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Abstract 

We develop an efficient method for pricing European options with jump on a single 

asset. Our approach is based on the combination of two powerful numerical 

methods, the spectral domain decomposition method and the Laplace transform 

method. The domain decomposition method divides the original domain into sub-

domains where the solution is approximated by using piecewise high order rational 

interpolants on a Chebyshev grid points. This set of points are suitable for the 

approximation of the convolution integral using Gauss–Legendre quadrature 

method. The resulting discrete problem is solved by the numerical inverse Laplace 

transform using the Bromwich contour integral approach. Through rigorous error 

analysis, we determine the optimal contour on which the integral is evaluated. The 

numerical results obtained are compared with those obtained from conventional 

methods such as Crank–Nicholson and finite difference. The new approach 

exhibits spectrally accurate results for the evaluation of options and associated 

Greeks. The proposed method is very efficient in the sense that we can achieve 

higher order accuracy on a coarse grid, whereas traditional methods would required 

significantly more time-steps and large number of grid points. 

 

1. Introduction 

In the general framework of the Black–Scholes model, the underlying stock price asset 

follows a geometric Brownian motion process and has a continuous sample path 

defined by 

 

 
 

Here S represents the underlying stock price at time t. It is assumed that the associated 

sample path is continuous. The constants µ and σ represent the expected return on 

the stock and the volatility of the return respectively; dWt is the standard Brownian 

motion or a Wiener process. The Black–Scholes model predicts that the stock price S 

follows a log-normal distribution at any future time t, i.e., 
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The continuity of the sample path indicates that the stock price can only change by a 

small amount in short interval. However, the reality on the stock market is different. 

Jumps are regularly observed in the discrete movement of the stock price St. These 

jumps cannot be capture by the log-normal distribution characteristic of the stock price 

in the Black–Scholes setting and therefore an alternative model which addresses this 

shortcoming is necessary. 

 

To overcome the above mentioned shortcoming, a number of models have been 

proposed in the literature that more appropriately describe the movement of the stock 

price in the market. Among these, the jump-diffusion model proposed in [9] by 

Merton is one of the most widely used model. In this framework, the Brownian motion 

observed in the Black–Scholes model is combined with a poisson distribution which 

model the jumps discontinuities that normally occur on the market place. For the jump-

diffusion model, the movement of the stock price is therefore modeled by the following 

stochastic differential equation (SDE) 

 

 
 

As in the previous model, σ represents the volatility, µ is the instantaneous expected return 

on the stock, and λ is the intensity of the poisson precess (or the jump arrival rate), dWt is 

the increment of the Brownian motion process, K = Eη – 1), where E is the expectation 

and g - 1 is the impulse producing the jump from S to Sη if a Poisson event occurs and 

dq is the independent Poisson process defined by 

 

 
 

Using the Itô formula, the SDE (1.2) is rewritten in the form of the following partial integro-

differntial equation (PIDE): 

 

 
 

In the above, V(S; t) is the value of the option depending on the underlying stock price S at 

any given time t; T is the expiry date, r is the risk free interest rate (r ≥ 0), λ is the intensity of 

the Poisson process (λ > 0), j is the expected jump size, t is the current time, Ψ(η) is the 

probability function of the jump amplitude η, where Ψ(η) ≥ 0, for all η, and is defined by 
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Note that = 1and when λ = 0 in (1.3), we recover the standard Black–Scholes 

partial differential differential equation. 

 

For European options, Merton [9] derived analytical expressions but for most exotic 

options under jump-diffusion models, no closed-form solutions exist and one needs to 

find numerical solutions for the partial integro-differential equations that arise. 

However, the convolution integral (1.3) add to the difficulty of finding efficient 

numerical solutions. Commonly used finite difference methods (FDMs) hardly attain 

higher order accuracy [2] and typical quadrature rules such as the trapezoidal and 

Simpson’s rules are of low order compared to Gaussian quadrature. However, the later is 

expensive to implement since it requires the interpolation to match the Chebyshev grid 

point with those of the FDMs. To reduce the computational cost in solving the 

convolution integral term, Fast Fourier Transform (FFT) was used in [2,19]. 

 

Tangman et al. [14] proposed a different approach in combining the central difference 

method and the exponential time differencing (ETD) scheme to solve (1.3). The ETD 

method was proved as very effective and gave second order accuracy. This successful 

result, encouraged these authors to apply higher order discrete method such as spectral 

methods to enhance the spatial convergence of the solution. To get around the non-

smooth initial condition, a cluster grid of Chebyshev points at the discontinuous point 

and at boundaries were performed and they obtained fourth order results. 

 

Spectral method are attractive for their exponential convergence rate. This presents an 

advantage for a direct computation of the convolution integral by a high order Gauss 

quadrature method. However, high rate of convergence of the spectral method is only 

guaranteed for smooth solution, a condition which is not fulfilled for the jump-diffusion 

model (1.3) which has a non-smooth initial condition. 

 

To overcome this situation, one might consider using a spectral element approach. This 

is the approach followed in [18] where the PIDE (1.3) is solved and the resulting 

discrete ODE is integrated in time using Crank-Nicolson method. This resulted in 

spectrally accurate results in space and second order accuracy in time. The exponential 

results are partly due to the successful approximation of the integral term by Gauss 

quadrature rule. However, the application of the spectral element involved successive 

approximation of different integrals generated by the weak form and hence 

computationally expensive.  

 

In this paper, we propose the use of a multi-domain spectral method. This method uses 

the spectral method directly in each sub-domains. Matching conditions are imposed to 

ensure the continuity of the solution and that of its first derivative. After this spatial 
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discretization, the resulting system of ODEs is solved by the Laplace transformation. To 

recover the solution, an inversion of the Laplace transform solution is performed using 

the Talbot’s method [13] which is based on the application of trapezoidal rule to 

approximate a Bromwich integral. 

 

The rest of this paper is organized as follows. In Section 2, we give a description of the 

jump-diffusion model and derive formula for the resolution of the convolution integral. 

In Section 3, we describe the spectral domain decomposition method for the differential 

part as well as the integral part. The later is computed by the Gauss–Legendre 

quadrature. Section 4 deals with the application of the Laplace transform to solve the 

semi-discrete problem. We also discuss the error analysis related to this approximation 

in this section. Section 5 contains the numerical comparisons of results obtained by 

approach with more conventional methods such as Crank–Nicholson for time 

integration and finite difference for space discretization. Some concluding remarks and 

scope for future research are given in Section 6. 

 

2. Description of model problem 

We consider the PIDE (1.3) and apply the change of the variable s = log (S/K) and η = ey. This 

gives 

 

 
 

In the above, V (s + y) ≡ V(t, s + y), i.e., V is a function of t and variables s and y, with s 

Є (-∞;∞) and σ > 0 is the volatility, r ≥ 0 is the risk-free interest rate, λ > 0 is the 

intensity of the Poisson process (or the jump). The jump probability density 

f unction is 

 

 
 

while the expected jump size k is 

 

 
 

Let Ω = [smin; smax] be the truncated interval and Ωc = R \ [smin; smax] its complement 

in R. To facilitate the computation of the integral part, we note that 
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Where 

 

 
 

For a European style put option, the boundary condition 

 

 
 

And 

 

 
 

Using these boundary conditions, and setting w = (y – s - µ)/σ so that dw = dy/σ, we obtain 

the following outer integral from (2.2): 

 

 
 

where Φ (.) is the normal cumulative distribution function. 

 

For a European style call option, we observe that boundary condition 

 

 
 

And 

 

 
 

Again setting w = (y – s - µ)/σ and dw = dy=σ, the outer integral in (2.2) leads to 
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In the next section, we use the Spectral domain decomposition method (SDDM) to discretize 

the jump-diffusion model (1.3). 

 

3. Spectral domain decomposition method 

The main feature of spectral methods is that approximation errors associated with the 

methods often decay exponentially with increasing numbers of degrees of freedom. In 

contrast, errors associated with finite difference methods and classical finite element 

methods decay only algebraically. If the error decays exponentially, then a result that 

is accurate to, say, 10 digits can be obtained using fewer degrees of freedom than 

would have been required if the error had decayed algebraically. This suggests that 

spectral methods are often more efficient than finite difference and classical finite 

element methods. However, the exponential convergence rate of spectral method is 

strictly dependent on the smoothness of the unknown function. Option pricing problems 

involve PDEs with initial conditions that are non-smooth. Therefore, direct application 

of a spectral method to the solution of such equations usually lead to a low order 

approximation. 

 

To overcome this, we propose the spectral domain decomposition method (SDDM). In 

the spectral domain decomposition approach, the domain s Є[smin; smax] is divided 

into sub-domains. For the problem at hand, we need to divide the domain in two sub-

domains, with the transition point as the strike price. To represent the solution in each 

sub-domain, we choose to approximate the solution by a linear rational interpolants for 

their improved stability properties compared to the polynomial interpolants [3,15]. 

 

3.1. Spectral domain decomposition based on rational interpolants 

Domain decomposition is a discretization technique for solving differential equations 

whereby the computational domain is divided into a number of smaller sub-domains. 

The equation is then solved on each sub-domain with matching conditions enforced at 

the interface (or transition point K) to ensure the continuity of the solution and that of 

it first derivative across the sub-domains. In the context of spectral methods on an 

interval, this means that rather than using a single global polynomial on the entire 

domain, polynomials of different order may be used on each subinterval. However in 

this work, rather than using polynomial interpolants for spectral methods, we will 
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consider the more stable linear rational interpolants. For further discussion on these 

types of interpolants, readers are referred [3,15]. 

 

3.1.1. Rational interpolants 

Rational interpolants are more convenient for the problem at hands. The rational 

approximation of a function u(ξ) at the Chebyshev points ξ, for k = 0; 1; ... ; N, is given 

by 

 

 
 

where wk, for k = 0; 1; . . . ;N, are the barycentric weights defined as w0 = 1/2;wN = (-1)N/2, 

and wk = (-1)K , k = 1; . . . ;N - 1. The Chebyshev points are define as 

 

 
As for the spectral polynomial method, the m-th order differentiation matrix associated with 

the rational interpolant (3.1) is given by 

 

 
 

Where are the entries of the differentiation matrix of order m. Formula to construct 

were given by Schneider and Werner [11] for m = 1 and m = 2 and latter generalized for any 

order by Tee in [15]. The first and second order differentiation matrices are given by the 

following formulas 

 

 
 

We apply the rational interpolant along with the domain decomposition method (as 

described below) to solve the jump-diffusion call option (2.1), (2.5) and (2.6). 
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3.1.2. Discretization of the jump-diffusion model 

We split the domain into two sub-domains at the point of discontinuity, and apply 

Chebyshev spatial discretization to reduce the problem to a set of coupled ordinary 

differential equations in time. Since the function is smooth on each subinterval 

including the point of discontinuity, a spectral accuracy can be regained provided that 

appropriate matching conditions are set across the point of discontinuity. 

 

Since the initial condition is non-smooth at the strike price, we split the interval 

[smin; smax] at 0 into two subintervals: = [smin,0] and x = [0, smax] of lengths  =  

smin   and dx smax, respectively. To apply the Chebyshev discretization, we map each 

sub-domain to the reference element [-1; 1] by the linear transformation 

 

 
 

In the following, we use the spectral domain decomposition method to the model problem 

(2.1) subject to the boundaries (2.5) and (2.6). To keep the expressions simple, we first 

discretize the differential part of (2.1) and thereafter the integral part. 

 

On each sub-domains  and x, the differential part of (1.3) is discretized as 

 

 
 

Here  is the derivative of V with respect to s in the sub-domains and x 

respectively. Note that the derivatives of the same order from both sub-domains would 

be different if rational interpolants of different order are chosen in each sub-domain. 
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The above equations imply 

 

 
 

and  is the (N + 1)x (N + 1) identity matrix. 

 

Now we consider the approximation of the integral part in (1.3). We know that for a call 

option the indefinite integral gives 

 

 
 

Hence we need only to discretize the integral on the right of the equation. For simplicity, we 

consider the same number of grid points in each sub-domains  and x. This gives 

 

 
 

Mapping the two intervals [Smin,0] and [0, Smax] to the standard element [-1; 1] by the 

linear transformation 

 

 
 

 

Finally, since the grid points are Chebyshev, a well suited approximation method to 

evaluate integrals   and   is the Gauss–Legendre quadrature rule, which 

converges geometrically [16]. Making use of this rule in each sub-domain, the two 

terms on the right hand side of (3.13) given by (3.15) and (3.16) are approximated as 
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Where  ,for k = 0; 1; . . . ;N denotes the Gauss–Legendre quadrature weights. 

 

On the sub-domain , the discretization of the differential and integral parts yields 

 

 
 

To impose the boundary conditions, we substitute the first and last equations from the 

first and second sub-domains, respectively, by the boundary conditions (2.3) and (2.4). 

Furthermore, to ensure the continuity of the solution and that of its first derivatives at 

the interface, we impose matching conditions across the point of discontinuity, i.e., at s 

= 0, 

 

 
 

Finally, the discrete approximation of the jump-diffusion model (2.1) is obtained by 

combining the approximations from the two sub-domains with boundary and matching 

conditions included into a global system. This gives 

 

 
 

And 
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After this discretization, the resulting system of ODEs is solved by using the Laplace 

transform approach which we discuss in the next section. 

 

4. Application of Laplace transform to solve the semi-discrete problem 

The Laplace transform is a powerful tool for solving PDEs. However the main difficulty 

associated with this method is the reconstruction of the original function f(t) for a given 

Laplace transform F(s). Unless the inverse is given explicitly, one has to evaluate the 

Bromwich integral: 

 

 
 

and 0 the convergence abscissa of the Laplace transform with   ≥   0 . Formula (4.1) is 

valid if all singularities of F(z) are located to the left of the vertical line x =   , i.e., Re z < 

 . This is the case for parabolic problems such as the PIDE we are solving. 

 

We assume that f (t) is a function of exponential order as   such that 

. In addition, if f (t) is absolutely integrable for t > 0, then the Laplace 

integral (4.2) converges for all Re z >  .  The main difficulty, however, in the use of 

the Laplace transform comes from the recovery of the original function f (t), i.e., the 

evaluation of the inverse formula (4.1). Analytical solutions are often hard to implement, 

and one has to rely on numerical methods to evaluate (4.1). An inventory of some of the 

most significant numerical methods developed in the last three decades can be found in 

[4,6,10]. These methods were classified by Abate and Valko [1] as Fourier series 

expansion method, Laguerre function expansion method, method based on the 

combination of Gaver functionals, and method based on the deformation of the 

Bromwich contour. In this paper, we use the last of these four methods. 

 

For the numerical evaluation of (4.1), we consider the parametrization 
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Unfortunately, in most cases, the above integral is difficult to evaluate numerically for a 

number of reasons: firstly, the integrand is highly oscillatory on the Bromwich contour 

(4.3), when . Secondly, the transformed function  may decay slowly 

as  ([5]). 

 

Our numerical method for inverting the Laplace transform is based on the method 

developed by Talbot [13] who proposed the deformation of the Bromwich contour. The 

integral is then evaluated using the trapezoidal rule. Talbot’s idea was to deform the 

Bromwich line into a contour which starts and ends in the left half-plane (see Fig. 1 for 

an example of such a contour). Such a deformation of the contour is possible by 

Cauchy’s integral theorem [12]. Cauchy’s theorem is applicable provided that all 

singularities of the transformed function F(z) are contained in the interior of the new 

contour and that   as  in the half-plane Rez <  [17]. Such 

contours are used in [7,13,17], all of which are of the form 

 

 
 

with the property that Rez  

 

The efficiency of the Talbot approach depends on the choice of the contour, as well as 

the number of function evaluations in the trapezoidal rule. Simpler contours such as 

hyperbolas and parabolas are proposed in [7,17]. These contours display a better 

convergence rate of order  than the original cotangent contour from Talbot. 

In this paper, we consider the hyperbola as the integration contour defined by 

 

 
 

where the real parameters µ > 0 and 0 < α < л/2 determine the geometry of the 

contour. The positive parameter l~ controls the width of the contour while α determines 

its geometric shape, i.e., the asymptotic angle. On the contour (4.5) the inversion 

formula (4.1) can be rewritten as 
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Where 

 

 
 

For h > 0 such that , where k is an integer, the trapezoidal rule can then be 

expressed by 

 

 
 

In practice, the infinite sum has to be truncated at a finite integer M, in which case one 

commits a truncation error as discussed below. Note that, because of the symmetry of the 

contour (4.5), we can re-write (4.7) as 

 

 
 

where o  indicates that the first term is divided by 2. The benefit of using (4.8) is that it 

reduces by half the summation (4.7) and subsequently the number of linear system to 

be evaluated in (4.35). 

 

In the following subsections, we analyse the overall error that occurs during the 

approximation of the solution using our method of integration in time. 
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4.1. Analysis of the error 

In this section, we analyze the error associated with the use of Laplace transform for 

integration in the time direction. To this end, first we note that the application of the 

trapezoidal rule (4.7) to approximate the infinite integral (4.6) introduces discretization 

error. Secondly the truncation of the infinite series (4.7) at a finite integer M (for practical 

implementation) produces a truncation error as one would expects. Furthermore, since the 

evaluation of (4.7) is done in floating point environment, a roundoff error is also introduced 

at each evaluation there. This roundoff error may increase dramatically to affect the accuracy 

of the numerical solution due to the exponential factor involved in (4.7). The analysis of the 

error occurred due to the use of the Laplace transform is therefore the sum of the 

discretization, truncation and conditioning errors as we discuss below. 

 

4.1.1. Discretization error 

The discretization error is the difference between the continuous formula (4.6) and the 

corresponding trapezoidal formula (4.7), i.e., 

 

 
 

To estimate the discrete error (4.9), the idea is to use the contour integral to 

represent Ed. This approach based on the Cauchy’s Residue theorem in complex 

analysis was originally developed in [8] by Martensen for an analytic function f (t) 

defined on (- ; ). In that paper, the author showed that for an analytic 

function, the trapezoidal rule (4.7) converges exponentially as illustrated in the 

following theorem. 

 

Theorem 4.1. Let  be an analytic function. Then there exists a strip  x (-d; 

d) in the complex plane with d > 0 such that f can be extended to a complex analytic 

function f :  x (-d; d) . Furthermore, the error for the trapezoidal rule indicated 

4.9), is given by 

 

 
 

Proof (See [8]). From the above theorem, it is clear that 
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4.1.2. Truncation error 

The truncation error is the error made by ignoring the remaining terms in (4.7) after 

truncating the series at a finite number M, and is given by 

 

 
 

Note that we have and ; and since the contour is symmetric, (4.9) 

becomes 

 
 

Because of the exponential factor , the terms in the sum decrease exponentially as 

 and in this case one commits only an exponentially small error whose contribution 

therefore can be neglected. 

 

4.1.3. Conditioning error 

To study the conditioning error in the application of the Laplace transform, recall that 

in (4.7), the approximation ~  requires  the  evaluation  of  the  transformed  

,  for  k =  -M; -M + 1; ... ; M - 1; M.  In  reality  these  evaluations are  

affected  by  round-off  errors  which  means  that  the  actual  approximation  that  takes  

place  is 

 

 
 

To see how the conditioning error affects the numerical results, we need to estimate kfqðtÞk. 

Before we proceed, we state the following lemma [7]. Let 
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The function L is such that, as  and  as . 

 

Lemma 4.2.  This function L satisfies the following lemma 

 

 
 

Proof. Consider the change of variable m = cosh x _ 1 so that 

 

 
 

The following two inequalities are proved in [7]. Here we re-state them in our context. One of 

them is 
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We note that (4.16) is independent of F and propagates moderately with respect to . 

 

In summary (4.10), the argument mentioned just after (4.12) and (4.16) imply that the 

total error is fully controllable as long as we choose the optimal values of the 

associated parameters. The derivation of these parameters is described below. 

 

4.2. Derivation of the optimal contour parameters 

In this subsection, we present the derivation of the contour parameters. The basic idea 

is taken from [17]. In that paper, the authors derived the following convergence 

estimate for a family of hyperbolic contours (4.5): 

 

 
 

To estimate the optimal parameters of the contour, an asymptotic balance of the three errors, 

i.e., Et ; Ed; E_d is required. To this end, we set 
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To derive the optimal contours parameters, note that as B(α) increases, EM  decreases 

exponentially. Thus EM  attains its optimum value at the maximum of B(α) over the interval 

(л/4; л/2). A numerical computation of B(α) shows that the maximum attained at 

 

 
 

With the optimal value of α given by    above, we can now compute optimal value of  and 

h from (4.24) and express them as 

 
 

From the above, observed that the optimal error while using the Laplace transform will 

be exponentially small. In the next subsection, we discuss its practical implementation 

to solve the problem under consideration. 

 

4.3. Application of the Laplace transform to the jump-diffusion model 

In the Laplace domain, Eq. (3.24) becomes 
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Application of the inversion formula (4.6) yields 

 

 
 

In next section, we present some numerical results illustrating the proposed method. 

 

5. Numerical results 

In this section we illustrate the performance of our Laplace inversion method (ILT) and 

the spectral domain decomposition method (SDDM) in solving the European jump-

diffusion model. We also evaluate the ∆ and Γ of this option. 

 

To apply the SDDM, we split the domain into two sub-domains consisting of equal 

number of grid points, with the domain boundary placed at 0 where the initial 

condition is non-smooth. For numerical illustration of our approach, we consider the 

European jump-diffusion model with the following parameters K = 10; σ = 0.2; λ = 0.1; 

y = 0.3; µ = 0; r = 0.02; T = 0.25 and truncated domain smin = -3 and smax = 1.5. 

 

For numerical comparison, we consider the computational time and the maximum 

absolute errors which is calculated using the formula 

 

 
 

where V (t) is the analytical solution and VN(t) is the numerical solution at time t. 

 

Though the number of contour points may vary with the problem at hand, for the 

European option, we carry out different simulations by keeping the number of grid 

http://repository.uwc.ac.za



20 
 

points N fixed and varying the number of points on the contour. For different value of 

N, we found that the optimal number of contour grid points varies from 20 to 30. 

 

Table 1 displays the numerical results obtained by using the Crank–Nicholson (CN) and 

the ILT method for time integration and the Finite difference method (FDM) for spatial 

discretization. The numerical results obtained by using CN and ILT methods for time 

integration and SDDM for spatial discretization are presented in Table 2. The 

computations are performed for the same set of parameters except that different grids 

are used for comparison. The ILT method is clearly more accurate than the CN for both 

the finite difference and spectral domain decomposition discretizations. For example, 

for 180 grid points we get an order of accuracy of 10-3 in 0.144 seconds and 150 time 

step using CN, whereas we obtain an order of accuracy of 10-4 in 0.061 seconds and 

20 contour points using the ILT method in Table 1. 

 

 
 

Table 2 displays improved results compared to those from Table 1 for both ILT and CN 

methods as the number of spatial points is significantly fewer for the SDDM method to 

get the same level of accuracy than FDM. This illustrates the superiority of the SDDM 

over FDM. 

 

Tables 1 and 2 also show the computational time taken by both approaches. We see that 

the ILT and SDDM methods are faster than the CN and FDM methods respectively. 

Furthermore, from Table 2 we note that despite computing bloc matrices in the SDDM 

as opposed to the computation of sparse matrices in the FDM discretization, the 

advantage of the SDDM is that the number of grid points N is usually smaller to achieve 

higher order at a faster speed. 
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In Fig. 2(a) we have plotted the numerical and exact solution of the European jump-

diffusion problem. To illustrate the effect of the jump, we also plotted the solution of 

the Black–Scholes equation without jump. Fig. 2(b) shows the graphical accuracy of 

the numerical solution for N = 50 in each sub-domains. 
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Figs. 3(a) and 4(a) show the numerical values of D and C respectively with and without 

jump. We also plot exact values of these Greeks. The convergence error observed in 

Figs. 3(b) and 4(b) demonstrates exponential accuracy of the proposed method. 

 

6. Concluding remarks and scope for future research 

We have presented a new approach to price European options with jump. Our approach 

consisted of the inverse Laplace transform (ILT) method as a time integrator and the 

spectral domain decomposition method (SDDM) as a spatial discretization method. 

 

The SDDM uses piecewise high order linear rational interpolants represented 

pointwise on a Chebyshev grid points in each sub-domain. The choice of the 

decomposition method was motivated by the need to obtain high accurate results since 

a direct application of spectral method (without decomposition) is not well suited to the 

non-smooth initial condition of the PIDE. To approximate the convolution integral that 

represents the jump process, we used the same grid points as for the differential part. 

 

We compared both the ILT and SDD methods with the Crank–Nicholson method and 

finite difference discretizations. The proposed approach is exponentially convergent in 

space and time, with the further advantage that it computes the solution at a particular 

time level directly and thus no time stepping is required. Spectral accuracy is observed 

not only in the evaluation of the option but also in the valuation of the Greeks D and C. 

Moreover, the computational time taken by this method is significantly less as 

compared to the one taken by CN and FDM. 

 

The numerical results presented in this paper suggest that the spectral domain 

decomposition method is very robust for pricing financial derivatives. 
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We are currently investigating the extensions of this approach to more complicated 

model such as American jump-diffusion model. Preconditioning of the block matrix in 

SDDM to further speed up the computation may also be investigated. 
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