order uniformly 

convergent in space independently of the perturbation parameter ε as mentioned in Theorem 

4.2. This is confirmed by numerical results presented in Tables 1 and 2 where we computed 

the maximum errors Eε,N,τ and the corresponding rates of convergence rl , respectively. The 

last row of Table 1 gives EN,τ while the rate of uniform convergence RN,τ is displayed in the 

last row of Table 2. 

 

The next three examples are chosen to show that the effect of the compatibility conditions is 

not as severe as it is in the case of numerical methods based on non-uniform meshes. 

 

 

 
 

 

 

http://repository.uwc.ac.za



11 
 

Example 5.2 Clavero and Gracia (2010) 

 

 
 

Example 5.3 Clavero and Gracia (2005) 

 

 
 

Example 5.4 The following example was also considered: 

 

 
 

For each of these test examples, we computed the maximum errors Eε,N,τ (see Tables 3, 5 

and 7) and the corresponding rates of convergence rl (see Tables 4, 6 and 8). The regularity of 

the exact solution is lowered by the non satisfaction of the compatibility conditions (3). 

However, this does not impact negatively on the ε-uniform order of convergence of our 

method unlike what is observed in Clavero and Gracia (2005) where the third order of 

uniform convergence is reduced to one. 
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6 Concluding remarks and future plans 

A time-dependent singularly perturbed reaction-diffusion problem in one dimension was 

treated. We semidiscretized the problem by means of the classical backward Euler method. 

The resulting set of linear reaction-diffusion problems was then solved by a novel fitted 

operator finite difference method. The whole process was shown to be first order uniformly 

convergent in time and second order uniformly convergent in space with respect to the 

perturbation parameter. Numerical results presented in Tables 1, 2, 3, 4, 5, 6, 7 and 8 confirm 

the theoretical estimates given in Theorem 4.2. Moreover, we noticed that the compatibility 
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conditions imposed between the data of the problem could be relaxed without impacting 

negatively on the performance of the method proposed in this paper. 

 

We are currently investigating similar techniques for time-dependent singularly perturbed 

convection-diffusion problems. 
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