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The large-scale structure of the Universe supplies crucial information about the physical processes
at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI
at redshifts z ' 1−5 are the best hope of accessing the ultralarge-scale information, directly related
to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale
effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We
argue that it may be possible to place tight constraints on the non-Gaussianity parameter fNL, with
an error close to σfNL ∼ 1.

The statistical properties of large-scale structures are a
rich source of information about the physics of the early
Universe, its subsequent evolution and its current state
(e.g., Ref. [1]). Constraints on the ultralarge-scale prop-
erties of density perturbations at redshifts z ' 1 − 5
can improve our understanding of the primordial Uni-
verse; these scales are, in principle, uncontaminated by
the nonlinear growth of structure or the poorly under-
stood effects of baryons. Yet, such scales are also ex-
tremely difficult to access with conventional redshift or
peculiar velocity surveys, while best attempts at using
the cosmic microwave background are hampered by poor
sampling, namely, cosmic variance.

An alternative approach for probing the density field
of the large-scale structure has recently been advocated
[2–5]. It involves mapping out the combined emission
of the 21 cm, or HI, line from unresolved galaxies. In
doing so, the large-scale structure is detected in three
dimensions—a process which is usually referred to as “in-
tensity mapping.” If one foregoes identifying individual
galaxies, one can greatly speed up the observation and
detection of the large-scale structure. Intensity mapping
experiments are sensitive to structures at a redshift range
that is observationally difficult to span for ground-based
optical surveys [6]. Moreover, first attempts at mapping
HI have been promising [7, 8].

In this Letter we explore this method for constrain-
ing one particular aspect of current models of structure
formation: the non-Gaussianity of primordial fluctua-
tions, which may lead to scale dependent biasing and a
distinctive signature on large scales. Furthermore, this
approach can also be useful for probing general rela-
tivistic effects on these scales [9–13]. Non-Gaussian ini-
tial fluctuations can arise in different models of inflation
[14]. A particularly convenient (albeit not universal) way
to parametrize non-Gaussianity consists of writing the
gauge-invariant Bardeen potential Φ—corresponding to
the Newtonian potential in longitudinal gauge—as the
sum of a Gaussian random field φ and a quadratic correc-

tion [15, 16], Φ = φ+ fNL ∗
(
φ2 − 〈φ2〉

)
, where ∗ denotes

convolution between functions, and reduces to standard
multiplication when fNL is a constant. Canonical single
field inflation models predict |fNL| ∼ O(10−2) [14], while
evolution after inflation can generate an fNL ∼ O(1) [16–
18]. The method of excellence for constraining fNL has
been to measure higher order correlation functions of the
cosmic microwave background leading to |fNL| . 103

with the MAXIMA data [19], |fNL| . 102 with the
WMAP data [20], and now |fNL| . 10 with the Planck
data [21].

The non-Gaussian properties of initial fluctuations
will also induce a scale and redshift dependence to a
biased tracer X of the underlying matter distribution
[22, 23]. The modification ∆bX(z, k) to the Gaussian
large-scale bias bGX is such that ∆bX(z, k) = 3[bGX(z) −
1]ΩmH0

2δc/[c
2k2T (k)D+(z)]fNL. Here, Ωm = Ωb+ΩDM

is the total (baryons plus dark matter) matter fraction,
H0 is the Hubble constant, δc ' 1.686 is the critical
collapse density contrast of matter, T (k) is the matter
transfer function versus the physical wave number k, and
D+(z) is the linear growth factor of density perturba-
tions. Attempts at detecting this effect with redshift
surveys have led to some constraints on fNL [24].

To assess how we might improve constraints on fNL

using scale dependent bias, let us first restrict ourselves
to a simple, cosmic variance limited survey. If we divide
up the power spectrum in bins with constant logarith-
mic width, ∆kα = Akα, the number of modes per bin
is given by Nα/Veff = Ak3

α/(2π
2), where Veff is the ef-

fective volume of the survey and α spans the number of
bins Nbins. Then σ2

fNL
' [bGXT (kα)D+(z)c2]2/{[6(bGX −

1)ΩmH0
2δc]

2(
∑
αNαk

−4
α )}, where T (k) is assumed con-

stant on these large scales. Two obvious features imme-
diately stand out: (i) better constraints on fNL will be
obtained for larger Nα (that is for larger and deeper sur-
veys), but also (ii) the further away the bias bGX is from
unity, the better. For fiducial values of the cosmologi-
cal parameters and bias evolution, we find that σfNL

∼ 1
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FIG. 1. P δ(k, z) (solid lines) and b2HIP
δ(k, z) (dashed lines)

for |fNL| = 10 at z = 0.4 (top blue pair) and z = 2.5 (bottom
red pair).

may only be achievable if the survey depth is greater than
z ∼ 3.5. Intensity mapping surveys seem ideally suited
for this goal (for proposals for doing so in the epoch of
re-ionisation, see Refs. [25–29]).

When line-of-sight scattering and self-absorption phe-
nomena are neglected, the HI line radiation discussed
above can be related to the differential number counts of
halo objects (e.g., Ref. [10]), from which we can estimate
the HI bias bHI [30]. The mean HI temperature from
galaxies, assuming that the signal is seen in emission, is
then T

g

b(z) ≈ 566h [H0/H(z)][ΩHI(z)/0.003](1 + z)2 µK,
where H(z) is the Hubble parameter, whose present-day
value is H0 = 100h km s−1 Mpc−1, ΩHI(z) ≡ ρHI(z)/ρc is
the comoving neutral hydrogen energy density in units of
ρc, the critical density today.

If we assume that, after reionization, the neutral hy-
drogen is mostly contained within galaxies, we calculate
ρHI by integrating the Sheth and Tormen mass function
[31], assuming the HI mass to be proportional to the halo
mass. Setting the minimum and maximum mass in the
integration by using a cutoff for the circular velocity [32],
we can fix the constant of proportionality with the con-
straint on ΩHI(z)× bHI(z) from Ref. [8]. Finally we have
that bHI(z) is the appropriately weighted halo bias [31].
Thus the HI clustering power spectrum takes the form
PHI(k, z) = [T

g

b(z)bHI(k, z)]
2P δ(k, z), with P δ(k, z) the

total matter power spectrum. The goal is then to target
PHI(k, z). In Fig. 1, we plot P δ(k, z) and b2HI(z)P

δ(k, z)
for |fNL| = 10 (in synchronous gauge). We see that HI
structures at low redshifts are underbiased with respect
to dark matter, while at earlier times neutral hydrogen
is highly biased. Moreover, the non-Gaussian effects we
are looking for only come into play on extremely large
scales.

To tackle the problem of forecasting σfNL
more care-

fully, it is appropriate to work with the Fourier-Bessel
transform on the sky and the HI angular power spec-
trum CHI

` (νi, νj), where νi is the frequency of shell i. To
calculate this quantity, we use the camb−sources code
[10], and include the redshift space distortion but dis-

FIG. 2. Top panel: Forecasted 68.3% error on fNL as a func-
tion of the mean redshift (or frequency) with a frequency in-
terval of ∆ν = 200 MHz. Middle panel: Redshift dependence
of the bias. Bottom panel: Effective volume of the survey.

card subdominant terms. Since, for an intensity map-
ping experiment, the frequency range can be (almost)
arbitrarily small, the window function we adopt is thus
a simple top-hat function. As a reference cosmology, we
adopt a ΛCDM flat universe with cosmological parame-
ters Ωm = 0.28, Ωb = 0.045, Hubble constant h = 0.7
in units of 100 km s−1 Mpc−1, spectral index of the pri-
mordial power spectrum ns = 0.96, normalization of the
present-day power spectrum σ8 = 0.8, and fNL = 0.

With these definitions in hand, we can proceed to
perform a Fisher matrix analysis [33, 34]. Thus, the
marginal error σfNL

obeys

1

σfNL

=

√√√√ `max∑
`=`min

(2`+ 1)fsky
∂[CHI

` ]ij
∂fNL

[
ΓHI
`

]−1

ij,mn

∂[CHI
` ]mn
∂fNL

,

where [CHI
` ]ij is a shorthand notation for CHI

` (νi, νj),
and [ΓHI

` ]ij,mn = [CHI
` +NHI

` ]im[CHI
` +NHI

` ]jn + [CHI
` +

NHI
` ]in[CHI

` +NHI
` ]jm is the covariance of the signal, given

NHI
` the angular power spectrum of experimental noise

(shot noise is assumed to be negligible). In this analysis
we are focusing on fNL as the single parameter, a valid
approximation on ultralarge scales.

Again, let us first focus on a zero-noise experiment.
In the top panel of Fig. 2, we show how σfNL

changes
with frequency range, for `max = 60 (red diamonds) and
300 (blue squares). Each point in the panel refers to
the central redshift of a 200 MHz band with bin width
∆ν = 10 MHz. As we saw before, it is essential for the
bias to move away from 1 (usually at z ∼ 1) in order to
obtain strong constraints. Moreover, it is the volume of
the survey that determines the ability to probe below fNL

of 10: for such a method to be successful, we need a deep
survey with a large bandwidth accessing frequencies of
400 MHz and below. Crucially, given our fundamental ig-
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norance about the redshift evolution of the bias, we need
to span a wide range of redshifts to capture bHI(k, z) 6= 1.

If we are to access the cosmic variance regime, we
need to explore different experimental strategies. We
focus on a bandwidth BW ∈ [250, 1000] MHz, which
corresponds to 0.5 . z . 4.5, subdivided into 75 fre-
quency bins of width ∆ν = 10 MHz. This implies a
75 × 75 tomographic [CHI

` ]ij matrix, that we approxi-
mate by considering block-diagonal 20× 20 tomographic
submatrices and correct for the overlap. For a survey
using dishes, the expected noise can be expressed via
NHI
` = T 2

sysSarea/(NdtTOT∆ν), with Tsys the system tem-
perature, Sarea the total surveyed area, Nd the number
of dishes, and tTOT the total observation time. For in-
terferometers we will assume that it will not be possi-
ble to mosaic. Thus, we fix the largest scale probed
as the one probed by one single pointing which is set
by the field of view, FoV. Hence, FoV = 4πfsky, and
we have that NHI

` = T 2
sys(2π)3/[f2(`)`2maxtobs∆ν], with

f(`) the so-called filling factor, which we fix to unity
(e.g. we take a dense array). If we perform several
pointing, Np, such that Sarea = NpFoV, we can re-
place tobs with tobs/Np and divide the total CHI

` + NHI
`

by
√
Np. In both experimental scenarios, we adopt

Tsys = [30 + 60 × (300 MHz/ν)2.55] K, which takes the
galactic synchrotron contribution at low frequencies into
account.

While foreground cleaning will remove some informa-
tion, in these experiments we have access to a very large
bandwidth, Hence, we could perform the cleaning on
scales which are much larger than the frequency “chunks”
used for the cosmological analysis. For instance, in the
case of reionization, Chapman et al. [35] have show that
foreground cleaning will have impact only on the scales
related to the size of the bandwidth used for the fore-
ground removal—for the higher frequency range of inter-
est to us we expect less of an effect from the foreground
removal given that the amplitude of galactic synchrotron
emission will be smaller.

Fig. 3 depicts these results—we plot σfNL
contours in

the plane of the surveyed area and total observation time.
Abscissas roughly cover from a 15×15 deg2 survey to half-
sky. The three top panels stand for the dish survey case,
where the y-axis actually shows tTOT multiplied by the
number of dishes Nd. We show three maximum angular
modes, namely, `max = 25, 60, and 300 (corresponding
to dish diameters of 5, 15 and 80 m at redshift ∼ 3).
Constraints should improve as we increase the surveyed
area, since `min decreases, thus accessing the scales which
are the most affected by non-Gaussianity; on the other
hand, since noise is proportional to Sarea, there will be
an optimal value for it, above which errors will increase
again (clearly visible for large σfNL contours).

For higher angular resolution, interferometers may be a
better option. In the lower panels of Fig. 3 we show σfNL

for 1, 10 and 100 pointings. Choosing Da ∼ 80 m as the

FIG. 3. Forecasted 68.3% error contours on fNL as a function
of surveyed area and total observation time, for a dish survey
with Nd dishes (upper panels) and an interferometer making
Np pointings (lower panels).

diameter for the array, the resolution is set at `max ' 300.
The main design parameter is the field of view, which sets
`min = 2π/

√
FoV and is fixed by the effective size of each

element, deff ∼ λ/
√

FoV. With a filling factor of 1, this is
related to the number of elements, Ne ∼ D2

a/d
2
eff . Given

that the maximum angular scale is set by the FoV, by
adding more pointings, we simply diminish the variance
ΓHI
` byNp, though the noise increases too, because tobs →
tobs/Np.

There are several telescopes in development or de-
ployed that should be able to probe this HI intensity
signal and in turn help to constrain primordial non-
Gaussianity. Note that in principle any interferometer
can also be used as a dish experiment, as long as the au-
tocorrelation data from each dish is saved. Moreover, the
required survey can be done concurrently with any other
large survey, which should increase the available observa-
tion time. It is unrealistic to expect more than ∼ 10 000 h
of total time, requiring a minimum of 100 elements for a
dish survey to go beyond Planck constraints. Telescopes
such as MeerKAT (http://www.ska.ac.za/meerkat) will
be in this range, with its 64 13.5 m dishes. It will im-
prove for SKA phase 1 with an extra 190 15 m dishes,
also to be assembled at the same site. The minimum
frequency for MeerKAT is ∼ 580 MHz. According to
Fig. 2, it means that a survey using MeerKAT will be
limited to σfNL

∼ 10. On the other hand, the SKA
phase 1 dish array (middle frequencies) should probe
down to ∼ 350 MHz, thus allowing us to push be-
low Planck constraints (using it just as a set of sin-
gle dishes). Instruments such as APERTIF [36] or
ASKAP (http://www.atnf.csiro.au/projects/askap) will
achieve large survey speeds thanks to the ‘phased array
feed’ system. Unfortunately, their minimum frequency is
set at 1 GHz and 700 MHz, respectively. This will ren-
der them unusable for probing HI at high z’s. Contrar-
ily, GMRT (http://www.ncra.tifr.res.in/ncra/gmrt) can
probe frequencies between 50 and 1420 MHz, but with

http://www.ska.ac.za/meerkat
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only 30 dishes and a system temperature above 100 K, it
will make it hard to go into the cosmic variance domi-
nated régime. In terms of designing a new system from
scratch, something like 10 000 small dishes between 2 and
4 m diameter, working at ∼ 400 MHz, would be a good
(and cheap) possibility to target the fNL ∼ 1 region (note
that we are not requiring cross correlations between the
dishes, thus making the system much simpler). This
would provide an efficient experiment to probe the dark
matter power spectrum out to z ∼ 4 on ultralarge scales.

For interferometric surveys, none of the planned tele-
scopes above are compact enough to deliver the required
sensitivity on large scales. This means we would need
in principle to wait for SKA phase 2, with the pro-
posed “aperture array” system working below 1 GHz. Al-
though the design is not set yet, it should be possible
to achieve FoV ∼ 1000 deg2, thus reaching the σfNL

. 1
limit. However, SKA phase 2 is designed to achieve much
higher angular resolution than what is needed for our
purposes, and a smaller array with 80 m or less in di-
ameter would be an interesting, near term, alternative,
capable of reaching σfNL

∼ 1.

While we have outlined a simple forecasting procedure,
there are two effects which must be taken into consid-
eration if we were to lay out the specific experimental
design and survey strategy. The signature we seek kicks
in on scales where general relativistic and gauge effects
become non-negligible. Furthermore, we have assumed
that we have efficiently subtracted the foreground (i.e.,
our Galaxy) from the data set. We acknowledge this is an
open question but, in principle, should be achievable—
the Galaxy contributes a slowly varying frequency depen-
dent signal along each line of sight, which can be accu-
rately removed with enough radial bins to map out the
small-scale structure. Indeed, foreground cleaning should
be done using the largest available bandwidths (∼ 1 GHz)
while our signal analysis will be done using smaller band-
widths. We see in Fig. 2 that ∼ 200 MHz can be enough
as long as we are probing high redshifts. Nevertheless,
a detailed and realistic analysis of how the foreground
subtraction will affect our forecast must be undertaken.

We have shown the strength and weaknesses of HI sur-
veys to efficiently constrain fNL. More generally, our
analysis gives us an idea of how effective HI surveys are
at probing the ultralarge-scales of the cosmos and in do-
ing so, telling us more about exotic aspects of our current
cosmological models.
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