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Abstract 

C3 and C4 grass species composition, with different physiological, morphological and 

most importantly phenological characteristics, influence Aboveground Biomass (AGB) 

and their ability to provide ecosystem goods and services, over space and time. For 

decades, the lack of appropriate remote sensing data sources compromised C3 and C4 

grasses AGB estimation, over space and time. This resulted in uncertainties in 

understanding their potential and contribution to the provision of services. This study 

therefore examined the utility of the new multi-temporal Sentinel 2 to estimate and map 

C3 and C4 grasses AGB over time, using the advanced Sparse Partial Least Squares 

Regression (SPLSR) model. Overall results have shown the variability in AGB between C3 

and C4 grasses, estimation accuracies and the performance of the SPLSR model, over 

time. Themeda (C4) produced higher AGB from February to April, whereas from May to 

September, Festuca produced higher AGB. Both species also showed a decrease in AGB in 

August and September, although this was most apparent for Themeda than its 

counterpart. Spectral bands information predicted species AGB with lowest accuracies 

and an improvement was observed when both spectral bands and vegetation indices 

were applied. For instance, in the month of May, spectral bands predicted species AGB 

with lowest accuracies for Festuca (R2 = 0.57; 31.70% of the mean), Themeda (R2 =

0.59; 24.02% of the mean) and combined species (R2 = 0.61; 15.64% of the mean); the

use of spectral bands and vegetation indices yielded 0.77; (18.64%), 0.75 (14.27%) and 

0.73 (16.47%), for Festuca, Themeda and combined species, respectively. The red edge 

(at 0.705 and 0.74 μm) and derived indices, NIR and SWIR 2 (2.19 μm) were found to 

contribute more to grass species AGB estimation, over time. Findings have also revealed 

the potential of the SPLSR model in estimating C3 and C4 grasses AGB using Sentinel 2 

images, over time. The AGB spatial variability maps produced in this study can be used to 

quantify C3 and C4 forage availability or accumulating fuel, as well as for developing 

operational management strategies. 

1. Introduction

C3 and C4 grass species Aboveground Biomass (AGB) represent a fundamental indicator of 

their productivity, which directly influences the ability of these ecosystems to provide 
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ecosystem goods and services. Grass species productivity provides a wide range of ecological, 

economic and environmental services. For instance, these grasses are an important source of 

forage for livestock and wildlife populations (Diouf et al., 2015; Mansour et al., 2013), as well 

as a source of fuel load for fire occurrences, which is an important mechanism in their 

maintenance (Everson and Everson, 2016). Within the global carbon cycle, C4 grasses also 

store a substantial amount of carbon, compared to C3 grasses (Adair and Burke, 2010). Besides, 

the Intergovernmental Panel on Climate Change (IPCC) identified species AGB as one of the 

principal carbon pools of terrestrial ecosystems (Eggleston et al., 2006; Kumar and Mutanga, 

2017; Vashum and Jayakumar, 2012). Most importantly, the phenological differences between 

C3 and C4 grass species, as determined by seasonal variations in climatic conditions influence 

their AGB over time. However, although a lot of studies have reported the phenological 

differences between C3 and C4, from a local scale, they tend to be more variable, due to the 

influence of local environmental conditions, such as topography. Consequently, the potential 

of these grasses to provide services is different and this may be more variable over space and 

time. 

 

The current and projected environmental changes also threaten the spatial and temporal 

productivity of C3 and C4 grass species, with implications on AGB timing, accumulation and 

variations (Adjorlolo et al., 2012; Bremond et al., 2012; Joubert et al., 2017; Morris, 2017). 

Compelling evidence have also reported substantial response of C3 and C4 grasses AGB to 

carbon dioxide (CO2) fluctuations (Lee, 2011; Polley et al., 2014; White et al., 2012), water 

availability (Niu et al., 2008) and temperature changes (Auerswald et al., 2012; Still et al., 

2014). Considerable uncertainties about the response of C3 and C4 grass species also exist 

under a CO2-enriched, warmer environment and the influence of local conditions (Chamaillé-

Jammes and Bond, 2010). Nevertheless, environmental changes compromise the integrity of 

C3 and C4 grasses functional types and subsequently the provision of a range of services, such 

as forage and carbon storage. In this regard, the estimation of C3 and C4 grass species AGB over 

time provides detailed understanding of their productivity and response to environmental 

variability over time. This becomes a fundamental step to identify areas of low or high 

productivity, for example, in the case of forage availability, or determines vulnerable areas to 

environmental changes. This is required for developing proper management strategies to ensure 

sustainable provision of ecosystem goods and services. 

 

Remote sensing remains a realistic and practical data source, for spatially explicit 

characterization of C3 and C4 grasses AGB over time and space. So far, AGB estimation for C3 

and C4 grasses has been conducted or reported on specific seasonal period, using 

broadband multi-spectral datasets (Grant et al., 2013; Lu et al., 2009; Pau and Still, 2014). In a 

different study, Shoko et al. (2016) conducted a detailed review on the progress of C3 and C4 

grass species AGB estimation using remote sensing. The review found that the majority of 

studies which estimated C3 and C4 AGB were done using Moderate Resolution Imaging 

Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), 

MEdium Resolution Imaging Spectrometer (MERIS) and Landsat multi-spectral datasets in 

the Prairies or Great Plains of the United States and in the temperate region of China. The 
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challenges associated with using these datasets were also noted, which included lower estimation 

accuracies and spatial representation of AGB. This has been primarily attributed to mixed-pixel 

problem, due to their coarse spatial resolutions. These datasets also constitute limited number and 

strategically-positioned bands (e.g. red edge), which limit their spectral potential in 

differentiating C3 and C4 species characteristics associated with AGB variations. Their coarse 

spatial resolution (e.g. 1 km for MODIS and AVHRR) also misrepresent AGB spatial variations. 

With these challenges, other researchers (e.g. Lu et al., 2009) attempted to use hyperspectral 

datasets, with high spatial resolution and narrow spectral bands. These datasets have been 

reported to yield high predictive accuracies, compared to multispectral. However, their 

application did not receive enough attention from the research community, especially for 

AGB estimation at large geographical coverage over time. This has been due to their high 

acquisition cost; hence their application has been limited to small geographical coverage, 

especially in resource-constrained regions like Africa. The use of hyperspectral data sources 

becomes insufficient for the development of appropriate management strategies, especially 

considering the influence of climatic variations on C3 and C4 AGB over time. In this regard, 

AGB spatial and temporal variations for C3 and C4 grasses remains poorly documented. 

However, future prospects in understanding the productivity between C3 and C4 depend on the 

use of new generation freely-available sensors, such as the Sentinel 2. 

 

Currently, the readily-available Sentinel 2 is perceived to provide a major key data source for 

estimating C3 and C4 grasses AGB over time, in a cost effective manner, at large geographical 

coverage. Although Sentinel 2 earth imaging characteristics are not as advanced as hyper- 

spectral data (e.g. in terms of spatial resolution), the sensor might be considered as an 

intermediate dataset between the freely-available broadband multispectral sensors and more 

advanced and commercialized hyperspectral sensors. The characteristics of Sentinel 2 

overcome the major challenges associated with the operational application of broadband and 

medium resolution satellites, such as MODIS, AVHRR, MERIS and Landsat data series, which 

have been the primary data sources for AGB estimation, across C3 and C4 grasslands. The 

sensor is equipped with state-of-the-art instrumentation, which offers high resolution optical 

images, when compared to freely-available satellites on board optical or multispectral sensors, 

such as Landsat 8 or ETM 7 (Addabbo et al., 2016). Increased and unique spectral bands 

(13) at different and refined portions of the electromagnetic spectrum of Sentinel 2 free of 

charge provide more spectral windows sensitive to species morphological, physiological and 

phenological characteristics, which influence the production of AGB. This may improve the 

estimation accuracy of C3 and C4 grass species over space and time. In addition, these bands 

are only available in commercial datasets, such as hyperspectral, hence Sentinel 2 provide free 

access to the unique bands. The high revisit frequency (5-19 days), most importantly, captures 

the phenological variations of C3 and C4 grass, which influence AGB variations over time, as 

well as enabling the acquisition of cloud-free images. The 290 km swath-width also allows 

large geographic coverage, which is one of the major limitations of using hyperspectral data, 

whereas the 10 m spatial resolution captures AGB spatial variations at a finer scale, appropriate 

for mapping, especially considering the co-existence of C3 and C4 grass species, with varying 

characteristics. 
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Sentinel 2 sensor has so far proved a great potential in estimating and mapping crop quality 

(Clevers et al., 2017; Immitzer et al., 2016), vegetation health (Addabbo et al., 2016), wood 

cover mapping (Munyati, 2017), as well as C3 and C4 grass species discrimination and 

mapping (Shoko and Mutanga, 2017a). However, its applicability in C3 and C4 grass AGB 

estimation over time is still rudimentary despite the immediate need of information on 

rangeland productivity, in the face of the changing climate. This study therefore used time-

series Sentinel 2 data to estimate and map C3 and C4 dominated grasslands AGB, in the 

Drakensberg, KwaZulu-Natal, over time. The study also aimed at determining the consistency of 

Sentinel 2 derivatives in estimating species AGB, over space and time. 

 

2. Materials and methods 

2.1. Study area 

The AGB estimation for C3 and C4 grass species was conducted within the Drakensberg area 

in the province of KwaZulu-Natal (presented in Fig. 1), which is one of the key grassland areas in 

South Africa (Everson and Everson, 2016). The climate of the area is predominantly wet humid 

summers and dry, cold winters. The summer period begins in November and ends in March 

(Nel, 2009), with high total rainfall received between 990 and 1130 mm, whereas the winter 

period begins in May until August, associated with regular frosts and snowfall (Dollar and Goudy, 

1999; Mansour et al., 2012). Temperatures also vary, with a minimum of 5 °C in winter and a 

maximum of 16 °C in summer (Everson and Everson, 2016). In addition, this area has been 

regarded as a transitional zone, which is vulnerable to environmental changes, posing a 

significant threat to its productivity. The elevation of the study area is also quiet variable, 

ranging between 1 225 and 3 034 m (Shoko and Mutanga, 2017b). The distributional map of 

the target C3 and C4 grass species was derived, using Sentinel 2 optimal variables, during an 

optimal period. A separate study was done to determine the optimal period for the 

discrimination and mapping of these species, using Sentinel 2 multi-temporal images in 

2016. It was found that images acquired in winter, particularly in May and June have better 

classification accuracies, compared to those acquired in summer. In this regard, the map used 

for this study was derived, using an image acquired in June, which was found to have the 

highest overall classification accuracy (93.5%) associated with lowest misclassification errors 

(between 2 and 10%) for the two species. 
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2.2. Data collection 

The target grass species; Festuca, C3 and Themeda, C4 are illustrated in Fig. 2. The collection 

of AGB for these species was conducted in early February, May, August and November 2016, 

using randomly generated points. At each point, three quadrats, measuring 50 cm by 50 cm 

were used to collect grasses AGB samples within a 10 by 10 m plot. In each quadrant, 

standing grass AGB was harvested and its weight was determined in situ. The grass AGB 

samples were then transported and oven dried at the University of KwaZulu-Natal grassland 

facilities, to determine dry AGB. The dry AGB was weighed and this was converted to 

kilograms per square metre (kg/m2). A total of 80 plots, measured 10 by 10 m were used 

for each species, with 3 samples per plot. This resulted in a total of 240 AGB samples for 

each species, which were used for analysis during each acquisition period. AGB sample 

locations were also captured and recorded using a handheld global position system (GPS), 

with sub-meter accuracy. 

 

2.3.  Remote sensing data acquisition and processing 

Sentinel 2A images are freely-available for download from the European Space Agency (ESA) 

website (https://scihub.copernicus.eu/), through the Sentinels Scientific Data Hub 

archive. Eight cloud-free Sentinel 2 MSI Level 1C images (Table 1), covering the entire study 

area were selected and downloaded for AGB estimation over time. Sentinel 2 sensor acquires 

images using 13 spectral bands, four bands at 10 m spatial  resolution,  featuring  blue  

(0.49 μm),  green  (0.56 μm),  red (0.665 μm) and near-infrared (0.842 μm), six bands at 

20m, with four narrow bands in the vegetation red-edge spectral domain (0.705, 0.74, 

0.783 and 0.865 μm) and two SWIR, at 1.61 and 2.19 μm. Sentinel 2 spectral range also 

offers cirrus (0.443 μm), water vapour (0.945 μm) and aerosol (1.38 μm) bands, at 60 m 

spatial resolution, which have been dedicated to atmospheric monitoring. For this study, 

ten bands were therefore used, with the exception of cirrus, water vapour and aerosol 

bands, and all bands at 20 m were resampled to 10 m spatial resolution using nearest 

neighbour resampling in Sentinels Application Platform (SNAP) environment. Sentinel 2 

images are delivered orthorectified and geometrically corrected top of atmosphere 
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reflectance in Universal Transverse Mercator projection and World Geodetic System (WGS) 

84 ellipsoid. The images were therefore corrected for atmospheric effects using the 

Sen2Cor prototype processing tool in SNAP. 

 

2.4. Regression algorithm for predicting Festuca and Themeda grass species 

AGB 

This study used the Sparse Partial Least Square Regression (SPLSR) to predict AGB 

variations between Festuca, C3 and Themeda, C4 grass species. SPLSR is one of the robust 

and powerful non-parametric model with reported potential in predicting vegetation 

biophysical properties using remote sensing data (Verrelst et al., 2012). 

 

 
 

It is the more advanced version of the normal PLSR and the study by Abdel-Rahman et al. 

(2014) revealed detailed differences between them. Compared to its predecessor, the SPLSR 

performs dimensionality reduction and variable selection simultaneously and when it 

transforms the data, the SPLSR enforces sparsity and picks out the most suitable remote 

sensing variables for estimation. This enabled the recent studies in grass AGB estimation to 

shift towards its adoption. For example, SPLSR has been reported to perform well in 

predicting AGB for grasses under different management practices  (Sibanda et al., 2017; 

Sibanda et al., 2015b), with reliable accuracy, using different  remote sensing datasets, 

including hyperspectral and multispectral imagery. SPLSR predicts AGB using the remote 

sensing variables and ground-based measurements. The model also provides the most 

optimal variables for predicting AGB, using the variable importance projection (VIP) scores, 

which are allocated to each variable. Variables with values above the VIP threshold of the 

SPLSR (i.e. VIP > 1) are regarded as significantly important, whereas those below the 

threshold are less important in estimating AGB. The VIP scores were therefore used to 

determine the frequency of each variable. Frequency in this regard was the number of 

occurrences of each important variable, when its value was above the threshold, in 

estimating species AGB over the period of study. The model was run 4 times, using ground 

measured AGB values collected in February, May, August and November with three sets of 

variables. This resulted in a total of 12 runs and variable frequency was reported when 

using (i) spectral bands only, (ii) vegetation indices only and (iii) spectral bands + 
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vegetation indices. Before the model was run, the field-based AGB data samples were 

randomly split into 70%, which was used to train the model, whereas the remaining 30% 

was used for validation. Consequently, for each species 56 plots (i.e. 168 samples) were used 

for training, whereas 24 (i.e. 72 samples) were used for validation. This also resulted in 

336 samples for training and 144 samples for validation, for species pooled dataset. 

 

2.5.  Sentinel 2 variables used to predict grass species AGB 

Three sets of variables from the Sentinel 2 images were used to predict AGB using the 

SPLSR and these include: (i) image data (ii) derived vegetation indices (VIs) and (iii) a 

combination of indices and image data. All the Sentinel 2 derived variables that were 

used to predict AGB are provided in Table 2. VIs were chosen based on their performance 

in C3 and C4 grass species compositions AGB (Rigge et al., 2013; Tieszen et al., 1997). The 

indices chosen have been frequently used since the potential of remote sensing in C3 and C4 

AGB estimation has been recognized and had shown great potential using different 

datasets. In addition, red edge-based simple ratio (SR) and normalized difference vegetation 

index (NDVI), which were previously reported (Ramoelo et al., 2015) to perform well across 

grasslands ecosystems in general were adopted to predict AGB variations for C3 and C4 

grass species. Red-edge based indices have not yet been fully utilised in estimating C3 and 

C4 grass species AGB. Previously-used sensors for estimating C3 and C4 grasses AGB does 

not constitute red edge bands, the majority of studies have used red and NIR-based NDVI 

and SR. The inclusion of red edge-based indices in this study therefore provides more 

insight on the performance of these indices derived using different spectral bands and 

enlightens prospects for future AGB monitoring of these grasses. The indices were named 

based on the red edge band used, for example, NDVIRE1 and SRRE1 were derived using red 

edge band 1. A total of 24 variables were used in this analysis, with 12 analysis using each 

variable set (i.e. spectral bands, indices and bands + indices), for the whole study period. 

 

2.6 Species AGB accuracy assessment 

Statistical measures of the estimation accuracy over time, using the different variables were 

determined. These measures were the coefficient of determination (R2) and root mean 

square error (RMSE) and% RMSE. The RMSE is a measure of the difference between the 

actual measured AGB values in the field and the estimated values by the model, 

whereas%RMSE is its deviation from the measured values expressed as a percentage. By 

expressing the RMSE as a% (within a scale between 0 and 100%) more insight is provided 

on the magnitude of deviation of AGB estimates using the different Sentinel 2 variables. 

These accuracy measures are frequently used in prediction accuracy assessment, using 

remote sensing data, for example by Dube and Mutanga (2015) and Adam et al. (2014). 

From each analysis using the field-based measurement, a better model was identified, and 

the selected model and associated variables was then used to produce AGB map for the 

study area. 
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2.7 Species AGB spatial predictions over time 

Four AGB models were developed (two for summer and two for winter), which correspond 

with the field measured data. These models were used to produce AGB maps for the study 

area during the field data acquisition period, as well as for the subsequent months in which 

AGB measurements were not available. For instance, the model developed and associated 

VIP variable, using AGB measurements collected in February 2016 was used to estimate 

AGB variations for March 2016. In addition, the predicted AGB maps were also used to 

extract species AGB, using the GPS points. The extracted AGB values were then used to 

derive descriptive statistics of the target grass species, over time. 

 

3. Results 

3.1. Measured species AGB over time 

Fig.  3  shows  summary  statistics,  which  include  the  maximum, minimum and average of 

the measured dry AGB for the two species, in kg/m2, over time. The measured AGB shows 

temporal variations between the two grasses. For Festuca grass, the highest AGB was 

recorded in May, whereas for Themeda, the highest AGB was measured in November. 

 

 
 

4. Performance of Sentinel 2 derived variables in predicting grasses AGB over 

time 

Table 3 provides the statistical measures of accuracies for estimating Festuca, Themeda and 

combined species dataset AGB, using spectral bands, indices and spectral bands plus indices 

in February, May, August and November 2016. These results are from the 70% dataset. 

Overall, Sentinel 2 derived variables yielded higher accuracies, which are quite variable over 

time. Spectral bands predicted species AGB with lower accuracies and this increase when 

indices and a combination of spectral bands were used. 
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For instance, in May, spectral bands predicted species AGB with lower accuracies for 

Festuca (R2 = 0.57; 31.70% of the mean), Themeda (R2 = 0.59; 24.02% of the mean) and 

combined species (R2 = 0.61; 15.64% of the mean). Indices improved the prediction 

accuracies for Festuca (R2 = 0.70;  22.05%  of  the  mean),  Themeda (R2 = 0.69; 16.51% 

of the mean) and combined species (R2 = 0.70; 23.15% of the mean). Comparably, spectral 

bands + indices yielded the highest accuracies for Festuca (R2 = 0.77; 18.64% of the 

mean), Themeda  (R2 = 0.75;  14.27%  of   the   mean)   and   combined   species (R2 = 

0.73; 16.47% of the mean). Similar pattern in the improvement of prediction accuracies 

from using spectral bands to the combination of bands and indices was found in February, 

August and November. 

 

Results also clearly show that the performance of predictive variables  varied  with  seasonal  

period.  For  instance,  lowest  prediction accuracies  were  found  in  May  using  spectral  

bands  for  Festuca (R2 = 0.57; 31.70% of the mean), Themeda (R2 = 0.59; 24.08% of 

the mean) and combined species (R2 = 0.57; 28.11% of the mean). The highest 

predictive accuracies were found in August, for Festuca (R2 = 0.85; 7.64% of the 

mean), Themeda (R2 = 0.86; 7.56% of the mean) and combined species (R2 = 0.84; 

9.27% of the mean). 

 

Table 4 highlights the model performance using the 30% independent set, for individual 

species and pooled species dataset, based on variables, which only produced the best AGB 

estimation accuracies over time. Overall results indicate the potential of the SPLSR model in 
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estimation accuracy, explaining above 70% of C3 and C4 species AGB variations over time. 

The model also produced highest estimation errors in May, compared to other periods. The 

results were also comparable to those produced using the 70% training dataset. For 

example, in February according to the 70% dataset, Festuca AGB was estimated with R2 of 

0.82 (9.84% of the mean); this was 0.79, with a RMSE of 13.32%. The performance of the 

model also varied over time using individual species dataset, as well as for pooled data. For 

example, using AGB data acquired in May, which had the highest measured values, the 

model showed lower estimation accuracies, compared to other periods. In May, Festuca 

AGB was estimated with an R2 of 0.71, which was 20.22% deviation, whereas for Themeda, it 

was 0.70 with a RMSE of 21.02%. On the other hand, in February, Festuca AGB was 

estimated with an R2 of 0.79 (13.32% of the mean), whereas Themeda was estimated with 

0.76 (11.01% of the mean). 
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4.1.  The importance of Sentinel 2 variables in species AGB estimation over 

time 

The importance of Sentinel 2 variables in estimating species AGB, over time is graphically 

presented in Fig. 4. The Figure shows the frequencies of each variable, using each variable 

set for pooled dataset, over time. The use of spectral bands has shown that NIR (0.842 μm) 

had the highest frequency, followed by RE 2 (0.74 μm), whereas the visible blue had the 

lowest frequency. Red edge-based NDVI (NDVI derived using red edge band at 0.705 μm) 

showed the highest frequency, followed by the standard NDVI, whereas RE4-derived NDVI 

had the lowest frequency, when indices were used. The combined use of bands and 

vegetation indices showed that RE 1 (0.705 μm), RE 2 and the NIR had significantly the 

highest frequencies in their contribution in estimating AGB over time, whereas the simple 

ratio derived using red edge 3 had the lowest frequency. 
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4.2. Temporal variations in species AGB using Sentinel 2 data 

Fig. 5 shows the derived AGB variations between the two species over time. The presented 

results are averaged AGB values, extracted using species GPS points. Overall, the two grass 

species showed variations in AGB over time. During the summer months of February, March, 

November and December 2016, higher AGB estimates were found for Themeda (C4), than 

Festuca (C3). There was however a shift in AGB variations between the two species, where 

higher estimates were found for Festuca, than Themeda, from May to September. Both 

species also showed a marked decrease in AGB, especially in August and September. 

 

4.3.  The variability in AGB over time 

Fig. 6 illustrates the estimated variability in AGB over time for the study area during 2016, 

using Sentinel 2. Overall, AGB variations within the area exhibited temporal and spatial 

fluctuations and the sensor managed to capture these variations. Higher AGB were 

estimated in February, March, May, November and December, whereas during the mid-year, 

low AGB estimates were produced. The beginning of winter (May) had the highest AGB, 

compared to other months, whereas lowest estimates were after the winter fall 

(September). 
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5. Discussion 

5.1. The importance of Sentinel 2 variables in estimating species AGB over time 

Sentinel 2 variables have shown great potential in predicting C3 and C4 grasses AGB variations, 

over time. Among the most important variables in estimating species AGB were the red edge 

centred at 0.705 and 0.740 μm, derived indices, the NIR and SWIR spectral bands. For 

instance, the NIR band showed the highest frequency in its importance in estimating AGB and 

was also competitive among indices, when bands and vegetation indices were used. In 

accordance with results from this study, compelling studies (Mutanga and Skidmore, 2004; 

Ramoelo and Cho, 2014; Sharma et al., 2015) have reported the importance of red edge bands 

and derived indices in estimating AGB. It has been established that red edge variables are 

sensitive to species canopy AGB and chlorophyll concentration, when compared to other 

portions of the electromagnetic spectrum (Mutanga and Skidmore, 2004). This improves 

the competence of red edge bands and derived indices in estimating species AGB, over time. 

However, not all the Sentinel 2 red edge and derived indices were found to be important in 

species AGB prediction in this study. For example, red edge centred at 865 nm (band 8A) and 

derived indices have shown consistently poor importance in estimating species AGB, over 

time, with lower frequencies. The contribution of the SWIR may be attributed to its 

sensitivity to species water content, and this is variable between the two species, especially 

when Themeda (C4) becomes dormant, particularly in August. In consistence, Numata et al. 

(2008) revealed a significant correlation between grass AGB and water content, and suggested 

that the use of water related wavelength, improve AGB estimation accuracy. The study by Chen 

et al. (2011) also reported the importance of SWIR bands in estimating species AGB in the semi-

arid rangelands of Idaho, using SPOT 5. In this regard, researchers might advocate for the 

development and use of Sentinel 2 SWIR-based indices in estimating C3 and C4 grass species 

AGB over time. The importance of NIR, as indicated by the highest frequency highlights its 

consistent, as well as its competence among indices in AGB estimation, over time. Previous 

studies (Lu et al., 2009; Price et al., 2002) have also found NIR to be a very important 

spectral portion in C3 and C4 grasslands monitoring. 

 

On the other hand, the visible portion had the lowest frequencies in estimating species AGB over 

time. This shows that the visible bands are inconsistent and have limited potential in estimating 

C3 and C4 grass species AGB over time. The limited potential of visible bands in estimating 

AGB has been previously attributed to their sensitivity, for example, the review by Lu, (2006). 

These bands were reported to be less sensitive to species biophysical characteristics and AGB, 

hence they become insignificant and less competitive. 

 

5.2. Species AGB prediction accuracies 

The use of indices showed a marked increase in species AGB prediction accuracy over time, 

when compared to the use of individual bands. Indices have been reported to have better 

AGB prediction accuracies, when compared to the use of spectral bands (Sibanda et al., 2015a, 

2017). This is due to the combination of different bands which improve their sensitivity, 

thereby boosting AGB prediction accuracy, when compared to individual bands which have 

limited sensitivity capacity. In confirmation, across C3 and C4 grasslands, studies which 

estimated AGB used vegetation indices, particularly NDVI (An et al., 2013; Rigge et al., 2013; 
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Tieszen et al., 1997). The broadband nature of the used sensors discouraged the use of spectral 

bands, which have been perceived to be insensitive to species biophysical properties, hence have 

low ability in estimating AGB. Thus Sentinel 2 extends the availability of variables for 

estimating C3 and C4 grasses AGB, which were previously limited to traditional indices. 

 

Species AGB prediction accuracies was quite variable over time. For example, species AGB was 

predicted with relatively lower accuracies in May and November, than in February and August. 

This is a clear indication of the influence of seasonality on species AGB estimation accuracies, 

which might be associated with the amount of AGB available. In this study, lower AGB 

prediction accuracies in May are likely attributed to species phenology. Species phenology 

determines the accumulation of AGB and the subsequent estimation accuracy, using remote 

sensing data. This was also confirmed by the validation dataset, where the model showed 

lowest estimation accuracies in May. In May, Themeda had reached its peak, whereas Festuca 

was at its peak stage of growth, both species therefore had high density AGB. Field-based AGB 

measurements also confirmed that May had the highest AGB for both species. High AGB 

during peak stage of species phenology causes saturation problem and this might have 

challenged the estimation accuracy. Saturation due to high AGB at maximum productivity is one 

of the major problems associated with multispectral sensors in estimating species AGB. 

However, in February and November, although both species were active, they have not yet 

reached their peak, which implies limited saturation problem and therefore better accuracies, 

than in May. The influence of phenology and AGB variations on estimation accuracy was 

also noted by Ramoelo and Cho (2014) in north east South Africa, using Worldview 2 

dataset. The study reported slightly higher prediction accuracies in July, which was 

characterized by lower AGB, when compared to March, which had higher species AGB. 

Similarly, the influence of high density AGB lowering estimation accuracy was also explored by 

Mutanga et al. (2012), using Worldview 2 dataset and random forest model. 

 

Although the use of Sentinel 2 derived indices provided better estimation accuracies using 

data acquired during the study period, this study urges caution when estimating Themeda 

AGB during the winter fall, as the species and other C4 species starts to lose their vigour. Some 

of the indices used like NDVI are related to vegetation greenness and have been reported to 

have limited potential during low vegetation cover (for example, Butterfield and Malmström, 

2009). In this regard, during February, May and November 2016, when both species were 

active, indices related to greenness remained applicable, despite saturation problems in May. 

However, in August, when C4 becomes less active and there is less vegetation cover, it is likely 

that soil reflectance interferes with species signal in Themeda dominated areas. Possibly, the 

use of other indices besides NDVI or the use of SWIR-based indices in estimating C4 AGB 

during low productivity stages is recommended. 

 

5.3.  Spatial variations in AGB over time 

This study managed to depict the spatial variations of C3 and C4 dominated grassland AGB in 

KwaZulu-Natal, using Sentinel 2 multi-temporal dataset. The study confirms the potential of 

the Sentinel 2 sensor in estimating and mapping C3 and C4 AGB over time. This 

performance is the combined contribution of its spectral range, which constitute more and 
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unique bands, as well as its 10 m spatial resolution. These characteristics are sensitive to C3 and 

C4 species physiological, morphological and phenological properties which improve the AGB 

prediction and variations. At a finer spatial resolution, subtle differences in AGB for different 

species are also better captured, with limited mixed pixel problem (Lu, 2006). 

 

It was found that AGB across the study area exhibited spatial and temporal variations. This 

shows the influence of various factors governing AGB variations for C3 and C4 grass species 

across the area. The source of differences in AGB over time is contributed by the variations in 

species composition, growth, as well as climatic influence. For instance, reflecting on the 

distributional pattern of the grass species under study, the AGB variation maps are closely 

associated with the recognized distribution pattern of the target grass species (Fig. 1) or 

species composition and associated biophysical properties over time. In the present study area, 

Themeda is predominantly within the central, north east and eastern parts of the study area, 

which showed higher AGB during the summer months, when the species is most active and 

productive. In winter Themeda dries, due to harsh unfavourable conditions. This was also 

noticed especially in August, during field data collection. Festuca on the other hand has 

been reported to be active for most parts of the year, which promotes AGB availability, and 

during the field data collection the grass remained active, although it will not be as active as 

during early winter. In agreement, the study by Rigge et al. (2013) reported the effect of 

grass composition within a landscape on the spatio and temporal patterns of AGB. 

 

The spatial distribution of AGB also coincided with the characteristics of the study area. For 

example, the far north east and eastern parts include communal areas, characterized by 

livestock grazing, as well as human disturbances, whereas the majority of the area is under 

conservation. Similarly, the communal area has more of Themeda, a high palatable grass 

that is favourable to livestock (Coughenour et al., 1985; Danckwerts et al., 1983), when 

compared to Festuca. Themeda is also recognized as an important source of fodder, fibre for 

paper, thatching and basketry. Consequently, this contributes to the loss of Themeda 

within the communal area, thereby lowering its AGB. The area under conservation showed 

consistently higher AGB during most times of the year. This is due to limited grazing and 

human disturbances, as well as the predominance of Festuca grass, which has been reported 

to be green for most part of the year. Festuca has also been identified as unpalatable and 

therefore unfavourable to grazers, compared to Themeda. This reduces grazing pressure in 

Festuca dominated landscapes. However, although it is not comparable to communal area, 

the conserved area also provide forage to a few small ungulate wildlife grazers (Joubert et 

al., 2017). 

 

AGB variations also highlighted inter and intra-annual variability in climatic conditions, such 

as the reported seasonal rainfall and temperature, influencing the timing and amount of 

AGB accumulation. Although it was quiet variable across the study area, higher AGB was 

estimated during the summer months, whereas lower AGB was observed during winter 

months, particularly winter fall (August and September). Higher AGB may be primarily 

caused by the prevailing of favourable climatic factors, which boost species AGB production 

and accumulation. For instance,  Morris et al. (2016) and Nel (2009) reported that the 
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area receives summer rainfall, from November to March. This facilitates species growth and 

AGB production, during this period. This is most apparent for Themeda, which is most 

active in summer. In contrast, August and September showed a marked decrease in AGB 

across the area under study. This period is typically end of winter, associated with no 

rainfall (Everson et al., 1988), which limit plant growth, thereby lowering AGB production 

and accumulation for most parts of the area. This also indicates that the winter fall, present 

unfavourable conditions for AGB accumulation across the study area. A very limited number 

of studies have reported the AGB variations of C3 and C4 grass species within the area 

(Everson and Everson, 2016; Everson et al., 1985, 1988). These studies have reported 

high AGB during the summer months, compared to winter, using ground measurements. 

The influence of climate variability on C3 and C4 grasses AGB has been reported, for 

example, by the study done by Winslow et al. (2003) which reported significant response 

of C3 and C4 grass species AGB to water variability. 

 

In relation to the general climate, for example rainfall pattern, which is one of the variables 

which influence AGB variations across the study area, few studies have detailed the typical 

rainfall received across the study area (Everson and Everson, 2016; Morris et al., 2016). 

The study by Morris et al. (2016) reported the mean annual rainfall range, based on 

longterm records from 1948 to 1994. They found that annual rainfall varied between 1020 

and 1535 mm. Data acquired from the South African Observation Network has revealed 

that the study area received annual rainfall of approximately 1190 mm during the 2016 

study period. This range falls within the long term record reported by previous studies; 

therefore AGB produced across the area might also be considered typical, varying from as 

low as less than 1 kg/m2, to a maximum of 4 kg/m2. However, although rainfall received 

falls within the long term average, the data used by Morris et al. (2016) might be 

considered inconclusive to draw solid conclusion about the rainfall pattern during the 

2016 study period. In this regard, a comprehensive rainfall pattern, which includes recent 

recordings and other climatic variables which might influence species AGB across the area 

under study, is required. 

 

6. Conclusion 

Findings  presented  in  this study  demonstrated  the  spatial  productivity of C3 and C4 

grass species over time. This is crucial in determining the potential of C3 and C4 

dominated grasslands as forage sources, their carrying capacity and in predicting the effects 

of global change on their productivity. The study also demonstrated the potential and 

strength of using the readily available Sentinel 2 data as an invaluable source of C3 and C4 

grasses AGB information, for the proper and well-informed management at large areas. 

This is critical, especially in sub-Saharan Africa, where high-resolution remote sensing data 

availability remains a challenge for monitoring vegetation productivity and its response to 

environmental changes, over time. Results also demonstrated that SPLSR is a useful and a 

robust model for estimating C3 and C4 grass species AGB over time. Future studies may 

consider expanding to different rangelands or ecosystems, such as parks, communal areas 
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and other protected areas, in which these grasses offer a wide range of services. It is also 

valuable to identify the productivity of different C3 and C4 grass species across the area. 
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