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  Factor 1 Factor 2 Factor 3 Factor 4  
Run A:Pressure B:Temperaturere C:Particle size D:S/L ratio Response 1
No. Mpa ◦C µm g/ml % CaCO3 (wt.) (%

 
The D-optimal criterion, one of the several optimalities, was developed to select design points 
in a way that minimizes the variance associated with the estimates of specified model 
coefficients. The D-optimal factorial design is designed for use with categorical factors as an 
alternative to the general factorial design option. Although the general factorial design builder 
may produce designs with more runs than one is willing to run, the D-optimal design on the other 

hand chooses an ideal subset of all possible combinations, based on the specified model.[8] The 
objective of this study was to study the application of statistical analysis in the factors 
influencing carbonation. The factors considered were particle size, temperature, pressure and 
S/L ratio. 
 
 

Table 1. Design generated by Design of Experiments (DOE). 
 
 
 
  ) 

R1 1 9 <20 0.5  
R2 1 9
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20–
150 

0.5  

R3               4            90           Bulk 0.1  
R4 1 3

 
<20 0.5  

R5 4 9
 

>150 0.5  
R6 1 9
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20–
150 

1  

R7 1 9
 

>150 0.1  
R8 1 3
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150 
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0.5  
R11 4 9
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R23 1 3

 
Bul
k 
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R26 1 9
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R27 1 9
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R28 4 3
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0.5  

R29 1 3
 

>150 0.1  
R30 1 9

 
>150 1  

R31 4 9
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1  
R32 4 3

0 
>150 1  



 

Materials and methods 
 
D-optimal design 

 
The input factors considered were particle size, S/L ratio, temperature and pressure while percent CaCO3 was the 
output factor. Both temperature and pressure were at 2 levels (30◦C and 90◦C; 1 Mpa and 4 Mpa), S/L ratio was at 
three levels (0.1, 0.5 and 1), yet particle size was at 4 levels (bulk ash, <20 µm, 20 µm –150 µm and >150 µm). The 
design can therefore be referred to as a 4×3×22, which simply translates to 1 factor at 4 levels, 1 factor at 3 levels and 2 
factors at 2 levels each. Table 1 shows the generated design using Design-Expert 7.1. 
 
 
Carbonation experiments 

 
The carbonation reactions were carried out in a stainless steel autoclave reactor with a 600 ml volume capacity. The 
brine and FA were contained in a Teflon cup that was immersed in the steel jacket. A photo of the reactor setup is 
shown in Figure 1. 
 
The dispersion (brine + FA at the required S/L ratio) was placed inside the Teflon cup in the pressure vessel and 
closed. The reactor was then placed in the heater and thermocouple, magnetic stirrer drive system, and water coolant 
supply controlled by a solenoid valve put in place. The gas supply connection for the CO2 feed line was then attached. The 
system was purged twice with CO2 at 0.05 Mpa to ensure that all the air was expelled and heating of the system began. 
When the specified temperature was reached, CO2 (technical grade) was charged into the reactor to achieve the 
specified reaction pressure. The brine/FA/CO2 mixture was then stirred at 600 rpm for 2 hours to prevent any settling 
of solids during the carbonation experiments. After 2 hours the reactor was removed from the heating system and 
quenched in cold water as well as depressurized for 15 minutes. 
 

The reactor was then disassembled, and the solid product was separated by centrifugation (30 minutes at 6000 rpm), 
thereafter the supernatant solutions were decanted. Finally, the solid product was dried in a vacuum oven for 8 hrs at 
90◦C. The supernatant solutions were filtered through a 0.2 µm pore membrane. The filtered solutions for cation 
analysis were immediately acidified to pH < 2 while those for anion analysis were stored as they were, i.e., without 
acidification. The samples were refrigerated at 4◦C until analysis. 
 
 
 

Brine and FA characterization 
 
The FA and brine samples used were collected from coal burning power plants in Mpumalanga province of South 
Africa. Morphological analysis was done by Scanning Electron Microscopy (SEM) using a Hitachi X-650 Scanning 
Electron Microanalyser equipped with a CDU-lead detector at 25 kV and a tungsten filament. Crystalline phases 
present in the FA were determined by X-Ray Diffraction Spectroscopy (XRD) using a Bruker AXSD8 Advance 
diffractometer coupled with a Cu-Kα radiation at 40 kV and 40 mA with a PSD Lynx-Eye, Si-strip detector at 0.03◦/2θ 
step from 12◦–80◦ and 3 seconds counting time. Elemental analysis was done by XRF using a Philips PW 1480 X-ray 
spectrometer fitted with a Cr tube and five analyzing crystals namely LIF 200, LIF 220, GE, PE and PX at 40 kV and 50 mA 
tube operating conditions. Chittick tests were carried out to determine the percentage of CaCO3 in the carbonated FA by 
reacting 1.70 g of the carbonated FA with 20 ml of 6N HCl and recording the amount of CO2 evolved by reading the 
displacement of the reservoir fluid. Anions present in the brine as well as the carbonation leachates were analyzed with an 
Ion Pac AS14A column and AG14–4 mm guard column Ion Chromatograph (IC). Major cations were analyzed using a 



 

Varian radial ICP- AES while trace cations were done on an Agilent 7500ce ICP-MS using High Matrix Introduction 
(HMI) accessory and He as collision gas. 

 

 

 

Table 2. XRF analysis results for major and minor elements given as oxides in % w/w for fresh FA (Muriithi et al.[12]).  
Majo
rs 

 
Bulk 

>15
0 

150 
µm– 

106 
µm– 

90 
µm– 

75 
µm– 

63 
µm– 

53 
µm– 

45 
µm– 

32 
µm– 

25 
µm– 

 
<20 

SiO2 51.22 42.45 50.64 51.770 52.41 52.66 51.40 52.64 52.37 52.70 52.76 51.11
TiO2 1.548 0.97

 
1.214 1.333 1.514 1.58

 
1.616 1.63

 
1.655 1.68

 
1.69

 
1.84

 Al2O3 26.00
 

17.96
8 

22.03
 

24.05
 

25.27
 

25.97
 

27.22
 

26.35
 

27.35
 

26.55
 

27.35
 

28.51
 Fe2O3 2.43

 
1.98

 
3.47

 
2.62
8 

2.75
6 

2.42
6 

2.419 2.28
 

2.39
 

2.24
 

2.24
 

2.57
 MnO 0.06

 
0.04
 

0.05
8 

0.06
 

0.06
 

0.06
 

0.06
 

0.06
 

0.05
 

0.06
 

0.06
 

0.06
 MgO 2.43

 
1.66

 
2.34

 
2.513 2.714 2.53

 
2.56

 
2.451 2.49

 
2.48

 
2.47

 
2.62

 CaO 9.19
8 

5.89
 

9.01
 

9.671 10.28
6 

9.48
 

9.591 9.261 9.129 8.76
8 

8.49
8 

8.63
 Na2O 0.45

 
0.14
6 

0.28
 

0.28
 

0.35
 

0.38
 

0.38
 

0.46
6 

0.53
 

0.58
 

0.55
8 

0.68
8 K2O 0.78

 
0.65

 
0.77
8 

0.74
6 

0.76
8 

0.77
8 

0.78
 

0.79
6 

0.81
 

0.82
 

0.82
 

0.87
 P2O5 0.69

8 
0.43
8 

0.54
 

0.576 0.69
 

0.71
8 

0.74
 

0.75
 

0.77
 

0.781 0.77
 

0.87
8 SO3 0.35

8 
0.36

 
0.26
 

0.26
 

0.30
 

0.351 0.317 0.36
8 

0.37
 

0.37
 

0.38
 

0.39
 Cr2O3 0.03

3 
0.02
2 

0.02
9 

0.031 0.03
3 

0.03
4 

0.03
6 

0.04
0 

0.03
8 

0.04
0 

0.04
1 

0.04
1 

 
 
Results and discussions 

 
Characterization of raw FA and brine 

 
The fractionated, pre-carbonated FA was characterized chemically using XRF in order to quantify major, minor and 
trace elements. Table 2 gives the results for the major and minor elements. From Table 2, the fresh FA contains SiO2, 
Al2O3, Fe2O3 and CaO as the major oxides. The ash can therefore be classified as class F since the sum percentage 
composition of SiO2, Al2O3 and Fe2O3 is greater than 70 % according to the American Society for Testing and 
Materials (ASTM).[9] Furthermore, the CaO content is lower than 10 %, which is also a grading criterion for class F FA. 
CaO in FA is present as free lime and embedded in glassy spheres. 

 
Usually the CaO content increases with decreasing particle size. However, the CaO content can vary due to formation of 
glassy spheres from free lime and alumino silicate melt or the reaction of free lime with SO2 via CaSO3 to anhydrite.[10] 
Bearing in mind that glassy spheres are the most important Al2O3 bearing mineral species, Al2O3 content of size fractions 
is an indicator of the amount of glassy spheres in FA.[10] An increasing trend with decreasing particle size is clearly visible 
for Al2O3 while for the lime content the 75–90 µm fraction has the highest lime content. Table 3 gives the ion 
concentrations in brine. 

 
The brine solutions can be classified as NaSO4 waters as these are the main ions present. Other significant ions 
include Ca, K, Mg and Cl with trace quantities of NO3, PO4, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, V 



 

and Zn. This has been reported elsewhere.[11] 
 

Morphological analysis showed evidence of transformation from smooth spherical particles to “cubic-like” structures of 

calcite as is reported elsewhere.[12] Furthermore, XRD confirmed presence of calcite in  the  carbonated ash, and lime 
fraction was present in the un-carbonated ash.[12] 
 

Table 3. Brine solution concentrations (Muriithi et al.[12]). 
 
Species RO brine (ppm) 

 
K 104.1 ± 0.31 
Al 0.044 ± 0.06 
As 0.007 
Ca 101.76 ± 0.15 
Co 0.015 ± 0.01 
Cr 0.014 ± 0.01 
Cu 0.067 ± 0.02 
Fe 0.051 ± 0.01 
Mg 158.73 ± 1.24 
Mn 0.082 ± 0.03 
Mo 0.039 ± 0.01 
Na 4315 ± 2.18 
Ni 0.116 ± 0.01 
Se 0.004 
Sr 3.030 ± 0.11 
V 0.016 ± 0.01 
Zn 0.100 ± 0.01 
Cl 2036 ± 3.26 
SO4                                                       9488±2.22 
NO3                                                       8.565 ± 0.61 
 
 
Statistical analysis 

 
After putting in the input factors (pressure, temperature, particle size and S/L ratio at their different levels) and the 
response factor in this case % CaCO3 yield, the software generated a summary of the model (Table 4), which describes 
the type of design chosen, number of runs generated, the various factors, their names, units used, type of factors (in this 
case, categorical), number of levels of each factor (2 for temperature and pressure, 3 for S/L ratio and 4 for particle size). 
Categorical factors are factors for which the levels cannot be arranged in order of magnitude.[5] The focus was on the 
relationship of % CaCO3 with varying levels of the input factors (temperature, pressure, particle size and S/L ratio). 
Table 4 gives the design summary as generated using the Design Expert software. 
 

Analysis of the post-carbonation solid residues carried out by quantitative XRD and chittick tests gave the following 



 

results (Table 5). Runs R15, R30 and R32 could not be performed due to the formation of thick slurry that could not be 
agitated. The above three runs were using the>150 µm ash fraction at an S/L ratio of 1. Thus, these runs were not 
considered in the statistical analysis. According to results obtained from chittick tests, Run R31, which was carried out 
at 4 Mpa, 90◦C, S/L ratio of 1 using bulk ash, gave the highest percentage CaCO3 yield of 6.5 % while Run R29, 
carried out at 30◦C, 1 Mpa, > 150 µm at an S/L ratio of 0.1 gave the lowest percentage CaCO3 yield of 2.75%. On the 
other hand in XRD quantification, Run R 2 carried out at 1 Mpa, 90◦C, 20 µm–150 µm at a S/L ratio of 0.5 resulted in 
the highest percentage CaCO3  yield of 8.14 %, yet Run R25 carried out at 4 Mpa, 30◦C, > 150 µm at a S/L ratio of 0.1 
gave the lowest percentage CaCO3 yield of 0.77 %. Statistical testing (both student t-test and concordance correlation 
coefficient) indicated that chittick tests were a better estimate of the % CaCO3 in comparison to quantitative XRD. 
Furthermore, XRD only detects the crystalline phase and some CO2 might have gone to the amorphous phase which 
XRD cannot detect. Chittick tests being a form of titration are expected to release all the encapsulated CO2  within the 
time limit of the experiment in addition to using a high concentration of the acid (6N HCl). The results obtained using 
the chittick tests were thus applied in the DOE to interpret the data. 
 
 
Factor effect estimation 

 
Estimation of factor effects is done by evaluating the percentage contribution of each input factor (namely temperature, 
pressure, S/L ratio and particle size) as well as the interactions of these input factors. The percentage contribution 
determines which terms are larger contributors than others.  To evaluate the contribution of various effects, a tentative 
percentage contribution of each model term to the total sum of squares is generated by the software as given in Table 6. 
Table 7 gives the contribution of the main effects and the interactions arising thereof. 
 

The sum of squares (SS) for a term is the amount of in- formation that can be attributed to the term as it changes.[8] 
Model terms are all the terms that are included in making the model. Aliased factors on the other hand are factors that 
cannot be uniquely estimated and thus their estimated effect is the linear combination of all the aliased terms. For 
instance, aliased “ABC” term means A is aliased within B which is aliased within C and the estimate of ABC is there- fore a 
linear combination of A, B and C. On the other hand, the F -value acts as a test for comparing the model variance with 
residual (error) variance. The percentage contribution can be used to estimate the importance of each model term. Factors 
with considerable contribution were the main effects of A (pressure), B (temperature), C (particle size), D (S/L ratio); 
interactions of BC and BD. These factors were thus used to test the model significance using analysis of variance 
(ANOVA). 
 
 
Estimation of model significance 

 
To determine the significance of the model as well as the factor effects, ANOVA is carried out on the model. ANOVA has 
two main functions, first, it provides a subdivision of the total variation between experimental units into separate 
components, each component representing a different source of variation, thus the relative importance of the different 
sources can be assessed. Second, it gives an estimate of the underlying variation between units which provides a basis for 
inferences about the effects of the applied treatments.[5] The ANOVA analysis for the chosen model is given in Table 7. 
 
 
 

 
 
Table 4. Design summary. 



 

 
Study type: Factorial Initial design: D-optimal Center-points: 0 Design model: 2FI Runs: 32
 Blocks: None 

Factor Name Units Type Low Actual High Actual
 Levels A Pressure Mpa Categoric 1 4
 2 
B Temperature ◦C Categoric 30 90 2 
C Particle size µm Categoric <20 Bulk 4 
D S/L ratio g/mL Categoric 0.1 1 3 
Response Units Observations Analysis Minimum Maximum Mean Std. Dev. Ratio
 Transformation 
% CaCO3 wt.% 29 Factorial 2.75 6.5 4.841 0.951 2.363 None 



 
 

Table 5. Statistically designed experiments showing the input factors and the response factor 
as determined by chittick tests and quantitative XRD (<150 = 20–150 µm particle size range).    
 Factor 1 Factor 2 

B:Temper
Factor 3 

C:Particle 
Factor 

4 D: S/L 
Chittick 
test 

XRD 
%CaCRun no. A:Pressure 

(Mpa) 
(◦C) (µ

m) 
(g/ml) %) (wt. 

%) 
R1 1 9 <2 0. 4.9 4.25 
R2 1           90          <150 0.

 
5.6

 
8.14 

R3 4 9
 

Bulk 0.
 

5.8
 

5.28 
R4              1          30          <20 0.

 
4.3
 

3.99 
R5 4 9

 
>15

 
0.

 
4.6

 
4.38 

R6 1 9
 

<15
 

1 5.6
 

6 
R7 1 9

 
>15

 
0.
 

4.3
 

3.
8 R8 1 3

 
<15

 
0.
 

4.7
 

5.22 
R9 4 9

 
<15

 
0.
 

        6 5.32 
R10               4 3

 
Bulk 0.

 
       5.52 4.86 

R11 4          90         <150           0.1 6.16 5.32 
R12               1          30          Bulk           0.1 4.57 4.96 
R13              4          30          <150 1 5.1 5.1 
R14 4 9

 
<2

 
1 5.14 3.38 

R16 1          30 Bulk           1 4.23 3.58 
R17 1 3

 
<2

 
0.

 
4.1

 
3.16 

R18              1 3
 

<20 0.
 

3.3
8 

3.58 
R19 1 3

 
>15

 
0.

 
3.5 2.63 

R20 4 3
 

Bulk          1 4.1
 

4.08 
R21 4 9

 
         <20 0.

 
4.6

 
4.18 

R22               4           30          <20           1 4.6
 

3.
 R23 1 3

 
Bulk          0.5 4.73 4.64 

R24              4           90 <2
 

         0.1 4.9
6 

3.26 
R25 4 3

 
         >150 0.

 
2.8
 

0.77 
R26 1 9

 
<15

 
0.
 

6.22 6.4 
R27               1           90 Bulk 0.

 
5.41 6.96 

R28 4 3
 

         <150 0.
 

5.6
8 

6.07 
R29 1 3

 
>15

 
0.
 

2.7
 

1.21 
R31 4 9

0 
Bulk           1 6.5 4.99 

 
 

Table 6. Estimation of the factor effect.  
 Term Sum square Mean square F-value % 

Model A-Pressure 2.27669 2.27669 0.0049 8.68676 
Model B-Temperature 8.27049 8.27049 0.0014 31.5562 
Model C-Particle size 11.6495 3.88318 0.0029 44.449 
Model D-S/L ratio 0.533621 0.26681 0.0406 2.03604 
Model AB 0.00407797 0.00407797 0.6090 0.015559

6 Model AC 0.265754 0.0885848 0.1152 1.01399 
Model AD 0.167835 0.0839177 0.1187 0.64037

8 Model BC 0.547924 0.182641 0.0588 2.09061 
Model BD 1.14584 0.572918 0.0193 4.37195 
Model CD 0.300636 0.0601272 0.1657 1.14708 
Aliased ABC 0.52314 0.26157 0.0414 1.99605 
Aliased 
Aliased 

ABD 
ACD 

         0.500634 
Alias

0.500634 0.0218 1.91018 

Aliased BCD Alias
d 

   
Aliased ABCD           Aliased    
Error Lack Of Fit            0    
Error Pure Error 0.0226   0.08623

6  Residuals 0.0226 0.0113   



 
 

Table 7. Analysis of variance (ANOVA) for the model.  
 
Source 

 
Sum of squares (SS) 

 
Degrees of freedom (df) 

 
Mean Square

 
F-value 

p-
value 

Model  24.48              12 2.04        18.87 <0.000
A-Pressure 0.51              1 0.51       4.76 0.0444 
B-
T t  

6.43              1 6.43 59.4
6 

<0.000
 C-Particle size 9.86             3 3.29 30.

 
<0.000
 D-S/L ratio 0.49            2 0.25       2.28 0.1342 

BC    0.54            3 0.18        1.66 0.2152 
BD 1.13           2 0.57        5.25 0.0177 
Residual     1.73           16 0.11   
Lack of Fit     1.71          14 0.12       10.79 0.0879 
Pure Error    0.023         2 0.011   
Cor Total 26.21         28    

 
 
The sum of squares (SS) for a term is the amount of information that can be attributed to the term as it changes.[8] The degrees of 
freedom (df) for a main effect is the number of levels of the factor minus one, while that for interaction is the product of the 
number of degrees of freedom associated with individual components of the interaction. The mean square (MS) is given by 
dividing SS model by df model as shown: 

SSmodel ÷ dfmodel = 24.48 ÷ 12 = 2.04 (1)  

On the other hand, the F -value acts as a test for comparing the model variance with residual (error) variance. Prob > F is the 

probability value that is associated with the F - value for any term. It is the probability of getting an F - value of this size if 

the term did not have an effect on the response factor. A term that has a probability (Prob >F ) value less than 0.05 would be 

considered a significant factor. A probability value greater than 0.10 is regarded as not significant.[8] Therefore, the variables 

A, B, C and BD are significant model terms. A significant lack of fit means the runs replicate well and therefore their variance 

is small.[8] 
 
The lack of fit should not be significant as the idea is to have a model that fits. The lack of fit value of 10.79 indicates that there 
is an 8.79 % chance that a “lack of fit” this large can be due to noise. The model F -value of 18.87 implies the model is significant 
as there is only a 0.01 % chance that a “model F -value” this large could occur due to noise. The residual mean square (MS) is 
the estimate of variance around the model. This value gives any deviation not explained by the model. In addition to ANOVA, 
the software generates the statistics for ANOVA which ex- plain the model behavior. This statistical analysis is given in Table 8. 
 



 

2

Standard deviation is the root square of the error mean square. The quantity R2 measures the proportion of total variability 
in the data.[7] It is calculated as:- 

   
R = SSmodel ÷ SStotal = 24.48 ÷ 26.21 = 0.9340 (2) 
 

The value of 0.9340 obtained above (Table 8) means the model explains 93.40 % of the variability obtained in the % CaCO3. 
The coefficient of variation (CV) measures the unexplained or residual variability in the data as a percentage of the mean of 
the response variable, % CaCO3 in this case. The adjusted R-squared (R2 Adj) is a statistic adjusted for the number of factors in 
the model relative to the number of points in the design. The adjusted R2 basically plateaus when insignificant terms are added 
to the model, while the R2 predicted decreases in the event of too many insignificant terms. 
 
The predicted R2 value of 0.7833 (Table 8) indicates that the model can explain 78.33 % of the variability in new data. Ideally 
the adjusted and predicted R2  values should be within 0.2 of each other.[8] This criteria is fulfilled in the current model 
(adjusted R2- predicted R2 = 0.8845 – 0.7833 = 0.1012). Adequate precision measures the signal to noise ratio. A ratio greater than 
4 is desirable. The design’s ratio of 15.814 indicates an adequate signal hence the model can be used to navigate the design space. 
The predicted error sum of squares (PRESS) is a measure of how well the model will predict in a new experiment. A model with a 
small value of PRESS indicates that the model is likely to be a good predictor.[7] A value of 5.68 (Table 8), thus indicates that 
this model will be a good predictor in a new experiment. 
 
 
 

Diagnostics checking 
 
Diagnostics checking is analysis of both the input and out- put variables to check for outlying data points. It includes a 
 
 

Table 8. Statistics for the ANOVA analysis. 
 

Standard deviation      0.33  R-Squared (R2)                        0.9340 

Mean 4.84  Adjusted R2                                    0.8845  
Coefficient of variance (C.V) % 

6.79  Predicted R2 
0.7833 

PRESS 5.68  Adequate Precision 15.814 
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Fig. 8. Plot of Cook’s distance (color figure available online). 
 

best lambda value, in this case 0.96. A recommended transformation is given based on the best 
lambda value. If the 95 % confidence interval around the lambda value includes one, then the 
software does not recommend a specific transformation, as in this case. 
 

Leverage of a point varies from 0 to 1 and indicates how much an individual design point 
influences the model’s predicted values.[13] A plot of leverage versus run is given in Figure 7. 
Leverage is a measure of how each point influences the model fit. Leverage points are those, if 
any, made at extreme values of the independent variables such that the lack of neighboring 
observations means that the fitted regression model will pass close to that particular 
observation.[14] A leverage of 1 means the predicted value at that particular case will exactly 
equal the observed value of the experiment in other words the residual will be 0.[7] Ideally, a 
clustering of points should appear close to 0 but definitely less than 1. In Figure 7, clustering is 
observed between the 0.25 and 0.75 mark, which is acceptable as all the points are below 1. 
 
Cook’s distance (Di) is a measure of how much the regression would change if a data point is 
omitted from analysis or deleted. A plot of Cook’s distance is given in Figure 8. Relatively large 
values are associated with cases with high leverage and large studentized residuals (a measure of 
how many standard deviations the actual value deviates from the predicted value after 
deleting the point in question). Cases with large Di relative to other cases are due to large 
residuals or outliers which may affect the accuracy of the outcome and regression is not 
guaranteed. Points with a Cook’s distance of 1 or more call for closer examination.[7]  
 
On the other hand, if the value of Cook’s distance is substantially less than 1, deleting any 
case will not change the estimates of the regression coefficients very much. It is desired that 
there be strong clustering near the zero point,[7] this is observed in Figure 8. This confirms lack 
of outliers and all the data points are thus within range of each other. Having checked for 
outliers and confirmed that the residual checks were within permissible limits, the model was 
confirmed to be valid and could thus be confidently used to interpret the results. 
 
Interpretation of results 

 
Interpretation of a main effect involves comparison be- tween levels (both high and low) 
of a single factor e.g., temperature, averaging over levels of all the other factors (pressure, 
particle size and S/L ratio in this case). An interpretation of interactions on the other hand 
involves comparison between levels of one factor over different levels of the other factor. For 
instance AB (A = pressure and B = temperature) interaction will involve determining the 
behavior of pressure at all the levels of temperature and vice versa. To interpret the results, 
the order of interpretation should be as follows; main effects first, followed by two factor 
interactions, three factor interactions and so on.[5] 
 
Generally in cases where the two factor effects and higher order interactions appear negligible, 
then the results of the experiment should be interpreted in terms of the main effect mean 
responses only, ignoring the mean responses of the combination of levels for the factors chosen. 
Likewise if a two factor interaction is clearly important, then the interpretation of the effects of 
these two factors should normally be based on the mean responses for the combination of levels 
for those two factors.[5] 

 
Analysis of the main effects upon carbonation 

 
The main effects of the variables upon the degree of carbonation in this case will be temperature, 
pressure, particle size and S/L ratio. From the ANOVA analysis (Table 7), one realizes that A 
(pressure), B (temperature) and C (particle size) main effects are significant. Factor D (S/L 
ratio) is not significant but it is added to make the model hierarchical. After observation of the 
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the number of graphs to be discussed. Observation of the BC interaction at all the levels of the 
different factors yielded a similar trend that is presented by Figure 14. 
 
The “I-beam” symbols on the plot given in Figure 14 depict the 95 % least significant difference 
(LSD) interval for the plotted points.[8] The points that have non-overlapping intervals are 
significantly different. In other words if the lines describing the simple main effects are not 
parallel, then the possibility of an interaction exists. As can be seen in Figure 14, the lines 
for 20 µm–150 µm and the <20 µm (blue and grey lines, respectively) are almost parallel and 
straight. However, the lines for bulk ash and >150µm fraction (red line and green line, 
respectively) show an increasing % CaCO3 with increasing temperature. 
 
In other words, high temperatures are recommended for these two larger particle fractions 
while on the other hand temperature will have little effect on the smaller particle size fraction, 
i.e., the 20 µm–150 µm and <20 µm fractions. Hence for effective carbonation without high 
energy inputs, it would be necessary to use the smaller size fractions of FA. The interaction of 
temperature and S/L ratio (BD interaction) investigates the effect of the different temperatures 
at each S/L employed and is given in Figure 15. 
 
Overlapping of the lines on the high temperature side depicts lack of interaction between 
temperature and all the S/L ratios used. This is due to the fact that only the points that have 
non-overlapping intervals are significantly different, but in Figure 15 all the S/L ratios 
overlap at the high temperature (90◦C). However one observes that on the lower temperature 
side (30◦C), S/L ratio of 0.1 and 0.5 interact with temperature. The 0.5 ratio will however 
give a higher % CaCO3. This is contrary to what was observed in Figures 12 and 13, where a 
S/L ratio of 1 was observed to have a higher effect on the amount of CaCO3 at 30 ◦C and a S/L 
ratio of 0.5 optimum at 90◦C. As it had been pointed out earlier, main effects that are involved 
in interactions cannot be relied upon solely to investigate their effect on the carbonation 
efficiency. The interaction plots are more robust and hence one would therefore consider 
experimenting at low temperature using a S/L ratio of 0.5, i.e., relying on the interaction plots. 

 
 
Conclusions 

 
Run R31 carried out at 4 Mpa, 90◦C, using bulk ash and a S/L ratio of 1 gave the highest 
percentage CaCO3  yield (6.5 %) as determined by chittick tests while quantitative XRD gave 
Run R2 conducted at 1 Mpa, 90◦C, using the 20 µm–150 µm particle size range at a S/L ratio 
of 0.5 as the one with highest % CaCO3 (8.14 %). ANOVA analysis, gave the main effects of 
pressure, temperature and particle size as significant together with the interactions of 
temperature and S/L ratio as well as the interaction of temperature and particle size. The model 
was found to be statistically significant and could explain 93.40 % of the variability in the 
percentage of CaCO3 data. Diagnostic plots were observed to follow the ideal situation. 
Pressure had a slight influence on the percentage of CaCO3, while the effect of temperature 
was pronounced. The particle size range of 20 µm –150 µm enhanced the degree of 
carbonation that could be achieved. This was closely followed by the bulk ash while the >150 µm 
particle fraction had the least influence on the % CaCO3. The effect of S/L ratio was 
temperature dependent. At low temperature a S/L ratio of 1 resulted in the highest 
percentage CaCO3 formation. On the other hand at high temperature, the ratio of 0.5 
resulted in the highest percentage CaCO3 formation. The temperature dependence of the S/L 
ratio could also be explained in terms of the higher percentage contribution value observed for 
the temperature-particle size interaction. In the temperature- particle  size  interaction,  both  
the  bulk  ash  and  the>150 µm fractions gave higher values of percentage of CaCO3 
formation at high temperature. Overall the two most important parameters in the 
carbonation of FA and brine were found to be particle size and temperature. 

 
Other studies have shown the importance of temperature in carbonation of either MSWI ash or 
FA, while pressure has been shown to be an insignificant variable. The observations in this 
study using South African class F ash thus confirm the literature observations. The effect of 
particle size was observed to be highest at smaller particle sizes due to the higher surface area 
to volume ratio hence better contact. For the S/L ratio, very low or very high values were 
observed to inhibit carbonation. High temperatures were shown to favor carbonation 
reactions as the reaction kinetics were enhanced while the particle size range of 20 



 
µm–150 µm was found to enhance carbonation. On average, this particle size range had a CaO 
content of 9.3 %, compared to the bulk ash’s CaO content of 9.198 %, further confirming that 
CaO was enriched in the smaller ash particles fraction. 
 
The application of statistical design in carrying out the experiments resulted in a clear 
understanding of the effect of the applied input factors. Two main advantages were achieved 
using this statistical approach; first, the number of experimental combinations was greatly 
reduced compared to studying the factors one at a time. Considering the same cost and time 
expenditure, the statistical approach was found to be robust in generating the desired data. 
Secondly, it was possible to investigate the effect of each factor as well as the arising interactions, 
which would not have been possible with one factor at a time approach.  
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