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Abstract   

 

The treatment of acid mine drainage (AMD) and circumneutral mine water 

(CMW) with South African coal fly ash (FA) provides a low cost and alternative 

technique for treating mine wastes waters. The sulphate concentration in AMD 

can be reduced significantly when AMD was treated with the FA to pH 9. On the 

other hand an insignificant amount of sulphate was removed when CMW 

(containing a very low concentration of Fe and Al) was treated using FA to pH 9. 

The levels of Fe and Al, and the final solution pH in the AMD–fly ash mixture 

played a significant role on the level of sulphate removal in contrast to CMW–fly 

ash mixtures. In this study, a modelling approach using PHREEQC geochemical 

modelling software was combined with AMD–fly ash and/or CMW–fly ash 

neutralization experiments in order to predict the mineral phases involved in 

sulphate removal. The effects of solution pH and Fe and Al concentration in mine 

water on sulphate were also investigated. The results obtained showed that 

sulphate, Fe, Al, Mg and Mn removal from AMD and/or CMW with fly ash is a 

function of solution pH. The presence of Fe and Al in AMD exhibited buffering 

characteristic leading to more lime leaching from FA into mine water, hence 

increasing the concentration of Ca2+. This resulted in increased removal of 

sulphate as CaSO4-2H2O. In addition the sulphate removal was enhanced 

through the precipitation as Fe and Al oxy-hydroxysulphates (as shown by 

geochemical modelling) in AMD–fly ash system. The low concentration of Fe and 

Al in CMW resulted in sulphate removal depending mainly on CaSO4-2H2O. The 



 

 

 

results of this study would have implications on the design of treatment methods 

relevant for different mine waters. 
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Introduction 

 

Freshwater resources around the world are under stress due to increasing 

population coupled with pollution of ground and surface water as a result of 

industrial and domestic activities. Typical pollutants of South Africa’s water 

resources include industrial effluents, domestic and commercial sewage, mine 

waters, agricultural run-off and litter (Davies et al., 1993). Mine water is a source of 

heavy metal and sulphate contamination of surface and ground water. The 

microbial oxidation of sulphide minerals, such as pyrite, in the presence of oxygen 

and water has been shown to be responsible for the presence of the sulphate ion in 

mine water as shown in Eq. (1) (Younger et al., 2002). 

 

(1) 

The resulting acid generated in this reaction causes chemical weathering of the 

surrounding rocks resulting in leaching of heavy metals into the water. The 

characteristics of mine water depend on the mineralogy of the surrounding rock 

(Lottermoser, 2007; Younger et al., 2002; Blowes and Ptacek, 1994). 

Circumneutral mine water is generated when the surrounding rock typically 

contains equal stoichiometric proportions of dolomite, limestone and pyrite. 

Therefore, CMW is generated when the acidity formed as a result of pyrite oxidation 

is neutralized in situ by dolomite dis- solution. This will cause Al and Fe to 

precipitate as hydroxides (pH > 3.5) while the weathering of dolomite causes the 

mine water to contain elevated concentrations of Ca and Mg (Eq. (2)). Some of the 

sulphate concentrations are removed from the mine water due to precipitation as 

gypsum. 

 

(2) 

On the other hand, acid mine drainage (AMD) is generated (Eq. (1)) when the 

surrounding rock contains higher proportions of pyrite than dolomite. Although 

sometimes the mine water contains significant amounts of Ca and Mg due to 

dolomite dissolution, the alkalinity produced during weathering of dolomite is not 

sufficient to neutralize the acidity generated by pyrite oxidation. 

 

Several methods have been used in the treatment of polluted mine water; these 

include biological treatment, chemical treatment, ion exchange and membrane 



 

 

 

methods (Madzivire, 2010). Biological treatment using sulphate reducing bacteria 

(SRB) and chemical treatment using lime and limestone are usually employed 

for heavily contaminated mine water. Ion exchange and membrane methods are 

too expensive for the treatment of heavily contaminated mine water and 

pretreatment is generally required to avoid fouling of membranes and resins 

(Adriano et al., 1980; Bosman, 1983; Conlon, 1990; Johnson and Hallberg, 2005; 

Maree et al., 1989; Hlabela et al., 2007; Hammack et al., 2006). 

 

Due to the high costs associated with chemical treatment technologies and long residence time 

requirement for biological treatment, there has been a concerted effort towards developing a cost 

effective alternative technology for treatment of mine water (Madzivire et al., 2010). The treatment 

of mine water using coal fly ash (FA) has proved to be promising (Petrik et al., 2003; Gitari et al., 

2006, 2008; Madzivire et al., 2010). Fly ash is an abundant waste material from coal power stations 

in South Africa. Most coal combustion power stations in South Africa are built near the coal mines 

to reduce the transport costs. The leachate from FA is known to be highly alkaline and the treatment 

of AMD with FA has been investigated extensively and it has been shown that the water produced in 

the treatment process is free from heavy metals such as Fe, Al, Mn, and that the sulphate 

concentration is reduced by 80% to the saturation level of gypsum of approximately 1500 ppm 

(Gitari et al., 2006, 2008; Petrik et al., 2003; Vadapalli et al., 2008). 

 

Recently, it was shown that treatment of CMW rich in Mg and Ca to pH 9 with FA did not result in a 

significant sulphate removal (Madzivire et al., 2010). However, the authors showed that by raising 

the solution pH to 12 followed by seeding with gypsum crystals and addition of amorphous Al(OH)3, 

the sulphate level can be reduced to an acceptable limit. The objective of this follow up study is to 

provide an understanding of the mechanism of removal by the use PHREEQC geochemical 

modelling, which was used to investigate the effect of pH and to evaluate the effect of Fe and Al 

concentration on sulphate removal from CMW when reacted with FA. The Al and Fe were added by 

mixing AMD with CMW. This study also provides an insight into the mineral phases responsible for 

removal of sulphates, Fe, Al and Mn from mine water when treated with FA. 

 

2. Materials and method 

 

The mine waters, CMW and AMD were collected from storage dams of two different 

coal mines in Mpumalanga, South Africa. The  mine  water  was  filtered  using  a  

hand  pump  through  a 0.45 lm nucleopore membrane and cation samples were 

acidified with concentrated HNO3 to pH < 2. The samples (100 ml) were sealed in 

plastic containers and kept at 4 °C until analysis. Cation analysis was performed 

using an inductively-coupled plasma-atomic emission spectrometry (ICP-AES) and 

inductively-coupled plasma-mass spectrometry (ICP-MS). The ICP-AES was used for 

concentration greater than 1 ppm and ICP-MS was used for con centration less 

than 1 ppm. Anion analysis was performed using ion chromatography (IC). To 

confirm the quality assurance, analysis of the certified reference material was 

performed using ICP-AES, ICP-MS and IC before the analysis of the samples. 



 

 

 

 

Fly ash was collected from a nearby pulverized coal combustion power station in 

Mpumalanga. The FA was collected directly from the precipitators and kept in 

sealed plastic bags devoid of air to avoid carbonation of free lime to calcite. The 

mineral composition of FA was elucidated using qualitative or quantitative X-ray 

diffraction spectroscopy (XRD) and the morphology of FA was analyzed by scanning 

electron microscopy (SEM). The FA was analyzed for chemical composition using X-

ray fluorescence spectroscopy (XRF). 

 

 

2.1. Effect of final pH 

 

Experiments were carried out to investigate the effect of the final pH on sulphate, 

Mg and Mn removal by collecting water samples at different pH levels. 

Circumneutral mine water (500 ml) of pH 6.5 was mixed with FA (250 g) and 

stirred using an overhead stirrer. Aliquot samples were collected at pH 9.88, 10.21, 

11.77 and 12.34. The samples were filtered through a 0.45 lm nucleopore  filter  

membrane  and  analyzed  using  IC  and  ICP-AES  and ICP-MS.  The  ICP-AES  and  

ICP-MS  samples  were  acidified  to pH < 3 using concentrated HNO3 to stabilize the 

cations. All the samples were stored at 4 °C before analysis. The solid residues 

produced at pH 9.88, 10.21, 11.77 and 12.34 were also analyzed using qualitative XRD 

and XRF to investigate the changes in mineralogical and chemical composition of the 

FA. 

 

The pH and electrical conductivity (EC) were measured using a Hanna Hl 991301 

portable pH/EC/TDS/temperature pH meter after every 5 min. The pH and EC were 

the parameters used to measure the progress of experiment. Before using the pH 

meter, it was calibrated using fresh buffers of pH 4 and 7 or 10 depending on the pH 

range to be measured. Electrical conductivity of the water was calibrated using  an 

EC calibration solution with a  conductivity of 12.88 ms/cm. 

 

 

2.2. Effect of Fe and Al on sulphate removal 

 

Circumneutral mine water and AMD were mixed in the following ratios; 1:0 1:1, 2:1 

and 3:1 (CMW:AMD). Acid mine drainage was used as a source of Fe and Al. The 

CMW/AMD mixtures were then treated with FA at a liquid to solid ratio of 2:1 by 

stirring with an overhead stirrer. Aliquot samples were collected at pH 6, 8, 9, 10, 11 

and 12, filtered through a 0.45 lm nucleopore filter membrane and then analyzed 

using IC, ICP-AES and ICP-MS. The ICP- AES and ICP-MS samples were acidified to 

pH < 3 using concen- trated HNO3 to stabilize the cations. All the samples were 

stored at 4 °C before analysis. The solid residues formed after treatment of CMW 

and CMW/AMD mixtures with FA were analyzed using quantitative XRD to 



 

 

 

understand the amount of the new mineral phases. 

 

 

2.1. Geochemical modelling 

 

The mineral phases that were likely to form during treatment of CMW and 

CMW/AMD mixtures were predicted using PHREEQC geochemical modelling code 

and the WATEQ4F database (Park-hurst and Appelo, 1999). The WATEQ4F 

database was edited to include the thermodynamic parameters of ettringite as 

calculated by Perkins and Palmer (1999). Saturation indices (SI) were calculated at 

different final pH values by PHREEQC. 

 
 

where IAP is the ion activity product observed in solution, and Ksp is the solubility 

product. 

 

Positive SI values indicate that a solution is supersaturated with respect to that 

particular mineral phase, a negative SI value indicates under saturation and a 

saturation index of zero indicates saturation with respect to a particular mineral. 

Super saturation and saturation indicate that precipitation of the respective 

mineral phase is thermodynamically possible. Equilibrium of the solid mineral 

phase with its ionic components is indicated by SI of zero. Solutions under 

saturated with respect to a given solid phase suggest that the phase dissolves in 

solution to its ionic components. Geochemical calculations performed using 

computer codes do not prove the presence or absence of a phase, but provide an 

indication of the tendency for a reaction to occur. 

 

3. Results and discussion 

 

The chemical compositions of the CMW and AMD samples are shown in Table 1. The 

major ions of the CMW are Ca, Mg and sulphate. 

 

 

Table 1 

Composition of circumneutral mine water and acid mine drainage.a 



 

 

 

  

Circumneutral mine water also contains substantial amounts of Mn  but very  low 

concentration  of Fe  and Al.  The AMD contains substantial amounts of Fe, Al and 

Mn. Its sulphate content is far greater than that of the CMW. 

 

The FA mineral composition was analyzed using XRD and results obtained are as 

depicted in Fig. 1. The FA is composed of mullite (3Al2O3-2SiO2), quartz (SiO2), 

hematite (Fe2O3) and lime (CaO). The SEM images showed (Fig. 1) that FA is 

typically composed of irregular and numerous spherical shaped particles having an 

average diameter of less than 10 lm. 

 

The elemental composition of FA was also determined using XRF and the results 

are shown in Table 2. 

 

Based on the XRF data obtained, the FA used in this study is Class F according to 

the American Society for Testing and Measure- ment (ASTM C618) classification 

since SiO2 + Al2O3 + Fe2O3 = 86.99% > 70%. Class F fly ash is formed during the 

combustion of either bituminous or anthracitic type of coal (Mattigod et al., 1990). 

 

3.1. Effect of the final pH 

 

After addition of FA to CMW the pH changed rapidly such that after 20 min the pH 

had reached 12.35 after which it remained constant. The results reveal that  the  

concentration  of  sulphate, Mg and Mn removed from the CMW depends on the 

final pH of the water (Fig. 2). Also Fig. 2b shows that the amount of Ca increases 



 

 

 

with increase in the final pH. Treatment of mine water to pH 9.88 removes 6% of 

sulphate from mine water. Treatment of the mine water to a pH of 12.35 results in 

71% of sulphate being removed from mine water (Fig. 2a). 

 

The XRD results obtained for FA and solid residues (SR) taken at pH 11.77 and 12.34 

show that the only new mineral phase formed during treatment of mine water with 

FA was gypsum (Fig. 3). This means that the sulphate is being removed in the form 

of gypsum during the treatment of mine water with FA. The CaO in FA leaches into 

the mine water causing the pH and the Ca concentration to in- crease (Fig. 2). This 

resulted in the disappearing of the lime peaks in the solid residue XRD spectra (Fig. 

3). 

 

A comparison of the elemental composition of FA and solid residues (SR) shows that 

the % SO3, MnO and MgO increases in the SR as the final pH end point was 

increased (Table 3). This correlates well with the results obtained from cation and 

anion analysis which showed a decrease in the sulphate, Mn and Mg concentration 

of the water as the final pH increased (Fig. 2). 

 

The percentage composition of CaO increased from fresh FA to pH 9.88 and then 

decreased slightly in the solid residue as the final 
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pH was further increased and this correlates with an increase in Ca concentration 

(Fig. 2b). During treatment of mine water with FA, lime from FA dissolves into 

solution thereby causing the pH of the water to increase (Eq. (3)). As the final pH of 

process water is increased, more CaO is available in the mine water (Eq. (3)) and 

more Ca2+  ions are present, causing Eq. (4) to shift to the right according to Le 

Chatelier’s principle, resulting in enhanced removal of sulphate as gypsum (Fig. 2a). 

(3) 

 

(4) 

The results obtained have shown that the removal of sulphates, Mg and Mn from 

CMW is dependent of pH. Approximately 71% of sulphate can be removed when the 

pH is increased from 6.5 to greater than 11, while almost 100% of Mn and Mg 

could be removed when the pH is increased beyond 9 and 11 respectively. 

 

3.2.Effect of Fe and Al on sulphate removal 

 

The 1:0, 1:1, 2:1 and 3:1 CMW and AMD mixtures had pH values of 6.5, 2.3, 2.65 and 

2.63 before adding FA respectively. The 1:0 mixture was purely CMW, while 1:1, 2:1 and 

3:1 had AMD characteristics. The AMD characteristics are more pronounced in the 1:1 

mixture followed by 2:1 and lastly 3:1. The converse is true for CMW characteristics. 

The mixtures were treated with FA and the pH profiles over time of different 

mixtures are as shown in Fig. 4. 

 

As observed in Fig. 4, the treatment of CMW with FA resulted in a rapid change in pH 

from 6.5 to 12.35 with a buffering plateau at a pH 10, which was not as prominent 

for the CMW/AMD mixtures. The buffering plateau at pH 10 is ascribed to the 

hydrolysis of Mn2+ (Eq. (5)) and oxidation and precipitation of Mn2+ (Eq. (6)) 

(Younger et al., 2002). The higher Mn2+ concentration in the CMW/AMD 
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mixtures has resulted in a more prominent buffering plateau at pH 10 compared to 

CMW trend. 

 
The pH trends for the 3:1, 2:1 and 1:1 mixtures show gradual changes with multiple 

buffering plateaus. The buffering at pH 6–6.5 can be attributed to the hydrolysis of 

Fe and Al that was introduced as a result of mixing AMD with CMW (Eqs. (7) and (8)).  
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Moreover, the buffering between pH 4 and 7 can be attributed to the precipitation 

of Fe and Al hydroxides: Fe(OH)3, Fe(OH)2  and Al(OH)3 (Uhlmann et al., 2004; 

Jenke and Gordon, 1983). 
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The precipitation of oxy-hydroxysulphate consumes alkalinity thereby causing pH 

buffering according to Eqs. (9)–(11). According to Younger et al. (2002) the 

precipitation of the oxyhydroxysul- phate occurs between pH 4 and 9. 

 

 
Sulphate removal as function of pH for different CMW/AMD mixtures is shown in Fig. 5. 

 

The sulphate concentration for the CMW (1:0) was reduced from 4655 mg/L to 4381 mg/L when 

CMW was treated with FA to pH 10, which is approximately 19% sulphate removal. In the case of 

the mixtures; the sulphate concentration of 3:1 CMW/AMD mixture was reduced from 15797 mg/L 

to 2731 mg/L, for 2:1 CMW/ AMD mixture the sulphate concentration was reduced from 17142 

mg/L to 2435 mg/L and for the 1:1 mixture the sulphate concentration was reduced from 20870 to 

1970 mg/L when the mixtures were treated with FA to pH 10. This translates to more than 80% 

sulphate removal when 3:1, 2:1 and 1:1 mixtures were treated with FA to pH 10. It can be concluded 

from the above set of experiments that the presence of Fe and Al in mine water has enhanced the 

sulphate removal. 

 

 The small sulphate removal observed for CMW when treated with FA to pH 10 was because the pH 

rise only required a very small amount of CaO to be released from FA due to the absence of Fe and 

Al to buffer the sharp rise in pH (Fig. 4). This resulted in small amounts of Ca2+ being released into 

solution to react and precipitate out to form gypsum (Eq. (4)). 
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The qualitative XRD spectra for the solid residues produced during treatment of AMD 

or CMW with FA showed similar spectra to those in Fig. 3. Quantitative XRD was 

conducted in order to see the difference of the changes in the amount of new minerals 

that were formed during treatment of AMD or CMW with FA (Table 4).  

 

The results showed that the new mineral phase after treatment of mine water with 

FA is gypsum. The appearance of gypsum occurs as lime disappears, meaning that 

the Ca that leaches as a result of the dissolution of lime (resulting in a pH 

increase as depicted in Fig. 4), reacts with the sulphates in the mine water to form 

gypsum (Eq. (4)). More gypsum was formed in the solid residues produced from FA 

that was used to treat CMW/AMD mixtures because more lime had to leach to 

offset the pH buffering caused by the presence of Fe and Al (Eqs. (7)–(11)). Other 

mineral phases that were formed were amorphous as shown by the in- crease in 

the percentage in the solid residue. The identity of these amorphous mineral 

phases was elucidated using PHREEQC geo-chemical modelling. 

 

3.2.1. PHREEQC geochemical modeling 

The possible sulphate mineral phases that were precipitating at different pH levels were predicted 
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using PHREEQC thermodynamic geochemical model and the results are shown in Fig. 6. The 

saturation indices (SI) obtained by PHREEQC geochemical modelling predicted the following 

sulphate-bearing mineral phases; ettringite (CaO-3CaSO4-Al2O3-31H2O); alunite 

(KAl3(SO4)2(OH)6), anhydrite (CaSO4),  barite  (BaSO4),  basaluminite (Al4(OH)10SO4),  

jurbanite(AlOHSO4), jarosite-ss (K0.77Na0.03H0.2Fe3(SO4)2(OH)6), jarosite-K 

(KFe3(SO4)2(OH)6), jarosite-Na (NaFe3(SO4)2(OH)6), jarosite-H 

(H3OFe3(SO4)2(OH)6), celestite (SrSO4) and gypsum (CaSO4-2H20) to be 

precipitating at various pH values (Fig. 6). 

 

Saturation indices of different sulphate-bearing mineral phases for CMW/FA 

mixtures at different pH end points (Fig. 6a) show that gypsum, barite, celestite, 

anhydrite and ettringite are the only mineral phases that could precipitate out 

sulphate when CMW was mixed with FA. The amount of sulphate that could be 

removed as ettringite, barite and celestite was insignificant since the 

concentration of Al, Ba, and Sr was in CMW. 

 

Saturation indices calculated for the 3:1, 2:1 and 1:1 CMW/ AMD mixtures (Fig. 

6b–d) using PHREEQC geochemical software show that, in addition to gypsum, 

celestite, ettringite and anhydrite, other Fe and Al oxyhydroxysulphates (alunite, 

basaluminite, jarosite(ss), jarosite-k, jarosite-Na, jarosite-H and jurbanite) can 

contribute to sulphate removal. All the oxyhydroxysulphates are super saturated 

at pH 4–10 except ettringite. Above pH 10 they become under saturated and 

ettringite becomes supersaturated. This explains why the 3:1, 2:1 and 1:1 

CMW/AMD mixtures tend to precipitate out more sulphate compared to CMW 

when pH was raised to below 10 as the removal of sulphate is not as pronounced 

for AMD after pH 10 as compared to below pH 10 and the converse is true for 

CMW.  
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The presence of Fe and Al ions generates acidity (H+ ions) as Al and Fe (oxy) 

ydroxides precipitate according to Eqs. (7) and (8). Precipitation of 

oxyhydroxysulphates consumes alkalinity as shown in Eqs. (9)–(11) (Younger et al., 

2002). The acidity generated by hydrolysis reactions during the precipitation of Al 

and Fe (oxy)hydroxides and the consumption of alkalinity during precipitation of 

oxyhydroxysulphates facilitates dissolution of more CaO for pH to increase to  10, 

releasing more Ca2+ ions. The Ca2+ ions combine with sulphate to form gypsum 

leading to removal of SO2- . Precipita- tion of Al, Fe (oxy)hydroxides and 

oxyhydroxysulphates in addition to gypsum precipitation thereby contributes to 
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more sulphate removal through adsorption and structural incorporation of SO2- 

.Treatment of CMW and all the mixtures of CMW/AMD to pH levels beyond pH 10 

show similar trends of sulphate removal (Fig. 6). This is because the sulphate 

phases that are supersaturated above pH 10 and hence responsible for sulphate 

removal are; barite, ettringite, gypsum and anhydrite for CMW and all CMW/AMD 

mixtures. 

 

Treatment of CMW and CMW/AMD mixtures with FA results in approximately 100% 

removal of Mg from 600–800 mg/L to 0.3 mg/ L (Fig. 7). The degree of removal is 

dependent on the final pH of treatment. Between pH 2 and 6 a slight increase of Mg 

concentration is observed because of the dissolution of Mg salts from FA, at pH 9 Mg 
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starts precipitating rapidly and eventually precipitating to below 0.3 mg/L at pH 

greater than 10 (Fig. 7). 

 

PHREEQC geochemical modelling predicts that Mg would start to precipitate at pH 

greater than 8 (Fig. 8) as brucite (Mg(OH)2). The saturation index shows that 

Mg(OH)2 is saturated when the pH is approximately 8.5. At pH above 10, 

Mg(OH)2 is supersaturated, consequently the Mg concentration decreased to 

below 0.3ppm due to the formation of Mg(OH)2. 

 

The results obtained when CMW and CMW/AMD mixtures when treated with FA 

show that Mn is also removed from between 40 and 70 mg/L to below 0.04 mg/L 

(Fig. 9) when the pH was higher than 8. 

 

Saturation indices obtained using PHREEQC show that Mn-bear- ing mineral phases 

start precipitating at pH greater than 8 (Fig. 10) as birnessite (MnO2), bixbyite 

(Mn2O3), hausamannite (Mn3O4), manganite (MnOOH), nsutite (MnO2), 

pyrochroite (Mn(OH)2) and pyrolusite (MnO2). All these mineral phases 

approach saturation at pH 8.5 and are supersaturated at pH greater than 9, and 

thus precipitate out rapidly and completely. 
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When 3:1, 2:1 and 1:1 CMW/AMD mixtures were treated with FA to various pH end 

points the Al concentration was reduced from between 124 and 228 mg/L to as low as 

48 mg/L when the pH was raised  to  6.  The  Al  concentration  further  decreased  to  

below mg/L when the pH was raised to above 9 (Fig. 11). 

 

The SI indices were calculated for Al-bearing mineral phases using PHREEQC 

geochemical model (Fig. 12). The calculated SI indicated that amorphous Al(OH)3, 

alunite (KAl3(SO4)(OH)6), bas- aluminite (Al4(OH)10SO4), boehmite (AlOOH), 

diaspore (AlOOH), ettringite, jurbanite (AlOHSO4) and gibbsite (Al(OH)3) could 

precipitate out when mine water was treated with FA (Fig. 12). Amorphous Al(OH)3, 

alunite, basaluminite and jurbanite are super- saturated between pH 4 and 9, while 
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boehmite, diaspore and gibbsite are supersaturated at pH greater than 4. Ettringite is 

supersaturated at pH greater than 10.  

 

Treatment of 3:1, 2:1 and 1:1 CMW/AMD mixtures with FA have shown that the 

Fe concentration was reduced from between 2202 and 5108 mg/L to between 

0.03 and 0.05 mg/L when pH was raised to 9. Iron starts precipitating from 

solution at pH greater than 5 when FA was mixed with the CMW/AMD mixtures 

(Fig. 13). 

 

The SI indices were calculated for Fe-bearing mineral phases using PHREEQC 

model (Fig. 14). Calculated SI, show that Fe hydroxides, oxyhydroxides and 

oxyhydroxysulphate mineral phases started precipitating at pH 5 (Fig. 14). The 
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minerals controlling Fe removal according to the model are Fe(OH)2.7Cl0.3, 

amorphous Fe(OH)3, Fe3(OH)8, goethite (FeOOH), hematite (Fe2O3), maghematite 

(Fe2O3), magenetite (Fe3O4), jarosite(ss) (K0.77Na0.03H0.2- Fe3(SO4)2(OH)6), 

jarosite-K (KFe3(SO4)2(OH)6, jarosite-Na (NaFe3- (SO4)2(OH)6)and jarosite-H 

(HFe3(SO4)2(OH)6). All other Fe bearing mineral phases are capable of precipitating 

at pH greater than 4 except jarosite-H which is stable at pH 6–7, jarosite-Na is 

stable at pH 4–9, while jarosite-K and jarosite(ss) are stable between pH 4 and 10. 

 

 

3.3. General discussion 

 

This study has shown that sulphate, Fe, Al, Mn and Mg concen- trations in CMW and 

AMD can be reduced by manipulating their solution chemistry using South African 

coal fly ash. It has been re- vealed in this study that AMD can be used as a source of 

Al and Fe to facilitate sulphate removal from CMW–fly ash system. A geo- chemical 

modelling tool (PHREEQC) can be used to explore the unique properties of CMW 

and AMD with a view to provide an understanding of appropriate treatment 

options for these waters. The PHREEQC software has been used successfully as a 

predictive tool to determine mineral phases and the forms in which sulphate; Fe, Al, 

Mn and Mg can be precipitated from mine water–fly ash systems. It has shown 

through modelling and experimentation that different precipitates are formed at 

different pH values and these precipitates are removed in different forms depending 

on the type of mine water. 

 

South Africa is water scarce country. This water scarcity is exacerbated by the 

contamination of surface and groundwater with mine water. Treatment of mine 

water is very expensive and cheap ways are continually being sort. Coal FA is 

waste product and therefore treatment of mine water will go a long way in 

reducing the exorbitant costs associated with mine water treatment. Also use of 

coal FA in mine water treatment will be a step ahead in achieving zero effluent 

discharge in coal mines and coal fired power stations since both mine water and 

coal FA are environmental liabilities. 

 

 

 

 

 

 

 

 

 

4. Conclusion 

 

The results obtained in this study showed that  treatment  of mine water using FA is 
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dependent on its elemental composition. These results are vital for mining 

companies in coming up with a suitable treatment methods for the water they 

pump during their operations. Removal of sulphates, Fe, Al, Mg and Mn when CMW 

and AMD were treated with coal FA was found to be pH dependent. About 16% of 

sulphate were removed when CMW was treated with FA to pH 10 and 71% of sulphate 

was removed when pH was in- creased beyond 10. In case of AMD blended with CMW 

80% of sulphates were removed when the pH was raised to 10% and 90% was 

removed when pH of AMD was raised to greater 10. The enhanced removal of 

sulphate from AMD/CMW mixture is due to the presence of Fe and Al that tend to 

buffer the rise in pH thereby increasing CaO dissolution hence more gypsum 

precipitation. In addition the presence of Fe and Al in AMD enhanced sulphate 

removal through precipitation of Fe and Al oxyhydroxysulphates. If the mine water 

pH was raised to greater than 6, 8, 9 and 11 it was found that approximately 100% 

of Al, Fe, Mn and Mg were removed respectively. The mineral phases that were 

responsible for sulphate removal were found to be alunite, anhydrite, barite, bas- 

aluminite, jurbanite, jarositess, jarosite-K, jarosite-Na, jarosite-H, celestite and 

gypsum. Iron was found to be precipitating in the form of Fe(OH)2.7Cl0.3, 

amorphous Fe(OH)3, Fe3(OH)8, goethite, hematite, maghematite, magenetite, 

jarosite(ss), jarosite-K, jarosite-Na and jarosite-H, while Al was found to precipitate 

out as amorphous  Al(OH)3,  alunite,  basaluminite,  boehmite,  diaspore, ettringite, 

jurbanite and gibbsite. Magnesium was found to be removed as brucite and Mn 

was found to remove as birnessite, bixbyite, hausamannite, manganite, nsutite, 

pyrochroite and pyrolusite. 
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