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ABSTRACT
We develop a machine learning-based framework to predict the Hi content of galaxies using
more straightforwardly observable quantities such as optical photometry and environmental
parameters. We train the algorithm on z = 0 − 2 outputs from the Mufasa cosmological
hydrodynamic simulation, which includes star formation, feedback, and a heuristic model to
quench massive galaxies that yields a reasonable match to a range of survey data including Hi.
We employ a variety of machine learningmethods (regressors), and quantify their performance
using the rootmean square error (rmse) and the Pearson correlation coefficient (r). Considering
SDSS photometry, 3rd nearest neighbor environment and line of sight peculiar velocities
as features, we obtain r > 0.8 accuracy of the Hi-richness prediction, corresponding to
rmse< 0.3. Adding near-IR photometry to the features yields some improvement to the
prediction. Compared to all the regressors, random forest shows the best performance, with
r > 0.9 at z = 0, followed by a Deep Neural Network with r > 0.85. All regressors exhibit
a declining performance with increasing redshift, which limits the utility of this approach
to z . 1, and they tend to somewhat over-predict the Hi content of low-Hi galaxies which
might be due to Eddington bias in the training sample. We test our approach on the RESOLVE
survey data. Training on a subset of RESOLVE, we find that our machine learning method can
reasonably well predict the Hi-richness of the remaining RESOLVE data, with rmse∼ 0.28.
Whenwe train onmock data fromMufasa and test onRESOLVE, this increases to rmse∼ 0.45.
Our method will be useful for making galaxy-by-galaxy survey predictions and incompleteness
corrections for upcoming Hi 21cm surveys such as the LADUMA and MIGHTEE surveys on
MeerKAT, over regions where photometry is already available.

Key words: galaxies: evolution – galaxies: statistics – methods: N-body simulations

1 INTRODUCTION

One of the most important science goals of the Square Kilo-
metre Array (SKA) project is to provide us more insights into the
growth and fueling of galaxies. A particular focus is on the evolution
of their atomic neutral hydrogen, or Hi content, which constitutes a
major part of the gas content of galaxies, as traced by 21cm radio
emission. Hi gas represents the dense gas reservoir that will eventu-
ally form stars after passing through a molecular phase, and is thus
a key and so far underexplored aspect of the baryon cycle governing
galaxy evolution (Somerville & Davé 2015). Hence upcoming sur-
veys with SKA precursors MeerKAT and ASKAP aim to expand
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the depth and area of 21cm surveys out to z ∼ 1, with the SKA
potentially reaching even higher redshifts.

Much work has been done on studying the Hi content of galax-
ies in the nearby universe. The Arecibo Legacy Fast ALFA (AL-
FALFA; Giovanelli et al. 2005) blindly observed about 7000 deg2

of the Arecibo sky and was complete in 2012. It has enabled a
precise study of the distribution of galaxies in the local universe
based on their Hi mass. For instance, Jones et al. (2016) studied
the environmental effects on the Hi content of galaxies using the
Arecibo Legacy Fast ALFA survey α.70 (70% of the final data).
They found a shift of the Schechter function knee towards higher
value in higher density environments. Due to ALFALFA’s high
positional accuracy of < 20 arcsec, they could explore the optical
counterparts and extend the understanding of the stellarmass growth
based on Hi content. The GALEX Arecibo SDSS Survey (GASS;
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2 Rafieferantsoa, Andrianomena & Davé

Catinella et al. 2010) used a complementary approach by select-
ing ∼ 800 L∗ galaxies from the Sloan Digital Sky Survey (SDSS;
York et al. 2000) and observed their Hi-line spectra until detection.
Catinella et al. (2010) found that the detected (60% of the 20% ob-
served) Hi richness (MHi/M∗) does not go below 40% even for the
highest stellar masses explored (∼ 1011 M�). Using the full GASS
dataset, Catinella et al. (2013) found an environment dependance of
the gas fraction, such that galaxies in higher host halo masses have
lower Hi than those in less dense environments, confirming the idea
that galaxy gas content and environment are tightly connected. The
REsolved Spectroscopy Of a Local VolumE (RESOLVE; Kannap-
pan et al. 2011) survey adopted yet another approach by observing
∼ 1500 galaxies with ranges of stellar and gas masses within a
volume-limited 53, 000 Mpc3 in the nearby Universe. Stark et al.
(2016) used the RESOLVE data, targeting an area within the SDSS
redshift survey, and found that decreasing Hi richness in galaxies
is related to increasing host halo mass for a given stellar content.
These data set the stage for explorations to lower masses and higher
redshifts to be achieved with next-generation surveys.

Theoretical studies on the evolution of Hi content of galax-
ies have also been expanding. Cunnama et al. (2014) predicted
from the Galaxies-Intergalactic Medium Interaction Calculation
(gimic) suites of hydrodynamical simulations (Crain et al. 2009), a
tight dependence of galaxies’ Hi column density and environment:
Galaxies in groups possess extended Hi radial profiles compared
to field galaxies. The extended radial profiles originate from the
ram pressure redistribution which they found to dominate over the
gravitational restoring forces. Although their findings are physi-
cally grounded, disentangling such processes remain a challenge
for observers. Related results were found using a different galaxy
formationmodel fromDavé et al. (2013), where Rafieferantsoa et al.
(2015) found a faster depletion of Hi content once galaxies fall in
a more massive haloes. The specific star formation rate of those
galaxies also decreases but at rate less than that of the Hi, indicat-
ing gas stripping from the outskirt of the galaxies inward. Quilis
et al. (2017) studied the effects of ram pressure stripping. They
used a cosmological simulated box to select a sample of galaxies
residing in clusters to do their analysis. They found that galaxies
below 1010 M� in stellar mass are often located at the outskirts of
the clusters and have high eccentricity. Their interactions with the
environment are more violent resulting in faster change of the gas
contents and morphologies of the galaxies. More massive galax-
ies are situated closer to the cluster centers, and the gas removal
is less dominant. The major change in those galaxies is caused by
inflowing gas from the intercluster medium. Using theMufasa data
(Davé et al. 2016), Rafieferantsoa & Davé (2018) found a weak but
extended galactic conformity in Hi richness for galaxy members of
low-mass haloes. Bigger host-halo galaxies tend to have stronger
but less extended conformity. These studies demonstrate that the Hi
content of galaxies is impacted by their environment, but the exact
nature of that dependence is not entirely clear.

Hence observational surveys suggest that understanding the
baryon cycle requires precise measurements of the Hi content of the
galaxies, which at timesmight be affected by observational artifacts.
Theoretical works, on the other hand, predict physical results that
are currently difficult to observe, which argues for larger and deeper
Hi surveys to improve our current understanding of the evolution of
gas content and hence galaxy growth overall.

Although considerable efforts have gone into studying the gas
phase properties of galaxies with the help of the currently available
Hi data, e.g. ALFALFA and RESOLVE, the understanding of Hi
evolution still lags behind the understanding of their stellar com-

ponents. The main reason is that photometric data can be directly
related to the stellar population of galaxies, and such optical and
near-infrared data is currently technologically able to reach deeper
levels than radio data. For the promise of multi-wavelengths sur-
veys to be fully realised into the radio regime, it is important to be
able to relate gas and stellar properties accurately. However, this is
not straightforward. There have been attempts that have been pro-
posed to estimate gas-phase properties of galaxies from their stellar
masses obtained from spectral energy distributions (SED) fitting
to photometrical properties. For instance, Kannappan (2004) found
a correlation between u − K colours and Hi richness which they
dubbed photometric gas fractions. The correlation was shown to be
valid for galaxies with atomic gas fraction ranging from 1% to 10×
the stellar masses. Zhang et al. (2009) developed a similar method
by using the i-band surface brightness and the g − r colour to es-
timate the Hi richness of the galaxies. They found a tighter scatter
compared to previous estimations. The Hi scaling relations found
by Zhang et al. (2009) were further improved upon by Wang et al.
(2013) by introducing a form of correction to account for the fact
that Hi rich galaxies have more active star formation on the outer
discs (bluer) (see Wang et al. 2011). Still with the standard approach
by first establishing correlation between the gas fraction and other
galaxy properties, Catinella et al. (2010) prescribed another rela-
tion log10 (MHI/M∗) = −0.332 log10(µ∗)−0.240(NUV−r)+2.856
which was also tested by Wang et al. (2015) with their samples to
estimate the gas fraction as a function of stellar mass surface den-
sity (µ∗) and observed NUV − r colour. From these studies it is
clear that developing ways to connect optical/NIR information with
Hi is an important task, which affords many applications such as
to estimate the Hi content of certain galaxies based solely on their
available photometry information, to enable larger statistics, and to
assess incompleteness in surveys.

In this work, we propose a more general approach compared
to previous studies by investigating the feasibility of predicting the
Hi richness of galaxies from the available optical properties of
galaxies, particularly the photometric magnitudes and environmen-
tal quantities, usingmachine learning. Themain idea is thatmachine
learning can synthesise all the photometric data in order to optimally
predict Hi, rather than trying to isolate particular combinations that
work best. The advantage of using machine learning techniques is
mainly the capability of the model to learn peculiar aspects human
might have overlooked, with the downside that such a method does
not provide a direct physical interpretation of the result. By using
simulated galaxies to train and calibrate the method, connections
can be made between the obtained correlations and the underlying
physics, at least within the context of the given model. In this paper,
the first in a series, we focus on galaxies having at least someHi con-
tent; future works will consider identifying gas-free galaxies. Our
best machine learning algorithms, random forest and deep learning,
are able to predict the Hi richness of simulated galaxies to within
< 0.3 dex from their real values using only the photometric proper-
ties of the simulated galaxies. Testing this on the RESOLVE survey,
the prediction of the observed data from simulation-trained models
yield less precise results. Generally, random forest is our optimal
machine learning algorithm, but the neural network’s performance
becomes better when observational data are used.

Our method has numerous applications. Current data as well
as future surveys will benefit from this method by providing ways to
more accurately correct observations for incompleteness and con-
fusion. For instance, the upcoming Looking At the Distant Universe
with theMeerKATArray (LADUMA; Holwerda et al. 2012) survey
aims to directly detect and use different techniques to stack multiple
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objects to be able to measure Hi fluxes out to z > 1 for the first
time, to enable a deeper understanding of the fueling processes of
galaxies and study the cosmic evolution of their Hi content. But at
higher redshift, confusion can become dominant especially when
sources are located in groups. Meanwhile, ASKAP Hi All-Sky Sur-
vey (WALLABY) which will cover two third of the sky will probe
Hi gas of 6 × 105 galaxies up to z = 0.26; DINGO, up to z = 0.43,
will probe about 105 galaxies within 4 × 107 Mpc3 cosmological
volume (Duffy et al. 2012). These Hi surveys will provide a wealth
of information on galaxy evolution, but it is important to be able
to accurately measure and understand the observations, which is
where our method can provide insights.

§2 briefly reviews the Mufasa simulation used for this work.
The approach we use in this study is detailed in §3, and we present
the techniques utilized in order to achieve our goal in §4. §5 presents
our findings and §6 shows a preliminary application of our method.
We expand on the limitations of our method in §7 and finally con-
clude in §8.

2 SIMULATIONS

2.1 Galaxy formation models: Mufasa

For our training set we make use of the outputs of the Mufasa
simulation model, which is fully described in Davé et al. (2016).We
only present the key prescriptions in the model that are particularly
relevant for this work.

Mufasa is implemented in the Gizmo cosmological hydrody-
namics code, including a tree-particle-mesh gravity code based on
Gadget (Springel 2005), topped with a meshless finite mass hy-
drodynamic algorithm (Hopkins 2015). The model uses radiative
cooling and heating implemented with the Grackle 2.1 library1.
Star formation follows a Schmidt (1959) law, based on a subgrid pre-
scription that determines the molecular gas content of each gas par-
ticles (Krumholz & Gnedin 2011), and occurs only in gas elements
above a hydrogen number density threshold of nH > 0.13cm−3.

Mufasa uses a kinetic gas outflow prescription to model
star-formation driven winds, following scalings from the Feed-
back in Realistic Environments (FIRE; Muratov et al. 2015) zoom
simulations. Mufasa also contains a heuristic prescription for
star formation quenching whereby it heats the gas volume ele-
ments within a host halo that are above a halo mass threshold of
Mhalo > (1 + 0.48z) × 1012M� (Gabor & Davé 2015; Mitra et al.
2015). This model is intended to mimic radio mode feedback from
active galactic nuclei (Croton et al. 2006) in massive halos.

2.2 Galaxy sample

The galaxy sample used for our analysis is obtained by simulating
a cube of 50h−1Mpc on a side with 5123 dark matter particles and
5123 gas volume elements. The initial conditions are generated at
redshift z = 249 usingMusic (Hahn&Abel 2011) with Planck et al.
(2016)-concordant cosmological parameters, namely Ωm = 0.3,
ΩΛ = 0.7, Ωb = 0.048, H0 = 68 km s−1 Mpc−1, σ8 = 0.82 and
ns = 0.97.

Mufasa evolves these initial conditions to z = 0, outputting
135 snapshots. For each snapshot, we identify galaxies, with

1 https://grackle.readthedocs.io/en/grackle-2.1/genindex.
html

Skid2 (Kereš et al. 2005) as gravitationally bound collections of
stars and star-forming gas. In our analysis, we will only use z 6 2
sample, which, in total, is made of 50 snapshots. Each snapshot
contain typically around 8000 resolved galaxies (> 64 star particle
masses or M∗ > 1.16 × 109M�).

2.3 Galaxy properties

Our simulated galaxy properties are calculated with a modified ver-
sion of caesar3, which is an add-on package for the yt simulation
analysis suite. The stellar mass of a galaxy, or M∗, is the total mass
of the stellar particles within it. The atomic neutral hydrogen con-
tent, MHi, of the galaxy is the summation of all Hi from the gas
particles. For each gas volume element, we account for the self-
shielding from the metagalactic UV background radiation, by using
a fitting formula for the effective optically-thin photoionization rate
as a function of density (Rahmati et al. 2013). The galaxy peculiar
velocity vgal is the 1-Dmass-weighted average of all the particle ve-
locities contained in it, along each of the (x, y, z)) directions.We use
the projected nearest neighbour density Σ3 to quantify the galaxy
environment such that:

Σ3 =
3
πR2

3
(1)

where R3 is the distance of the galaxy to its 3rd closest neighbour,
projected along the line of sight.

The magnitudes of the galaxies are obtained using the Loser4

(see Davé et al. 2017b, for a fuller description) package (not cae-
sar) but still using the groups identified by Skid. We first use
the Flexible Stellar Population Synthesis (FSPS; Conroy & Gunn
2010) library to derive the stellar spectra of each star particle based
on its age and metallicity, summing to obtain the stellar spectrum
for that galaxy. Every stellar spectrum is attenuated by the line of
sight dust extinction obtained by scaling the metal column density
along the given line of sight; this results in each of 6 lines of sight
(±x,±y,±z) having different extinction and thus different spectra.
We obtain all magnitudes by applying the appropriate filters. We
computed (u,g,r,i,z) SDSS magnitudes, (U,V) Johnson magnitudes,
NUV GALEX magnitude, and the (J,H,Ks) 2MASS magnitudes.

3 MACHINE LEARNING SETUP

The goal is to predict the Hi richness (MHi/M∗) from other prop-
erties of a given galaxy. We use the supervised learning paradigm
which consists of training the algorithm to estimate the desired label
when fed with a corresponding input. Through a learning process,
the best model parameters that minimize a defined cost function,
which we choose to be the mean squared errors (mse), are solved.
Sets of training datasets drawn from our simulated sample are used
to train our learners to predict the target (MHi/M∗) from the features
{u, g, r, i, z,U,V, J,H,Ks, Σ3, vgal} of our galaxies.

It is noted that vgal indicates line of sight velocity, and our
models will predict the Hi richness (MHi/M∗) of the galaxies rather
than their MHi due to the less constrained correlation between the
latter and the galaxy stellar masses. In addition, we take the loga-
rithmic values of the target due to its large dynamic range which

2 http://www-hpcc.astro.washington.edu/tools/skid.html
3 https://bitbucket.org/laskalam/caesar
4 Line Of Sight Extinction by Ray-tracing
https://bitbucket.org/romeeld/closer
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can cause the learning process to fail. First of its series, this work
focuses only on the prediction of the Hi richness of Hi rich galaxies
and to do so, we only select galaxies with MHi/M∗> 10−2, which
decreases the size of our sample. To counteract, we increase our
data by calculating the galaxy properties along all the 6 projections
axis of the simulated cubical box, resulting in 6× more data for our
analysis.

We assume we have all photometric magnitudes for all avail-
able bands, covering a wide range of spectrum including SDSS
magnitudes, Johnson magnitudes and 2MASS magnitudes, which
we can compute from our simulated galaxies. Although this sce-
nario is ideal for our analysis, it is not so realistic. We can expect
observed galaxies to only have {u,g,r,i,z} magnitudes at best. To
this regard, we examine different possibilities in our analysis. All
the setups considered in this work are listed in Table 1, where
color indices denotes all possible pairwise combination (e.g.
g − r) of all the magnitudes in the surveys considered in one setup.

We train our model in two different ways. First is the “ f -
training”, which considers all the galaxies from all the z 6 2 outputs
(with f leading the setup names, see first column of Table 1). Second
is the “z-training”, in which we build a regressor at each redshift bin
(with z leading the setup names). In both approaches, we randomly
choose 75% of the data as the training set and 25% as testing set.
We do the training 10 times with 10 different random batches to get
the uncertainty of our results5.

To this end, we make use of 6 different machine learning tech-
niques that we describe in the following.

4 MACHINE LEARNING ALGORITHMS

We use TensorFlow to build the DNN model and scikit-learn
(Pedregosa et al. 2011) package for the remaining methods.

4.1 Linear regression (LR)

Linear regression model (along with kNN, see §4.3) is the simplest
amongst those we use in this work. Its simplicity, hence its great
speed during training, provides quick insights into the relationship
between the features (x) and the corresponding target (y). The latter
is defined as a linear combination of all the features, y = w · x, and
the idea consists of finding the weights w that minimize the mean
squared error (mse)

mse =
1
N

N∑
n=1
(w · xn − yn)2. (2)

Here the bias is absorbed into the weights w.

4.2 Ensemble learning methods: Random forest (RF) and
Gradient Boosting (GRAD)

To understand both RF and GRAD algorithms one needs to first
look at their base estimators, the Decision trees (Hastie et al. 2009),
which will be clarified bellow.

In a simple one dimensional problem, we assume a dataset D
= {(x1, y1), (x2, y2), ..., (xN , yN )} of length N ((x, y) ∈ R × R). The

5 At each iteration, the dataset is randomly shuffled and new batches of
training and test sets are generated.

first step of the algorithm is to split the training set at a split point s
that minimizes the cost function

J = min
c1


∑

xi ∈R1(s)
(yi − c1)2

 +min
c2


∑

xi ∈R2(s)
(yi − c2)2

 , (3)

where R1 = {xi |xi 6 s} and R2 = {xi |xi > s} are the two regions
(also called nodes) resulting from the split. The values c1 and c2
that minimize each term in Eq. 3 are simply the averages of the
labels yi in R1 and R2 respectively; i.e.

c1 =
1

m1

∑
xi ∈R1(s)

yi,

c2 =
1

m2

∑
xi ∈R2(s)

yi, (4)

where m1 and m2 are the number of inputs xi found in R1 and R2
respectively. To grow the tree, each resulting node from the root is
further split recursively (known as greedy algorithm) until a fixed
maximum depth (or size) of the tree is reached. The nodes at the
bottom of the tree are called the leaf nodes. To predict a new label
ynew from a new input xnew, one simply walks through the tree from
the root to reach a leaf node which then estimates ynew by averaging
the corresponding labels yi of the inputs xi whithin it according to6

ŷnew =
1
m

∑
xi ∈L

yi, (5)

where L indicates the leaf node and m the number of points xi
within it. Decision trees are prone to overfitting but there exist
various techniques of regularization.

Random forest (Breiman 2001), known to be a powerful ma-
chine learning algorithm, is composed of a given number7 of de-
cision trees (base estimators) which are individually trained with a
random subset of the dataset. To do a prediction, RF simply averages
the predictions of its decision trees.

Another well known ensemble learning model that we use
is gradient boosting (Friedman 2000). Its base learner is also a
decision tree but instead of simply aggregating the predictions of
its regressors like in the case of RF, the training is carried out in
a sequence. Except for the first regressor, which is trained with the
dataset, each next regressor in the sequence8 fits the residual errors
of its predecessor and so on. The resulting estimator, is then of the
following form

E(x) = E1(x) +
N∑
i=2

γiei(εi), (6)

where E1(x) is the first estimator, εi the residual errors from the
i − 1th learner used as inputs of the ith learner to fit a predictor ei
and γi is a coupling parameter which is optimized such that the
error from the combined system at each iteration (i.e. Ei+1(x) =
E1(x) +

∑i
k=2 γkek (εk )) is minimized. N is the number of base

regressors (equal to the number of iteration) that form the ensemble.

6 Similar to Eq. 4.
7 Which is among the hyper-parameters of the model.
8 This is set by the number of the base estimators.
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Table 1. List of all the setups that are considered in the analysis. For easy reference, each setup has been given a name.

Name Surveys Features Target Description

fSMg SDSS u, g, r, i, z, vgal, Σ3 log(MHI/M∗) redshift information not required
fSClr SDSS color indices, vgal, Σ3 log(MHI/M∗) redshift information not required
fSCmb SDSS color indices, u, g, r, i, z, vgal, Σ3 log(MHI/M∗) redshift information not required
fAMg SDSS+Johnson+2MASS H, J, Ks, U, V, u, g, r, i, z, vgal, Σ3 log(MHI/M∗) redshift information not required
fAClr SDSS+Johnson+2MASS color indices, vgal, Σ3 log(MHI/M∗) redshift information not required

zSMg SDSS u, g, r, i, z, vgal, Σ3 log(MHI/M∗) prediction at a given redshift bin
zSClr SDSS color indices, vgal, Σ3 log(MHI/M∗) prediction at a given redshift bin
zSCmb SDSS color indices, u, g, r, i, z, vgal, Σ3 log(MHI/M∗) prediction at a given redshift bin
zAMg SDSS+Johnson+2MASS H, J, Ks, U, V, u, r, r, i, z, vgal, Σ3 log(MHI/M∗) prediction at a given redshift bin
zAClr SDSS+Johnson+2MASS color indices, vgal, Σ3 log(MHI/M∗) prediction at a given redshift bin

4.3 k-Nearest Neighbor (kNN)

k-Nearest Neighbour (Altman 1992) is a flexible non-parametric
regression algorithm. Considering a set of instances xn (in general
xn ∈ Rd but for the sake of simplicity we let xn ∈ R) with their
corresponding label yn (yn ∈ R), to predict a new label ynew given
a new instance xnew, the estimate of ynew is simply the weighted
average of targets of the k−closest neighbours of xnew. The principle
is generalised for d−dimensions in feature space.

4.4 Support Vector Machine (SVM)

Given a set of training data consisting of examples xn (xn ∈ Rd)
and their labels yn (yn ∈ R), the method aims at finding a linear
function of the form f (x) = w · x + b. This can be seen as a convex
optimization which seeks to

• minimize 1
2w

Tw,
subject to the constraint |yn − (w · xn + b)| 6 ε ,

where ε denotes the residuals between estimates and the desired
outputs. To deal with otherwise intractable optimization problem,
Vapnik (1995) introduced some slack variables ξ−n , ξ+n such that it
now aims at

• minimizing 1
2w

Tw + C
∑N

n=1(ξ
−
n + ξ

+
n )

subject to

the constraints


yn − (w · xn + b) 6 ε + ξ−n
w · xn + b − yn 6 ε + ξ+n
ξ−n , ξ

+
n > 0

(7)

where C is a positive value used for regularization. For simplicity,
we only present the linear case but to deal with non-linearities one
can resort to a kernelized SVM. It is noted that SVMmethod is also
used for classification problem (Cortes & Vapnik 1995).

4.5 Artificial neural network

We dedicate this section for a rather extended description of the
deep neural network used for this work. This is so due to its novel
application in astronomy. This is not so much the case with other
machine learning techniques described before, as they are at some
point fully or partly used to analyze astronomical data.

Due to our hardly correlated features and target, the choice
of model to learn the connection between them is very complex,
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Figure 1. Network graph of our 4-layer perceptron with 1 output unit. The
hidden layers contain m, p, q neurons respectively.

though our maximum number of galaxy properties are limited to
only 12 components. Figure 1 shows a summary of our multilayer
perceptron model. The left nodes show our galaxies properties as
input into our 3 hidden layers and the right most node is the output.
j
yk represents the k th neuron in the j th layer and is the linearweighted
sum of the preceding neurons as shown in equation 8, fa being the
activation function (see 4.5.2).

j
yk = fa

(∑
l

w
j
k,l
×

j−1
y l + bj

k

)
(8)

w
j
k,l

and bj
k
are the weight and bias of

j−1
y l on

j
yl .

A deep neural network (DNN) is then to learn the (close to the)
correct values of w’s and b’s for the model to be able to reproduce
the target given the features.

The choices for the number of the hidden layers, the activation
functions between layers and the optimiser are described in the
following subsections.

4.5.1 Hidden layers

One of the toughest step that one has to overcome in building a
DNN model is the choice of the number of hidden layers and the
respective number of neurons in each layer. The use of models with

MNRAS 000, 1–16 (2018)
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a single hidden layer or the so called universal approximators has
been advocated since the artificial neural network was used into
solving physical problems. Cybenko (1989) stated that a single hid-
den layer in a feedforward9 neural network is enough to capture the
continuous non-linearity between the inputs and the outputs. This
conclusion was extended later on by Hornik (1991) that the nature
of the feedforward structure drives its universality irrespective to
the activation function as long as the latter is continuous, bounded
and non-constant (see. §4.5.2). The “universal approximation”
principle ended recently after the work done by Hinton et al.
(2006). They explored the improvement of the multi-hidden-layer
architecture and concluded the following. Although a single
hidden layer with finite number of neurons can be enough to
map the connection between the input(s) and the output(s), one
extra layer is useful to increase the accuracy of the mapping. Any
additional layer is only for the model to explore possible representa-
tions of themap and to decrease the learning time given a set of data.

For those reasons, and after a trial-and-error approach, we opt
to use 3 hidden layers in our model. We use 100 neurons in each
layer to correctly map the galaxy properties with all their possible
combinations. We have extra nodes to account for some degrees of
freedom for safety.

4.5.2 Activation function

Given a set of values fed to one node in our model (see Figure 1),
one has to decide how much of that information should be passed to
the next connected node(s). This can be defined with an activation
function. A sigmoid function was widely used in the past. Problems
occur with that function when the input values of a node are high
(or small in the negative end): that is the vanishingly small gradient
at those ends. In our model, we use a rectified linear unit function
(RelU, see eq. 9). It means that any negative values passing the
nodes are set to zero (ignored).

f (x) = max(0, x) (9)

We also tested the use of an exponential linear unit function (elU,
see eq. 10). In this case, we allow a small fraction of the negative
signal to go through the next connected node(s).

f (x) =
{

x, if x > 0.
exp (x) − 1, otherwise.

(10)

Our test didn’t get any improvement (if not deterioration) in us-
ing eLU. Using different activation functions such as hyperbolic
tangent, gaussian or multiquadratics are not favoured in our case.

4.5.3 Optimisation

After each step of calculations, the network should optimize the
model based on its current and previous states to improve the sub-
sequent mapping. Our model utilizes a computationally memory
efficient optimization due to its dependancy to only the first order
gradients, namely the “adaptive moment estimation” (or Adam). For
more details we refer the readers to Kingma&Ba (2014). Adam op-
timization, compared to other gradient-based optimization, is very
suitable for noisy and sparse gradients, and for simulated data which
show very large scatter with respect to a given quantity of param-
eter (Kingma & Ba 2014). With this optimizer, we have to decide

9 Any connections between neurons do no form a cycle

few parameters in advance. The learning step α and the parameters
controlling the moving averages of the 1st and 2nd order moments
namely β1 and β2 (both ∈[0,1)) respetively. For this purpose, we
chose to minimize the mean squared error between the target and
the prediction from the model: in what follows, we will alternatively
call the mean squared error the “objective function” f (x): with x
the parameters of the model to be updated, such as weights and
biases. At a given time t 6 T , where T is the maximal learning time
step, we can update the parameters of the model as shown in the
following.

gt = ∇x f (xt−1) (11)
µ1,t = β1 × µ1,t−1 + (1 − β1) × gt (12)
µ̄1,t = µ1,t/(1 − βt1) (13)

µ2,t = β2 × µ2,t−1 + (1 − β2) × g2
t (14)

µ̄2,t = µ2,t/(1 − βt2) (15)

xt = xt−1 − αt × µ̄1,t/(
√
µ̄2,t + ε) (16)

where αt = α
√

1 − βt2/(1 − β
t
1) is the time-step at t. Equation 11

shows the gradients of the objective function at t with respect to
the model parameters. Equations 12,14 update the estimations of
the 1st and 2nd moments. Our moments are biased towards the
initial values, thus we require equations 13,15 to account for the
corrections. Finally, we update the model parameters with equation
16.

We do not claim that the choice of parameters implemented in
our models as well as their configurations are the best to do similar
work. We will likely continue to improve this method in subsequent
papers.

5 Hi PREDICTION USING MACHINE LEARNING

Our goal is to predict the Hi richness of a given galaxy based on
its optical/near-IR photometry. We choose to predict Hi richness
and not Hi mass as it is expected to correlate more with galaxy
colours, with Hi-poor galaxies being redder than Hi-rich ones, so in
some sense gives more physical information than just Hi mass alone
which approximately correlates with stellar mass. Nonetheless, our
approach could equivalently be used for either, and we have tested
that the resulting accuracy of the predictions is similar.

5.1 Quantifying the mapping accuracy

For a given trained model (see §3), we can predict the Hi richness
of a test set which contains the feature parameters, similar to those
used during the training, and the real Hi richness. One can then
see for a given example (composed by the features) how the model
estimates the corresponding Hi richness and compare the predicted
value of this latter with its real value. Figure 2 shows the galaxies’
MHi/M∗vs. a selected colour g − r , one of our input features. The
simulated targets are shownwith the blue contours and the predicted
values with the green contours. Each column represents 3 selected
setups (see Table 1) that only use SDSS magnitudes during the
training whereas each row corresponds to one training model. The
z-trained models shown here (two right columns: zSCmb, zSClr)
are at z = 0.

Overall, the ML-predicted values follow the true values from
the simulation, and show that galaxy colour is anti-correlated with
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Figure 2. Superposition of the predicted (green) and the real (blue) Hi rich-
ness of our galaxies (x-axes) vs. g − r colour (y-axes). The contours are
enclosing 2σ of the distributions. Each row shows different mapping corre-
sponding a particular method and each column a different setup (see Table
1).

MHi/M∗ as expected. Themean trend is always well recovered using
any of the predictors. However, the scatter in the data is not fully
captured by any of the models: The green contours are always inside
the blue contours. Different ML algorithms perform differently in
this regard: We see that for DNN, RF & kNN, the two contours
are quite close. Only looking at the f -trained models (left column)
where we train on all the data from z = 0 − 2 simultaneously, it is
evident visually that RF maps g − r best, kNN comes next followed
by DNN. For the z-trained models where we train individually at
various redshifts, DNN, RF & kNN do similarly well with zSCmb
but the performance of RF is better with zSClr (where we add in
the color indices). In contrast, SVM, LR and GRAD have difficulty
to capture the scatter in the data, hence their predictions tend to be
more tightly confined around the mean. While we have shown this
specifically for g − r , the results for other colours are similar, and
typically show that RF and DNN perform the best, with kNN not
far behind.

Figure 3 shows a direct comparison between the real and the
predicted Hi richness of the galaxies with the DNN models trained
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Pearson's r:  0.894

Figure 3. 2D distribution of the real (x-axis) vs. predicted (y-axis) Hi rich-
ness with the z = 0-trained DNN model, using the zSCmb training set.

and tested with z = 0 simulated data. The dashed line shows the 1:1
line; if theML algorithmwere perfect, all points would lie along this
line. The correlation is apparent and generally follows the identity
line, indicating that the training performs reasonably well in the
mean. However, there is a significant scatter, which degrades the
performance on a galaxy-by-galaxy basis. The best-fit slope is also
not identically unity, so the correlation is not perfect even in the
mean. We thus would like to quantify our regressors’ performance
using the slope and tightness of the correlation.

To quantify the performance of our ML framework, we choose
three metrics:

• The slope of the linear mapping f : y → ŷ, where an ideal
mapping would have a unity slope.
• rmse (Root Mean Squared Error), given by

rmse =

√√√
1
N

N∑
i=1
(yi − ŷi)2

where y and ŷ are the real value and the estimate respectively, gives
the average difference between the predicted and the real values. The
square of this metric is also used as a cost function to be minimized
in some methods for regression (e.g. deep neural network, linear
regression). The lower the rmse the better the performance of the
model is.
• Pearson product-moment correlation coefficient (Pearson’s r)

which tells how scattered the predictions are compared to the true
values. The closer to 1, the tighter (or better) the prediction is.

Pearson′s r =
∑N
i=1(yi − Y )(ŷi − Ŷ )√∑N

i=1(yi − Y )2
√∑N

i=1(ŷi − Ŷ )2

where Y and Ŷ are the mean values of yi and ŷi respectively.

In figure 3, we get rmse= 0.276 and Pearson’s r= 0.894 for the
particular choice of the DNN regressor and the zSCmb training
set; this is one of our best cases, but RF is actually slightly better.
Previous work by Zhang et al. (2009), estimating Hi-to-stellar mass
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8 Rafieferantsoa, Andrianomena & Davé

ratio using analytic equation leads to 1σ scatter > 0.3, which shows
that our ML approach is more accurate.

Figure 4 shows the performance of the various models consid-
ering each setup in Table 1 using rmse and Pearson’s r coefficient.
The 2 columns from the left are the rmse and the 2 columns from
the right are Pearson’s r. Each row corresponds to the results from
different features used in the training. The name of the setup is
shown on the top left of each panel. Different results from different
learning techniques are presented with the color coded lines (with
distinctive markers). In the following subsections we discuss how
well our various regressors perform when varying the training set
and the training method.

5.2 Dependence on redshift

Examining the leftmost column in Figure 4, these are the rmse’s
for various ML algorithms when training on the entire data set from
z = 0− 2 without any redshift information ( f -training). The results
bear out the trends noted in Figure 2: The RF method generally
does the best (lowest rmse) for any of the input data sets, while
DNN and kNN follow, and then the remaining methods. The RF
values are still typically above 0.3, with the lowest values for the
fSCmb (SDSS colours, magnitudes, and environment) and perhaps
marginal improvement in fAMgwhich adds the near-IR photometry.

The third column shows the corresponding Pearson’s r values.
The basic story is the same, that RF provides the best prediction,
with values of r ≈ 0.85 in the best cases, with others down to r
≈ 0.75. The predictions from the aggregate dataset clearly contain
significant information, but are perhaps not as optimal as one might
get from including some redshift information.

The second and fourth columns show the result of training
and testing at individual redshifts (z-training). It is clear that from
z ∼ 0 − 0.5, the z-training performs better than the aggregate ( f )
training, with lower rmse around 0.25 in the best-case RF models
(zSCmb and zAMg). The other ML algorithms are clearly poorer
than RF, although DNN does reasonably well in the zSCmb case.
Similarly, the fourth column showing the Pearson’s r also is very
good at z = 0 − 0.5, and here DNN in many cases does nearly as
well as RF.

Beyond z > 0.5, all the regressors show degrading perfor-
mance, with increasing rmse and decreasing r. This increase in
rmse likely owes to the fact that at high-z, all galaxies are more
Hi rich (MHi/M∗> 10−2) Rafieferantsoa et al. (2015), with fewer
and fewer quenched galaxies with very low MHi/M∗. Because the
intrinsic MHi/M∗ vs. mass (and other properties) thus becomes
fairly flat, it becomes increasingly difficult for the ML to pick out
the correct MHi/M∗ based on other galaxy properties as would be
reflected in the photometry. This is likely an intrinsic limitation of
this method, owing to the evolution of Hi in galaxies.

Redshift information can be obtained observationally, amongst
other methods, from photometry or spectroscopy. The latter is still
easier to retrieve than direct Hi data, while the former typically
obtains redshift errors of a few percent, which is still good enough
to ascribe a training redshift. It is clear from the above results that
redshift information is useful to improve the predictions. Even out
to z ∼ 1, the limit of currently planned surveys, the predictions do
not degrade greatly, it is only at z > 1 that they become worse than
the aggregate case. Hence from here on we will primarily discuss
the z-training results.

5.3 Dependence on input features

The different rows in Fig. 4 show the impact of varying the input
features into the ML framework. As we have seen, RF generally
performs the best followed by DNN. GRAD, kNN, LR and SVM
perform similarly poorly regardless of our setups (their rmse’s'
0.34), with perhaps GRAD performing the worst. For this reason,
unless otherwise stated, we are only going to discuss RF and DNN
in what follows.

At z = 0, using only SDSSmagnitudes results in relatively poor
performance, with rmse ≈ 0.3 for RF and 0.35 for DNN and others.
For RF, using either color indices instead ofmagnitudes (zSCls)
or in addition to magnitudes (zSCmb) , or including additional
magnitudes into the near-IR (zAMg) improves this significantly,
with rmse as low as 0.25 and r> 0.9. Thus it appears that providing
colour information directly into theML algorithm helps it determine
a better mapping than only providing the magnitudes, even though
in principle the magnitudes contain all the colour information. Also,
providing additional near-IR bands seems to be advantageous.

For DNN, the story is slightly different. Again, only SDSS
bands has the worst performance, but here, including the near-IR
data does not improve things asmuch as providingcolor indices,
and particularly providing both color indices and magnitudes
together (zSCmb), which achieves a performance approaching that
of RF.

The redshift dependence of rmse and r is similar among all
these combinations of input datasets. The overall message is that
providing more bands is better, which is unsurprising, but also
that it is preferable to provide the colours directly rather than the
magnitudes given the choice. In many cases, it is possible via SED
fitting to obtain a galaxy colour that has uncertainties that are smaller
than would be obtained by just subtracting magnitudes, so this may
be a more valuable input for ML predictions.

5.4 The slope of the mean relation

In Figure 5 we show linear fittings for the correlation between real
(x-axis) and predicted (y-axis) values for MHi/M∗. The top pannels
are for the z-trained models at z = 0 and the lower panels for
f -trained models. Each column corresponds to a given regressor
as labeled on top. In each panel, the dark (light) lines represents
the 1σ (2σ) contours between the targets and the predictions. The
numbers on the top right are the slopes of the linear fits (color
coded) for the two contours. The thick dashed line shows the 1-to-1
relation, which would be the perfect prediction. We only show the
SDSS combined setup (zSCmb) here, i.e. the features are SDSS
magnitudes+color indices +vgal+Σ3, but the results from other
setups are similar.

We can see that f -trained (lower panels) models tend to have
slopes further away from unity compared to those from the z-trained
ones. This confirms what we found previously with rmse and Pear-
son’s r, that at low redshifts, training on the smaller but more ho-
mogeneous sample at a given z provides a better prediction than
training on a larger sample that conflates all the redshifts.

Among regressors, again we see that RF and DNN have slopes
that are closest to unity, and thus perform better. All other methods
have best-fit slopes below 0.8. However, all the slopes are< 1, which
indicates an under-prediction of the Hi richness for Hi rich galaxies
and over-prediction for Hi-poor galaxies. This reflects the fact that,
as seen in Figure 2, the true scatter in the MHi/M∗ around the mean
is not fully reproduced in the predictions, such that all the regressors
tend to fit galaxies closer to the mean. Hence at the lowest MHi/M∗,
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Figure 4. Root mean square errors RMSE and Pearson product-moment correlation coefficients r are shown on the 2 columns from the left and right,
respectively. Models perform better if they show lower RMSE and higher r. The first on the left shows a mapping for all the galaxies, and the second for galaxies
at different redshifts. The dots and lines are color coded by the training models we use. Each rows show different results for different setups. The rmse values
are shown on the left y-axes and the r values on the right y-axes.

they tend to fit slightly higher values, while at the highest MHi/M∗,
they tend to fit slightly lower values, resulting in a sub-unity slope:
akin to an Eddington bias. The slope thus partly reflects a measure
of how well the scatter around the mean is predicted. The fact that
RF and DNN have the best slopes just quantifies the qualitative
impression from Figure 2 that these regressors reproduce the extent
of the scatter most closely.

Figure 6 shows the comparison of slope values for the f -trained
sample (left panel) and the redshift evolution of the z-trained sample
(right panel) among the various regressors. The left panel effectively
just shows a plot depicting the numbers in the bottom row of Figure
5. Here, RF performs the best but not so far from DNN (considering
the variance among 10 subsamples), and the other models perform
somewhat worse.
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Figure 5. 2D representations of our real (x-axes) vs. predicted (y-axes) values of Hi richness. Upper panels show for different models at z = 0.0, whereas
the lower panels show for all redshift combined. We only show the results from our {f,z}SCmb features. The numbers with dark (light) colors on the left top
corners show the slopes of the linear fit of the 1σ (2σ) subsample.
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Figure 6. Slopes of the linear fit (y-axes) of the relationship between the
predictions and the real Hi richness of our simulated galaxies. The dark
color (or thick lines) show the fit for the 1σ sample around the maximum
and the light color (or thin lines) for 2σ. The left (x-axis showing the names
of the models) is similar to what is shown in Figure 5 second row, the right
(x-axis showing the redshift values) panel presents the evolution of slopes
from our zSCmb features.

The right panel extend the values shown in the upper panel of
Figure 5 to higher redshift. Dark colors (or/and thick lines) show
the 1σ slopes and the light colors (or/and thiner lines) show the
2σ slopes. Looking at the z-training results (right panel), it is very
clear that the slopes of RF and DNN are closer to unity than the
other models, and that is true across all redshifts. The 2σ slopes
(light color lines) are generally better than the 1σ’s, except at the
lowest redshifts. Slopes < 0.5 implies a weak correlation between
the predicted and the real values of Hi richness, so Figure 6 indicates
that all regressors become unreliable beyond z & 1.

In summary, k-NN, RF and DNN methods show better per-
formance as compared to SVM, GRAD and LR (Figure 2). DNN
and RF tend to perform better when providing galaxy colours as
opposed to photometry, and when providing more bands. Among
our tests, the best mapping of Hi richness was achieved with RF at
z = 0 using optical and near-IR bands, which gave rmse’s ≈ 0.25
and r > 0.9. Using all data from z = 0 − 2 together did not provide
as a good fit as training at individual redshifts, despite the smaller

samples for the latter. The evolution of rmse or Pearson’s r shows
a stronger redshift dependence beyond z ∼ 0.5 − 1 making the pre-
diction uncertain at higher redshift (z > 1, see Figure 4). Slopes of
linear fits are generally less than unity owing to the fact that the true
scatter is not fully spanned by the prediction; again, RF performs the
best with DNN close behind, and the other regressors significantly
poorer. All slopes move further from unity with increasing redshift,
once again limiting applicability at z & 1.

6 APPLICATION TO RESOLVE DATA

We now apply and test our ML methodology against real observa-
tions from the RESOLVE data. This survey provides both photom-
etry and MHi/M∗, so provides an ideal sample to test the efficacy of
our predictions. There are two ways we will test this: First, we will
train on the RESOLVE data itself, and predict the RESOLVE data,
to test how well it works in the ideal circumstance of having the
training and testing set be from the same sample. Second, we will
train on the simulation and predict the RESOLVE data, which is
more like the application envisioned for this technique, to see how
much degradation there is when the training and testing sets are dif-
ferent. If the simulation was a (statistically) perfect representation
of the RESOLVE data, we would expect the resulting rmse and r
to be similar, but given that we expect some differences, we aim to
quantify the degredation in a real-world situation.

6.1 Simulated vs observed data

We first describe the RESOLVE data. We make use of the photom-
etry data (Eckert et al. 2015) as well as their corresponding Hi-flux
(Stark et al. 2016) from the Data Release II of the RESOLVE survey.
We use the following standard equation

MHI = 2.36 × 105 × D2 × FTotal (17)

to compute the Hi mass in M� , where D is the distance to the
galaxy (Mpc) calculated from the apparent and absolute magni-
tude in r band given in the photometry data. FTotal, provided by
the RESOLVE data, is the total Hi line flux (Jy. km s−1) of the
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galaxy. The RESOLVE photometric data release10 contains SDSS
(u,g,r,i,z), 2MASS (J,H,K), GALEX (NUV) and UKIDSS (Y,H,K)
band magnitudes.

One immediate issue when comparing to simulations will be
that stellar population models, initial mass function, etc. used to
obtain M∗ from the data (from which we compute MHi/M∗) is
different between what we assume in Loser versus what RESOLVE
assumed to obtain their M∗ values. Hence it turns out there is a
small offset in M∗ that we must first correct. We do so empirically,
by using our ML framework to predict the M∗ from the photometry
in our simulations and from RESOLVE, and then comparing the
M∗ values.

Figure 7 (right panels), shows the difference between the orig-
inal (top) and the corrected (bottom) M∗ values from RESOLVE.
The original RESOLVE data is offset by ∼ 0.1 − 0.2 dex; this is
within the uncertainties of typical M∗ determinations from pho-
tometry. The correction we apply is a linear scaling of the stellar
masses to match with Mufasa galaxies, obtained by training the
DNN model with the simulation to predict the stellar mass of the
RESOLVE data, and comparing the result with the real value from
RESOLVE. We repeat the process 10× and take the average of the
linear slopes and the intercepts, to obtain the following relation:
log M∗,corrected = 0.920 × log M∗,original + 0.924. It can be seen
that M∗ is predicted very tightly, with a scatter of rmse= 0.1 once
the correction is applied. Prior to the correction, the rmse= 0.22
relative to the 1-to-1 line, which is dominated by the offset rather
than the scatter itself. Note that scaling the simulated stellar masses
would give the same results, but we don’t use this option because
we know exactly the stellar mass of the simulated galaxies.

We can also compare the trend of MHi/M∗ vs. M∗ in the simu-
lations and RESOLVE, which is done in the left panels of Figure 7,
before (top) and after (bottom) the M∗ correction. The green-blue
distributions on the left panels are from Mufasa-galaxies whereas
the contours are from the observational data. In general, particularly
after the correction is applied, the simulations and observations
agree quite well for the bulk of the galaxies. A clear trend is seen
that lower-M∗ galaxies have higher Hi fractions. The mean trend
of the galaxies with Hi is in good agreement between RESOLVE
and this simulation, which confirms the agreement versus other data
sets shown in Rafieferantsoa et al. (2015). This indicates that Mu-
fasa provides a generally viable model to predict observed Hi from
photometry.

There is a notable difference that the observational data shows
a bimodal distribution that is not seen in the simulated data. This
is because we have explicitly ignored galaxies from Mufasa with
MHi/M∗< 0.01. In Mufasa, we have many galaxies with no Hi,
while in the observations there is a distribution of low-MHi/M∗
values. We will leave more careful modeling of these low-MHi/M∗
objects for future work, but we note that the bimodality is going to
degrade our results since the ML is unlikely to effectively predict
galaxies with MHi/M∗ approaching ∼ 0.01.

We also check if the range of magnitudes between the RE-
SOLVE and Mufasa are in broad accordance. Figure 8 shows the
same distributions as in Figure 7 lower left panel, except that now the
colours in each hexagonal bin represent the mean magnitudes of the
galaxies in that bin. We show ugriz magnitudes for illustration but
we get similar results for other bands. Each column represents one
band. Upper and lower panels are for simulated and observational

10 https://resolve.astro.unc.edu/data/resolve_phot_dr1.
txt
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Figure 7. Left panels: The blue-green maps show the distribution of M∗ (x-
axes) vs.MHi/M∗ (y-axes) of the simulated galaxies, while the dark and light
red contours show the 1 & 2 σ distributions of the RESOLVE data. Right
panels: distributions of the real (x-axes) and predicted (y-axes) galaxy stellar
masses of the RESOLVE galaxies. Upper panels show the distributions prior
to the correction to observed stellar masses as described in the text, and lower
panels after correction. The lack of bimodality in the simulated data (right
panels) as seen in the data is mainly due to our cut to only include galaxies
with MHi/M∗> 10−2.

data respectively. We can clearly see that the trends are consistent.
Note that apart from SDSS magnitudes, we also use NUV, J, H and
Ks magnitudes in the training. We however point that including all
those bands decreases the size of the sample due to missing data in
each band. The RESOLVE data contain 2159 galaxies with SDSS
magnitudes. When accounting forNUV, J, H and Ks we end up with
only 1017 galaxies.

6.2 Training on and predicting RESOLVE data

We first consider the case where we train the regressors using one
subset of the RESOLVE data and test them using the other subset
(the one which was not used for the training). Due to the relatively
small sample in hand, we only use 10% of the data for testing. This
case can be considered optimal in the sense that the training and
testing sets are drawn from (different parts of) the same sample, so
there are no systematic differences.

The right panel on Figure 9 shows our prediction using the
test sets. Judging by the contours, it is clear that all the presented
models here perform reasonably well, i.e. the distribution of the
real vs predicted values lie along the identity line, and the predicted
values (y-axis) covers all the range of the real values for all regres-
sors. Comparing regressors, GRADwith rmse= 0.28 performs best
followed closely by RF, k-NN and lastly DNN with rmse= 0.44.
Now the trend is reversed such that DNN, which was among the
best in the previous scenario becomes the worst in this case. DNN’s
typically require larger training samples to properly constrain the
large number of layers, so it is likely its poor performance owes to
the small sample of RESOLVE galaxies.

This result already has interesting real-world applications. For
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agreement between the two data is noticeable and the range of the observational data are well included in that of the simulated ones.

instance, it can be used to populate SDSS galaxies that lack Hi data
or have poorly constrained Hi measurements with MHi/M∗ values.
This would allow a reasonable characterisation of what their Hi
content would be if RESOLVE had been able to observe them.
Alternatively, one could use the larger ALFALFA sample cross-
matched with SDSS data. By training the regressors on ALFALFA
data along with their corresponding SDSS photometric data, we
can predict the Hi content of galaxies that have SDSS photometric
data but do not have ALFALFA counterparts. The key is that we
need a single photometric sample, for which we have a training
set of Hi data. In such a case, our method appears to be able to
predict MHi/M∗ to < 0.3 dex scatter, which is competitive with and
typically better than previously proposed fitting formulae.

6.3 Training on Mufasa and predicting RESOLVE

A more general application would be where we have no or very
limited Hi training data, and only photometric data. This might be
the case at z ∼ 0.3− 1, where the Hi data is almost nonexistent now
and even future surveys will provide only a sparse sampling of the
most Hi-massive objects. In this case, wewould like to be able to use
the simulations to provide the training set. Naturally, this introduces
more uncertainties and assumptions, because the simulations build
in a specific physical model which likely is not exactly correct, and
does not reproduce the real Hi population in all its details. To test
how much more uncertain the predictions would be, we can attempt
this using RESOLVE where we know what the correct answer is,
and see how well the simulation recovers it relative to the case in
the previous section where we used RESOLVE itself to train.

In order to mitigate the effects of those uncertainties, one must
carefully mimic the input features of the simulated data to encom-
pass those from the observational data as discussed in the previous
section. Given that Mufasa reproduces several observables that
are usually used as benchmark for simulation models, such as stel-
lar mass function, Hi mass function, specific star formation rate

function, etc. (Davé et al. 2016, 2017a,b), we feel confident that
it provides a state of the art approach to making predictions for
upcoming surveys such as LADUMA or MIGHTEE, i.e. using sim-
ulated data for training the algorithms and applying it to available
observational photometric data.

Figure 9, left panel, shows the Hi richness prediction of our
four best models, training the regressors with the simulation data
and predicted the Hi richness of the RESOLVE data. The contours
show the distributions of the RESOLVE Hi richness (x-axis) vs the
predicted Hi richness (y-axis) from the models. The numbers on the
bottom right of each panel show the rmse of each model.

Overall, the predictions still lie along the one-to-one relation,
indicating that using the simulations to train still provides an ade-
quate prediction in the mean. However, the rmse values are much
higher here than in the right panel. This clearly shows that the
simulated sample does not fully mimic the details of the observed
sample. Given the discrepancies between simulation and observa-
tion, implying differences of the underlying distributions of the two
samples, this is not surprising.

k-NN, GRAD and RF now all have rmse values above 0.5,
which is fairly poor. They estimate with larger scatter and a notice-
able offset towards lower Hi richness values, where the contours get
as far as 1 dex below the 1:1 line at log10(MHi/M∗) ∼ 0.

Rather remarkably, DNN (green contour) now performs the
best in this case, with rmse = 0.45 and predictions extending to
the lowest values (−2 6) following the 1:1 line. Although DNN
was outperformed in Figure 4 using only simulated data for training
and testing, we can clearly see here that its performance shines in
a more difficult scenario, where now the training sample is much
larger but the data is more complex. Indeed, the rmse for DNN
hardly changed at all when using the RESOLVE or Mufasa data
to train, though this probably arises from the larger training sample
offsetting the less homogeneous testing sample. Our results suggest
that in this real-world application, DNN can learn better from the
simulated data than simpler regressors.
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Figure 9. Predictions of the observed Hi richness (y-axes) using different
mapping algorithms (colour coded lines). Left panel shows the results when
the algorithms are trained with simulated data. Right panel shows the re-
sults when training the algorithms with observational data. The contours
correspond to 1σ distribution.

From those two approaches, left and right panels of Figure
9, we can see that DNN presents robust predictions regardless of
the training setups. It is able to learn important features from the
simulation and translate those into the observed data. kNN, GRAD
and surprisingly RF are less efficient in doing so. The latter only
performs best when the training and testing samples are drawn
from the same main sample.

To summarize, we have shown that training on a subset of
observational data can yield a reasonably tight prediction for a test-
ing set taken from the same data. This provides a way to populate
photometric surveys in scenarios where a sizeable Hi training set
is available, such as RESOLVE or ALFALFA. Training the mod-
els with simulated data and predicting the observational targets has
higher uncertainties, but is still feasible. One has to carefully model
the input features from the simulation to mimic those in the data,
which requires further work. While RF has generally been the best
choice for regressor in more homogeneous training-test set situ-
ations (simulation-simulation and observation-observation), when
applying the simulation training to observational data, the perfor-
mance of DNN clearly outshined the others.

7 DISCUSSION

Extraction of information in a given set of data is a challenge in all
models. Although RF and DNN are our best models, they still have
difficulty in extracting all the necessary information, particularly
DNN. That being said, attaining an accuracy of r > 85% is a non
trivial success for both of regressors. In our training for the DNN,
we make sure that the loss function stays unchanged for several
training steps to make sure the network learns as much information
as it needs but not as much as it might overfit the training data and
loose the important information necessary for the prediction. It may
be possible to tune this better.

It is possible that photometric surveys can yield other informa-
tion such as the age, star formation rate, and (from a group catalog)
halo masses, albeit with some uncertainties. It is interesting to ask
whether providing such information would improve predictions.
However, we find that this is unlikely to be the case. We illustrate
this for the mean stellar age in Figure 10. Here we show the distribu-
tion of the galaxies based on their real Hi richness and the predicted
values from the DNN model, with the colour of each hexagonal bin

showing the mean age of galaxies falling in that bin (in unit of the
Hubble time at the given redshift). Different panel show different
redshifts: left, center, right for z = {0, 1, 2} respectively. We can see
that for a given Hi richness value we cannot see any age gradient
in the predicted values, and it remains the case up to z = 2. We
interpret this to mean the ML model has learned about the age of
the galaxies even though that information was not explicitly given
in the training set. The same situation happens with the specific star
formation rates and the halo mass of the galaxies. This is the case
for all of our ML models. Hence providing such information, which
introduces further uncertainties from their estimation, is unlikely to
be helpful.

Then we might ask why do some models perform better than
others? We believe that the design of the models themselves may
lead to different mapping of the input-output, thus, to improved
results depending on the data. Changing the layer structures in DNN
or optimising the tree size (or the number of base estimators) in RF
might alleviate certain issues we encountered in our training.We are
currently analyzing such possibility and might improve our model
in that direction in upcoming work. Also DNN may particularly
benefit from a larger simulation training sample with more dynamic
range than available in Mufasa.

One useful feature of RF is that it provides an estimate of the
importance level of the input parameters, based on the rate of in-
cidence that a given parameter is utilised in the decision trees. We
show in Figure 11 the importance of parameters from RF training.
The upper subfigure shows the result when using all the available
magnitudes in from our simulation whereas the lower subfigure rep-
resents the result when only using the SDSS magnitudes. The 1st
(2nd) row in each subfigure show the importance of the line of sight
velocity vgal (3rd nearest neighbour Σ3) from z = 0 (left) to z = 2
(right). The remaining rows show for bandpass filters (names on the
left) with a wide range of peak wavelenghts from 2309Å (bottom
row) increasing to 44630Å. It is interesting to see that Σ3 becomes
increasingly important only at later epochs. The line of sight peculiar
velocities vgal do not add value to the training, which is unsurpris-
ing since it is not obvious why the Hi content should care about
peculiar velocity (except perhaps through correlations of peculiar
velocities and the large-scale potential well); this in a sense serves as
a sanity check that our method is not finding physically implausible
relationships. In the upper subfigure, the IRAC channels have some
importance at higher redshift, particular IRAC 4.5µm while 3.6µm
is less important. The H-band magnitude is very important at high
redshift but contributes much less at low redshift. The importance
of magnitudes between i (6250) and J (12500) bands move from low
to higher peak wavelengths towards higher redshift. NUV magni-
tudes seem to exhibit relatively high importance at all redshift bins,
highlighting the connection between Hi and the gas that fuels star
formation and hence UV light.

In the lower subfigure with amore restricted input set, z magni-
tude is very important at higher redshift but becomes less although
still important at z = 0, whereas the importance of i magnitude
increases towards the present day. The value that u magnitude adds
to the accuracy of the prediction seems to be relatively constant at
all redshifts, following NUV in the upper subfigure.

On the whole what the two panels in Figure 11 tell us is that
given the features available in the data, the feature importance in
principle allows one to select only a set of themost important ones in
order to achieve a given accuracy. This, amongst other methods like
Principal Component Analysis (PCA), is of a great value especially
when reducing the dimensionality that might not be avoidable due
to a limited computing power or when the dimension is as big as
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the size of the data (i.e. number of features is as large as the number
of examples for the training). Also, the importance levels could be
helpful in survey design, if a particular photometric band is more
useful it might be regarded as higher priority to obtain. However,
one must be aware that in many cases, RF importance levels do not
truly reflect the necessity of a given data, in the sense that sometimes
RF says a particular input is important, but the information from
that input is actually encoded in the other inputs, so that removing
it does not have as detrimental effect as one might think. Properly
assessing the importance level would involve re-training the entire
data set removing each input in turn, to assess the increase in rmse.
Nonetheless, RF importance level can at least provide a guide in
this process.

8 CONCLUSION

We have investigated estimating the Hi richness of galaxies based
on their optical and near-IR survey properties, in particular SDSS
{u, g, r, i, z}, Johnson {U,V} and 2MASS {J,H,Ks}, line of sight
velocities, and environmental measures, using machine learning
(ML). For our analysis, the training data have been generated from
the Mufasa simulation. We have tested various machine learning
regressors including random forests and deep neural networks. We
considered various input feature combinations, including only SDSS
magnitudes and environmental properties, using galaxy colours in-
stead of and in addition to magnitudes, and including 2MASS and
Johnson magnitudes. We trained each model to predict MHi/M∗
based on an aggregate of all simulated galaxies at z = 0 − 2 ( f -
training), and in 50 individual redshift bins (z-training). As an ex-
ample application, we applied this framework to the RESOLVE
galaxy survey catalog with Hi and photometric data. To measure
and compare the performance of each method, we used rmse, Pear-
son correlation coefficient r , and the correlation slope.

We summarize our main findings as follows:

• By using 75% of the Mufasa data for training and testing
on the remaining quarter, we find that all ML methods are able
to approximately recover MHi/M∗ from galaxy photometry. The
accuracy depends both on the input data set and the ML algorithm.
Generally, random forests (RF) provides the best performance at
z = 0, i.e. lowest rmse ≈ 0.25, highest r ≈ 0.9, and slope closest to
unity, with deep neural network (DNN) close behind.
• At z . 1, it is advantageous to do the ML training at a given
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Figure 11. Evolution of the importance of the input features from the RF
training. Each row represents one band with the filter name on the left,
except for the 1st (2nd) row which show for the line of sight velocity (3rd
nearest neighbour) feature. The bands from the bottom to the top are with
increasing peak wavelengths. Left to the right shows the feature importance
from z = 0 to z = 2.

redshift rather than aggregating all redshifts. The smaller number
of galaxies available for training in the former is outweighed by
the conflating of evolutionary trends when aggregating. The rmse
of all ML algorithms increases with redshift, with commensurately
lowered r and a best-fit slope diverging from unity, though the
effect is mild out to z ∼ 0.5. Predictions at higher redshifts are
more challenging owing to reduced trend in MHi/M∗ among high-z
galaxies, since most galaxies at z & 1 have similar MHi/M∗ prior to
significant populations of quenched galaxies arising.
• Providing more input training data results in better predictive

power, unsurprisingly. Using only SDSS data results in rmse≈ 0.3
for RF at z = 0, while either including 2MASS data or training
on both colours and magnitudes yields a more optimal rmse. DNN
has in the best case similar performance, but it is more strongly
dependent on the selected input features.
• All the regressors tend to under-predict the high Hi richness

and over-predict the low Hi richness, as shown by the slope (< 1)
of the linear fits between the targets and the predictions. This owes
to the regressors being unable to fully capture the scatter in the
MHi/M∗ values at e.g. a given colour, instead tending to push the
MHi/M∗ towards the mean. This raises the value of low MHi/M∗
objects and lowers it for high MHi/M∗ objects, resulting in a sub-
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unity slope. The under-prediction of the high Hi richness is more
severe at high redshift (Figure 6).
• By training our ML framework on a subset of the RESOLVE

data and testing it on the remainder, we showed that it is possible
to predict MHi/M∗ with rmse ≈ 0.3, which is comparable or better
than what is obtained with scaling laws; RF again performs among
the best, though GRAD is slightly better. When training on Mufasa
and testing on RESOLVE, we find the best regressor is DNN, but
the predictions are significantly degraded with rmse≈ 0.45, likely
owing to subtle mismatches between simulation predictions and
analysis procedures and those from RESOLVE. While the scatter is
substantial, the mean trend remains well-matched, showing that the
ML algorithm introduces only mild systematic biases, and thus is
still valuable for statistical survey applications.

We have shown through this study that it is clearly possible
to estimate the Hi richness of a galaxy by relying only on the
information from photometric magnitudes. We considered various
magnitudes from different surveys like SDSS, Johnson and 2MASS
in this work, but including other bands is doable. The broadly suc-
cessful test on RESOLVE data suggests that the estimation of Hi gas
at higher redshift (being z 6 1) using the methods presented here,
even with the lack of testing data, is sensible. With the advent of fu-
ture surveys such as LADUMA andMIGHTEE, ourML framework
constitutes an important new tool to aid studies of neutral hydrogen
and galaxy evolution.

For our analysis, we have only selected galaxies that are ob-
servable in Hi, with a threshold ofMHi/M∗> 10−2. This raises a key
question:"Would a model still generalize well if one also included
the Hi-depleted galaxies in the dataset for the training?". There are
two ways to address this question:

• We can simply add the Hi-deficient galaxies in the dataset and
redo the fitting procedure prescribed in this work, although from
the standpoint of observations, predicting the Hi richness of a Hi-
depleted or gas-starved galaxy is not really meaningful.
• The more elegant approach would be to first use ML to clas-

sify galaxies based on their observable features whether they are
Hi deficient or not, then only estimate its Hi richness (based on the
same features) in the case it would potentially contain observable
Hi. Of course, the minimal value of observed Hi can be a free
parameters in our model but in reality that should depend on the
telescope capabilities.

Future work will discuss these solutions, provide more tailored
predictions for upcoming surveys, utilise larger training samples
that could particularly help improve DNN results, and make this
tool available to the community.
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