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A D-optimal design was applied in the study of irH)ut factors: temperature, pressure,
solid/liquid (S/L) ratio and particle size and their influence on the carbonation of brine
impacted fly ash (FA) determined. Both temperature and pressure were at two levels (30°C and
90°C; 1 Mpa and 4 Mpa), S/L ratio was at three levels (0.1, 0.5 and 1) while particle size was at
4 levels (bulk ash, <20 ézm, 20 um —150 uym and >150 um). Pressure was observed to have a slight
influence on the % CaCOg yield while higher temperatures led to higher percentage CaCOg yield.
The particle size range of 20 ﬁzm — 150 um enhanced the degree of carbonation of the fly asﬁ rine
slurries. This was closely followed by the bulk ash while the >150 um particle fraction had the
least influence on the % CaCOs3. The effect of S/L ratio was temperature dependent. At low
temperature, the S/L ratio of 1 resulted in the highest % CaCOg formation while at high
temperature, the ratio of 0.5 resulted in the highest percentage Ca803 formation. Overall the
two most important factors in the carbonation of FA and brine were found to be particle size and
temperature.

Keywords: Design of experiments, D-optimal design, fly ash, brine, mineral carbonation,
sequestration, ANOVA, chittick test.

Introduction

Coal combustion provides 40 % of the world’s energy needs.[1] This figure is projected to
increase due to the in- creased demand for electricity due to industrialization as weEl ai
population growth and the availability of large coal reserves in different parts of the world.L2:3

However, the combustion of coal leads to the generation of coal utiliza- tion by-products (CUB’s)
such as CO2, and N20 as gaseous emissions, solid wastes such as FA, flue gas desulphuriza- tion
products (FGD) and waste waters in form of brine. The gaseous emissions contribute to the
global warming effect, while waste FA, brines, and FGD are possible soil and water pollutants.
Ann aﬁly the electricity generating industry in South Africa produces over 218 million tons of
CO2L4! with over 30 Mt/y of FA and vast amounts of waste brines.

Co-utilization of FA and brine to sequester CO2 in the form of mineral carbonates would thus be
beneficial to the power generating industry for emission reduction purposes and benign
utilization of the waste products. The need to develop a statistical theory for designing

experiments stems from the inherent variability of experimental results.[5] The “design of
experiments” (DOE) soft- ware allows the design of a protocol that considers all the factors
optimizing on the outcome of the response factor. The classical method of experimental

optimization involves changing one factor at a time while holding other factors constant.[6]
This method however requires a large number of experiments to illustrate the effect of individual

factors. In addition it omits the effect of interactions of various factors.L7] Use of statistical
methods, however, helps to select important factors from a large number of factors and the
interactions between important factors can be easily understood.

University of the Western Cape Research Repository gmuriithi@uwec.ac.za




The D-optimal criterion, one of the several optimalities, was developed to select design points
in a way that minimizes the variance associated with the estimates of specified model
coefficients. The D-optimal factorial design is designed for use with categorical factors as an
alternative to the general factorial design option. Although the general factorial design builder
may produce designs with more runs than oneis willing torun, the D-optimal design on the other

hand chooses an ideal subset of all possible combinations, based on the specified model. [8] The
objective of this study was to study the application of statistical analysis in the factors
influencing carbonation. The factors considered were particle size, temperature, pressure and
S/Lratio.

Table 1. Design generated by Design of Experiments (DOE).

Factor 1 Factor 2 Factor 3 Factor 4
Run A:Pressure B:Temperaturere C:Particle size D:S/L ratio Response 1
No. Mpa °C pm g/mi ) % CaCO3 (wt.) (%
R1 1 9 <20 0.5
R2 1 9 20— 0.5
o 150
R3 4 90 Bulk 0.1
R4 1 3 <20 0.5
R5 4 9 >150 0.5
R6 1 9 20— 1
o 150
R7 1 9 >150 0.1
R8 1 3 20— 0.1
o 150
Ro 4 9 20— 0.1
o 150
Rio 4 3 Bul 0.5
Ri11 4 9 20— 0.1
Ri2 1 3 Bul 0.1
Ri13 4 3 20— 1
o 150
Ri14 4 9 <20 1
Ris 4 9 >150 1
R16 1 3 Bul 1
Ri17 1 3 <20 0.5
R18 1 3 <20 0.1
Ri19 1 3 >150 0.5
R20 4 3 Bul 1
R21 4 9 <20 0.5
R22 4 3 <20 1
R23 1 3 Bul 0.5
R24 4 9 <20 0.1
R25 4 3 >150 0.1
R26 1 9 20— 0.1
o 150
R27 1 9 Bul 0.5
R28 4 3 20— 0.5
o 150
R29 1 3 >150 0.1
R30 1 9 >150 1
R31 4 9 Bul 1
R32 4 3 >150 1




Materials and methods

D-optimal design

The input factors considered were particle size, S/L ratio, temperature and pressure while percent CaCO3 was the
output factor. Both temperature and pressure were at 2 levels (30°C and 90°C; 1 Mpa and 4 Mpa), S/L ratio was at
three levels (0.1, 0.5 and 1), yet particle size was at 4 levels (bulk ash, <20 ym, 20 um —-150 um and >150 um). The
design can therefore be referred to as a 4x3x22, which simply translates to 1 factor at 4 levels, 1 factor at 3 levels and 2
factors at 2 levels each. Table 1 shows the generated design using Design-Expert 7.1.

Carbonation experiments

The carbonation reactions were carried out in a stainless steel autoclave reactor with a 600 ml volume capacity. The
brine and FA were contained in a Teflon cup that was immersed in the steel jacket. A photo of the reactor setup is
shown in Figure 1.

The dispersion (brine + FA at the required S/L ratio) was placed inside the Teflon cup in the pressure vessel and
closed. The reactor was then placed in the heater and thermocouple, magnetic stirrer drive system, and water coolant
supply controlled by a solenoid valve put in place. The gas supply connection for the CO2 feed line was then attached. The
system was purged twice with CO2 at 0.05 Mpa to ensure that all the air was expelled and heating of the system began.
When the specified temperature was reached, CO2 (technical grade) was charged into the reactor to achieve the
specified reaction pressure. The brine/FA/CO2 mixture was then stirred at 600 rpm for 2 hours to prevent any settling
of solids during the carbonation experiments. After 2 hours the reactor was removed from the heating system and
quenched in cold water as well as depressurized for 15 minutes.

The reactor was then disassembled, and the solid product was separated by centrifugation (30 minutes at 6000 rpm),
thereafter the supernatant solutions were decanted. Finally, the solid product was dried in a vacuum oven for 8 hrs at
90°C. The supernatant solutions were filtered through a 0.2 um pore membrane. The filtered solutions for cation
analysis were immediately acidified to pH < 2 while those for anion analysis were stored as they were, i.e., without
acidification. The samples were refrigerated at 4°C until analysis.

Brine and FA characterization

The FA and brine samples used were collected from coal burning power plants in Mpumalanga province of South
Africa. Morphological analysis was done by Scanning Electron Microscopy (SEM) using a Hitachi X-650 Scanning
Electron Microanalyser equipped with a CDU-lead detector at 25 kV and a tungsten filament. Crystalline phases
present in the FA were determined by X-Ray Diffraction Spectroscopy (XRD) using a Bruker AXSD8 Advance
diffractometer coupled with a Cu-Ka radiation at 40 kV and 40 mA with a PSD Lynx-Eye, Si-strip detector at 0.03°/260
step from 12°-80° and 3 seconds counting time. Elemental analysis was done by XRF using a Philips PW 1480 X-ray
spectrometer fitted with a Cr tube and five analyzing crystals namely LIF 200, LIF 220, GE, PE and PX at 40 kV and 50 mA
tube operating conditions. Chittick tests were carried out to determine the percentage of CaCOg in the carbonated FA by
reacting 1.70 g of the carbonated FA with 20 ml of 6N HCI and recording the amount of CO2 evolved by reading the
displacement of the reservoir fluid. Anions present in the brine as well as the carbonation leachates were analyzed with an
Ion Pac AS14A column and AGi4—4 mm guard column Ion Chromatograph (IC). Major cations were analyzed using a



Varian radial ICP- AES while trace cations were done on an Agilent 7500ce ICP-MS using High Matrix Introduction
(HMI) accessory and He as collision gas.

Table 2. XRF analysis results for major and minor elements given as oxides in % w/w for fresh FA (Muriithi et al.[12]),

Majo >15 150 106 90 75 63 53 45 32 25

rs Bulk o um— um— um— um— um-— um— um— um— um-— <20
SiOQ 51.22  42.45 £0.64 5’1.770 52.41 52.66 51.40 572.64 5/2.37 572,70 5/2.76 51.11
Tli022 1.548 0.97 1.214 1.333 1.514 1.58 1.616 1.63 1.655 1.68 1.69 1.84
Al20Og 26.00 17.96 22.03 24.05 25.27 25.97 27.22 26.35 27.35 206.55 27.35 28.51
FeoO3 243 198 347 262 275 242 2419 228 239 224 224 257
MnO 0.06 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06
MgO 243 1.66 2.34 2.513 2714 2.53 256 2451 249 248 247 2.62
CaO 9.19 589 9.01 09.671 10.28 0948 9.591 0.261 9.129 8.76 849 8.63
Na2O 045 0.14 0.28 028 0.3;5 038 038 046 0.53 058 0.55 0.68

K20 078 0.65 0.77 0.74 076 0.77 078 0.79 0.81 0.82 0.82 0.87

P-Os 0.69 043 0.54 0.576 0.69 0.71 0.74 0.75 0.77 0.781 0.77 0.87

SO3 0.35 0.36 0.26 0.26 0.30 0.351 0.317 0.36 0.37 0.37 0.38 0.39

Cr203 0.03 0.02 0.02 0.031 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04
3 2 9 3 4 6 0 8 0 1 1

Results and discussions

Characterization of raw FA and brine

The fractionated, pre-carbonated FA was characterized chemically using XRF in order to quantify major, minor and
trace elements. Table 2 gives the results for the major and minor elements. From Table 2, the fresh FA contains SiO2,
Al203, Fe203 and CaO as the major oxides. The ash can therefore be classified as class F since the sum percentage
composition of SiP%, Al203 and Fe2Og is greater than 70 % according to the American Society for Testing and
Materials (ASTM).L9] Furthermore, the CaO content is lower than 10 %, which is also a grading criterion for class F FA.
CaO in FA is present as free lime and embedded in glassy spheres.

Usually the CaO content increases with decreasing particle size. However, the CaO content can vary due to formatio? o]°
glassy spheres from free lime and alumino silicate melt or the reaction of free lime with SO2 via CaSOg3 to anhydrite.l10
Bearing in mind that glassy spheres are the most imlﬂorijant Al203 bearing mineral species, Al2O3 content of size fractions
is an indicator of the amount of glassy spheres in FA.L101 An increasing trend with decreasing particle size is clearly visible
for Al2Og while for the lime content the 75-90 um fraction has the highest lime content. Table 3 gives the ion
concentrations in brine.

The brine solutions can be classified as NaSO4 waters as these are the main ions present. Other significant ions
include Ca, K, Mg and Cl with trace quantities of NO3g, POg4, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, V



and Zn. This has been reported elsewhere.[11]

Morphological analysis showed evidence of transformation from smooth spherical particles to “cubic-like” structures of

calcite as is reported elsewhere.[12] Furthermore, XRD confirmed presence of calcite in the carbonated ash, and lime
fraction was present in the un-carbonated ash.[12]

Table 3. Brine solution concentrations (Muriithi et al.[12]),

Species RO brine (ppm)
K 104.1+0.31
Al 0.044 +0.06
As 0.007

Ca 101.76 £ 0.15
Co 0.015+0.01
Cr 0.014 £ 0.01
Cu 0.067 +0.02
Fe 0.051+0.01
Mg 158.73 £ 1.24
Mn 0.082+0.03
Mo 0.039 £0.01
Na 4315+2.18
Ni 0.116 £ 0.01
Se 0.004

Sr 3.030+0.11
A 0.016 £ 0.01
Zn 0.100 + 0.01
Cl 2036 +£3.26
SO4 0488+2.22
NO3 8.565 +0.61

Statistical analysis

After putting in the input factors (pressure, temperature, particle size and S/L ratio at their different levels) and the
response factor in this case % CaCOg3 yield, the software generated a summary of the model (Table 4), which describes
the type of design chosen, number of runs generated, the various factors, their names, units used, type of factors (in this
case, categorical), number of levels of each factor (2 for temperature and pressure, 3 for S/L rafic] and 4 for particle size).
Categorical factors are factors for which the levels cannot be arranged in order of magnitude.l5) The focus was on the
relationship of % CaCOg with varying levels of the input factors (temperature, pressure, particle size and S/L ratio).
Table 4 gives the design summary as generated using the Design Expert software.

Analysis of the post-carbonation solid residues carried out by quantitative XRD and chittick tests gave the following



results (Table 5). Runs R15, R30 and R32 could not be performed due to the formation of thick slurry that could not be
agitated. The above three runs were using the>150 um ash fraction at an S/L ratio of 1. Thus, these runs were not
considered in the statistical analysis. According to results obtained from chittick tests, Run R31, which was carried out
at 4 Mpa, 90°C, S/L ratio of 1 using bulk ash, gave the highest percentage CaCO3 yield of 6.5 % while Run R29,
carried out at 30°C, 1 Mpa, > 150 um at an S/L ratio of 0.1 gave the lowest percentage CaCOq yield of 2.75%. On the
other hand in XRD quantification, Run R 2 carried out at 1 Mpa, 90°C, 20 um—150 um at a S/L ratio of 0.5 resulted in
the highest percentage CaCOg yield of 8.14 %, yet Run R25 carried out at 4 Mpa, 30°C, > 150 um at a S/L ratio of 0.1
gave the lowest percentage CaCOg yield of 0.77 %. Statistical testing (both student t-test and concordance correlation
coefficient) indicated that chittick tests were a better estimate of the % CaCOg in comparison to quantitative XRD.
Furthermore, XRD only detects the crystalline phase and some CO2 might have gone to the amorphous phase which
XRD cannot detect. Chittick tests being a form of titration are expected to release all the encapsulated CO2 within the
time limit of the experiment in addition to using a high concentration of the acid (6N HCI). The results obtained using
the chittick tests were thus applied in the DOE to interpret the data.

Factor effect estimation

Estimation of factor effects is done by evaluating the percentage contribution of each input factor (namely temperature,
pressure, S/L ratio and particle size) as well as the interactions of these input factors. The percentage contribution
determines which terms are larger contributors than others. To evaluate the contribution of various effects, a tentative
percentage contribution of each model term to the total sum of squares is generated by the software as given in Table 6.
Table 7 gives the contribution of the main effects and the interactions arising thereof.

The sum of squares (SS) for a term is the amount of in- formation that can be attributed to the term as it changes.[8]
Model terms are all the terms that are included in making the model. Aliased factors on the other hand are factors that
cannot be uniquely estimated and thus their estimated effect is the linear combination of all the aliased terms. For
instance, aliased “ABC” term means A is aliased within B which is aliased within C and the estimate of ABC is there- fore a
linear combination of A, B and C. On the other hand, the F -value acts as a test for comparing the model variance with
residual (error) variance. The percentage contribution can be used to estimate the importance of each model term. Factors
with considerable contribution were the main effects of A (pressure), B (temperature), C (particle size), D (S/L ratio);
i(nteractis)ns of BC and BD. These factors were thus used to test the model significance using analysis of variance
ANOVA).

Estimation of model significance

To determine the significance of the model as well as the factor effects, ANOVA is carried out on the model. ANOVA has
two main functions, first, it provides a subdivision of the total variation between experimental units into separate
components, each component representing a different source of variation, thus the relative importance of the different
sources can be assessed. Second, it gives an estimate [of]the underlying variation between units which provides a basis for
inferences about the effects of the applied treatments.L5] The ANOVA analysis for the chosen model is given in Table 7.

Table 4. Design summary.



Study type: Factorial  Initial design: D-optimal Center-points: 0 Design model:  2FI  Runs:

Blocks: None

Factor Name Units Type Low Actual  High Actual
Levels A Pressure Mpa Categoric 1 4
2

B Temperature °C _ Categoric 30 90 2

C Particle size um Categoric <20 Bulk 4

D S/Lratio g/mL Categoric 0.1 1 3

Response Units ObservationsAnalysis Minimum Maximum Mean Std. Dev. Ratio
Transformation

% CaCO3 wt.% 29 Factorial 2.75 6.5 4.841 0.951 2.363 None




Table 5. Statistically designed experiments showing the input factors and the response factor
as determined by chittick tests and quantitative XRD (<150 = 20—150 um particle size range).

Factor 1 Factor 2 Factor 3 Factor Chittick XRD
. . y . [0)
Run no. %\.}L’re;ssure ( ”R(,"Fpmnpr ¢ pJf’""’ 7 Pg/'qn/lr[) %jpcf z{l}?n
R1 1 o) <2 0. 4'8 .25
R2 1 90 <150 0. 5. .14
R3 4 9 Bulk 0. 5.8 5.28
R4 1 30 <20 0. 4.3 3.99
R5 4 9 >15 0. 4.6 4.38
R6 1 9 <15 1 5.6 6
R7 1 9 >15 0. 4.3 3.
R8 1 3 <15 0. 4.7 5.22
Ro9 4 9 <15 o. 6 5.32
Ri1o0 4 3 Bulk 0. 5.52 4.86
R11 4 90 <150 0.1 6.16 5.32
Ri2 1 30 Bulk 0.1 4.57 4.96
Ri13 4 30 <150 1 5.1 5.1
Ri4 4 9 <2 1 5.14 3.38
R16 1 30 Bulk 1 4.23 3.58
R17 1 3 <2 0. 4.1 3.16
R18 1 3 <20 o. 3.3 3.58
Ri1g 1 3 >15 0. 3.5 2.63
R20 4 3 Bulk 1 4.1 4.08
R21 4 9 <20 0. 4.6 4.18
R22 4 30 <20 1 4.6 3.
R23 1 3 Bulk 0.5 4.73 4.64
R24 4 90 <2 0.1 4.9 3.26
R25 4 3 >150 o. 2.8 0.77
R26 1 9 <15 o. 6.22 6.4
R27 1 Q0 Bulk o. 5.41 6.96
R28 4 3 <150 0. 5.6 6.07
R29 1 3 >15 0. 2.7 1.21
R31 4 9 Bulk 1 6.5 4.99
0
Table 6. Estimation of the factor effect.
Term Sum square Mean square F-value %

Model A-Pressure 2.27669 2.27669 0.0049 8.68676
Model B-Temperature 8.27049 8.27049 0.0014 31.5562
Model C-Particle size 11.6495 3.88318 0.0029 44.449
Model D-S/Lratio 0.533621 0.26681 0.0406 2.03604
Model AB 0.00407797 0.00407797 0.6090 0.015559
Model AC 0.265754 0.0885848 0.1152 1.01399
Model AD 0.167835 0.0839177 0.1187 0.64037
Model BC 0.547924 0.182641 0.0588 2.09061
Model BD 1.14584 0.5729018 0.0193 4.37195
Model CD 0.300636 0.0601272 0.1657 1.14708
Aliased ABC 0.52314 0.26157 0.0414 1.99605
Aliased ABD 0.500634 0.500634 0.0218 1.91018
Aliased ACD Alias
Ahased BCD Alas
Aliased ABCD Alased
Error Lack Of Fit o
Error Pure Error 0.0226 0.08623

Residuals 0.0226 0.0113




Table 7. Analysis of variance (ANOVA) for the model.

p_

Source Sum of squares (SS) Degrees of freedom (df) Mean Square  F-value value
M%del 24.48 12 2.04 18.87 <0.000
A-Pressure 0.51 1 0.51 4.76 0.0444
B- , 6.43 1 6.43 59.4 <0.000
C-Particle size 9.86 3 3.29 30. <0.000
D-S/Lratio 0.49 2 0.25 2.28 0.1342
BC 0.54 3 0.18 1.66 0.2152
BD 1.13 2 0.57 5.25 0.0177
Residual 1.73 16 0.11

Lack of Fit 1.71 14 0.12 10.79 0.0879
Pure Error 0.023 2 0.011

Cor Total 26.21 28

The sum of squares (SS) for a term is the amount of information that can be attributed to the term as it changes.[s] The degrees of
freedom (df) for a main effect is the number of levels of the factor minus one, while that for interaction is the product of the
number of degrees of freedom associated with individual components of the interaction. The mean square (MS) is given by

dividing SS model by df model as shown:
SSmodel + dfmodel = 24.48 + 12 =2.04 (1)
On the other hand, the F-value acts as a test for comparing the model variance with residual (error) variance. Prob > F is the
probability value that is associated with the F- value for any term. It is the probability of getting an F- value of this size if
the term did not have an effect on the response factor. A term that has a probability (Prob >F) value less than 0.05 would be
considered a significant factor. A probability value greater than 0.10 is regarded as not significant.[S] Therefore, the variables
A, B, C and BD are significant model terms. A significant lack of fit means the runs replicate well and therefore their variance
is small.[8]
The lack of fit should not be significant as the idea is to have a model that fits. The lack of fit value of 10.79 indicates that there
is an 8.79 % chance that a “lack of fit” this large can be due to noise. The model F-value of 18.87 implies the model is significant
as there is only a 0.01 % chance that a “model F-value” this large could occur due to noise. The residual mean square (MS) is

the estimate of variance around the model. This value gives any deviation not explained by the model. In addition to ANOVA,
the software generates the statistics for ANOVA which ex- plain the model behavior. This statistical analysis is given in Table 8.



Standard df\ﬁlation is the root square of the error mean square. The quantity R2 measures the proportion of total variability
in the data.l/]1 It is calculated as:-

R =SSmodel + SStotal =24.48 + 26.21 = 0.9340 (2)

The value of 0.9340 obtained above (Table 8) means the model explains 93.40 % of the variability obtained in the % CaCO3.
The coefficient of variation (CV) measures the unexplained or residual Varlablhty in the data as a percentage of the mean of
the response variable, % CaCO3 in this case. The adjusted R-squared (R2 AdJ) is a statistic adjusted for the number of factors in
the model relative to the number of points in the design. The adjusted R? basically plateaus when insignificant terms are added
to the model, while the R2 predicted decreases in the event of too many insignificant terms.

The predicted R2 value of o. 7823 (Table 8) indicates that the model can explaﬂg] 78.33 % of the variability in new data. Ideally
the adJusted and predlcted values should be within 0.2 of each other.L®] This criteria is fulfilled in the current model
(adjusted R2- predicted R2 = 0.8845 — 0.7833 = 0.1012). Adequate precision measures the signal to noise ratio. A ratio greater than
4 is desirable. The design’s ratio of 15.814 indicates an adequate signal hence the model can be used to navigate the design space.
The predicted error sum of squares (PRESS) is a measure of how well the model \ﬁnﬁl predict in a new experiment. A model with a
small value of PRESS indicates that the model is likely to be a good predictor.l7! A value of 5.68 (Table 8), thus indicates that
this model will be a good predictor in a new experiment.

Diagnostics checking
Diagnostics checking is analysis of both the input and out- put variables to check for outlying data points. It includes a

Table 8. Statistics for the ANOVA analysis.

Standard deviation 0.33 R-Squared (R2) 0.9340

Mean 4.84 Adjusted R2 0.8845

COEIICIENTOT VAITAIICE (C. V) 76 ; U.753:
6.79 Predicted R2 7033

PRESS 5.68 Adequate Precision 15.814




—~ Technical grade CO-»

"~ Reactor mounted onto the heating jacket

" Parr control box series 3848

Fig. 1. Photo of the reactor used (color figure available online).

host of plots that graphically represent the data thus making it easy to identify outliers. The plots include normal probability
plot (Fig. 2), residual versus predicted plot (Fig. 3),residualsversusrunplot (Fig.4), predicted versusactual plot (Fig. 5), Box-Cox
plot for power transformation (Fig. 6), leverage versus run plot (Fig.7) and the Cook’sdistance plot (Fig. 8). Random orientation
is desired for all the plots that would imply independence of the data points. The nor- mal probabilitﬁr 7ﬁ)lot (Fig. 2) indicates
whether the residuals follow a normal distribution in which case the points will follow a straight line.Ll/] Some scatter can be
expected with normal data; however an “S-shaped” curve would indicate that a transformation of the response may provide a
better analysis. A straight line is observed in this study, thus no transformation is required. Figures 2 to 5 are presented here.

The internally studentized residuals (Fig. 2) mean the residual has been divided by the estimated standard deviation of each
particular residual. It measures the number
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Fig. 2. Normal probability plot of residuals (color figure available online).

of standard deviations separating the actual and predicted values.

The plot of residuals versus predicted (Fig. 3) tests tPe] assumption of constant variance. Ideally the plot should be a random
scatter as is seen in Figure 3 with no definite pattern.l7] A straight line thus in this case implies that the variance is constant in
the residuals. The residuals versus



Residuals vs. Predicted
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Fig. 3. Plot of residuals versus predicted (color figure available online).
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Fig. 4. Plot of residuals versus runs (color figure available online).



Predicted vs. Actual
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Fig. 5. Plot of predicted versus actual (color figure available online).
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Fig. 7. Plot of leverage versus run (color figure available online).

run (Fig. 4), plots the residuals against the experimental run order. It internally checks for
lurking variables that may have influenced the response factor during the experiment. The plot
should also be a random scatter indicating that the residuals are random. The actual versus
predicted (Fig. 5) is a graph of the actual response values versus the predicted response values. It
?elp_s tg deitﬁﬁ a value or group of values that are not easily predicted by the model. A straight
ine isideal.

The Box-Cox plot of power transformation was devel- oped to help in identifying the best
power law transformation to apply in a model.[7] Figure 6 shows this plot. The red lines (Fig.



6) indicate the 95 % confidence interval surrounding the lambda value. The blue line shows the
current transformation, in this case it points to a value of 1 for lambda, which symbolizes the
power applied to the response values (% CaCO3). A lambda of 1 indicates no transformation is

required.[7] The green lines indicate
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Fig. 6. Box-Cox plot for power transforms (color figure available online).
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Fig. 8. Plot of Cook’s distance (color figure available online).

best lambda value, in this case 0.96. A recommended transformation is given based on the best
lambda value. If the 95 % confidence interval around the lambda value includes one, then the
software does not recommend a specific transformation, as in this case.

Leverage of a point varies from 0 to [1 a]nd indicates how much an individual design point
influences the model’s predicted values.l131 A plot of leverage versus run is given in Figure 7.
Leverage is a measure of how each point influences the model fit. Leverage points are those, if
any, made at extreme values of the independent variables such that the lack of neighboring
observations[ nTeans that the fitted regression model will pass close to that particular
observation.l141 A leverage of 1 means the predicted value at that particular case will exactly
equal the observed value of the experiment in other words the residual will be 0.l7! Ideally, a
clustering of points should appear close to 0 but definitely less than 1. In Figure 7, clustering is
observed between the 0.25 and 0.75 mark, which is acceptable as all the points are below 1.

Cook’s distance (Di) is a measure of how much the regression would change if a data point is
omitted from analysis or deleted. A plot of Cook’s distance is given in Figure 8. Relatively large
values are associated with cases with high leverage and large studentized residuals (a measure of
how many standard deviations the actual value deviates from the predicted value after
deleting the point in question). Cases with large Di relative to other cases are due to large
residuals or outliers which may affect the accuracy of the outcome and reg[re]ssion is not
guaranteed. Points with a Cook’s distance of 1 or more call for closer examination.L”

On the other hand, if the value of Cook’s distance is substantially less than 1, deleting any
case will not change the estimates of the re%r(fssion coefficients very much. It is desired that
there be strong clustering near the zero point,L7] this is observed in Figure 8. This confirms lack
of outliers and all the data points are thus within range of each other. Having checked for
outliers and confirmed that the residual checks were within permissible limits, the model was
confirmed to be valid and could thus be confidently used to interpret the results.

Interpretation of results

Interpretation of a main effect involves comparison be- tween levels (both high and low)
of a single factor e.g., temperature, averaging over levels of all the other factors (pressure,
particle size and S/L ratio in this case). An interpretation of interactions on the other hand
involves comparison between levels of one factor over different levels of the other factor. For
instance AB (A = pressure and B = temperature) interaction will involve determining the
behavior of pressure at all the levels of temperature and vice versa. To interpret the results,
the order of interpretation should be as follov\fy main effects first, followed by two factor
interactions, three factorinteractions and so on. 5]

Generally in cases where the two factor effects and higher order interactions appear negligible,
then the results of the experiment should be interpreted in terms of the main effect mean
responses only, ignoring the mean responses of the combination of levels for the factors chosen.
Likewise if a two factor interaction is clearly important, then the interpretation of the effects of
these two factors shotllﬁl normally be based on the mean responses for the combination of levels
for those two factors.Lo

Analysis of the main effects upon carbonation

The main effects of the variables upon the degree of carbonation in this case will be temperature,
pressure, particle size and S/L ratio. From the ANOVA analysis (Table 7), one realizes that A
(pressure), B (temperature) and C (particle size) main effects are significant. Factor D (S/L
ratio) is not significant but it is added to make the model hierarchical. After observation of the



behavior of the main effects with different factor combination, only the trends were chosen for
presentation to reduce the amount of graphs possible.

Where different trends were observed for the same main effect, the graphs showing all the
different trends will be presented. Pressure, temperature and particle size were observed to
behave similarly in that their effect on the percentage of CaCOg3 formed was higher at higher
values. The visual interpretation is usually in the form of line graphs as shown below in
Figures 9 to 13. One should look out for the effect of the input factor (be it pressure,
temperature, particle size or S/L ratio) on the % CaCOg3 as the input factor varies across
the chosenlevels. The Y-axis gives the % CaCOqg for all the plots (Figs. 9—13), while the X-axis
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Fig. 9. Main effect of pressure for all factor combinations (color figure available online).

shows the different levels of the chosen input factor, for instance in the case of temperature
the levels will be 30°C and 90°C. Figure 9 represents the main effect of pressure for all factor
combinations.

Variation of the other factors (i.e., temperature, particle size and S/L ratio) had the same effect
on the (fressure as shown above (Fig. 9). This means that at all levels of temperature, particle
size and S/L ratio, the percentage CaCO3 increased slightly asthe pressure was increased from 1
Mpa to 4 Mpa. Thus, only one plot is given.
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Fig. 10. Main effect of temperature for all factor combinations (color figure available online).
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Fig. 11. Main effect of particle size for all factor combinations (color figure available online).

Pressure can therefore be said nft t? have a huge significance on carbonation and hence the
output (% CaCO3). Reddy et al.l15] in their studies on carbonation of alkaline FA observed
thathigher pressure values were not significant in the carbonation
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Fig. 12. Main effect of S/L ratio at low temperature (30°C) (color figure available online).
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Fig. 13. Main effect of S/L ratio at high temperature (90°C) (color figure available online).

process. Rendek et al.[16] also reported that the CO2 pressure does not affect the carbonation



equilibrium, from a therfnogyné?]mic point of view but only influences the kinetics of the
process. Other researchersl1,17>101 also reported that increase in pressure does not have a high
significance on the % CaCOg formation. This study is thus in agreement with what has been
proposed in literature. Figures 10 to 13 follow next, giving the various factor combinations.

One observes that in Figures 10 to 13, a warning is displayed on the graphs. This is generated
by the software to inform one that the main effect being investigated is also involved in an
interaction. Caution is thus called for when interpreting the main effects, as some of them are
involved in interactions as displayed in the warning signs above some graphs. One therefore
needs to look at the interactions to make a comprehensive conclusion about the contribution
of the effect of a particular factor towards the formation of CaCO3g through carbonation.

Figure 10 shows the effect of temperature on the amount of CaCOg formed during carbonation.
It is clear that as the temperature increases from 30°C to 90°C, the percent- age of CaCOg3
formed increases Izon]siderably. This signifies the importance of temperature in the carbonation
process. Li et al.l19] reported a similar observation and concluded that high temperatures
improve the reaction kinetics hence increasing the carbonation efficiency.

In Figure 11 the effect of particle size on the formation of CaCOg is given. Four particle sizes
were considered, i.e., bulk ash, >150 ym, 20 ym-150 um and the <20 um fractions. The 20
um—150 um fraction is observed to have the highest effect on the % CaCOg3. The bulk ash has
the next highest contribution to % CaCOg formation followed by the <20 um fraction. The >150
um fraction however, is the least favourable for carbonation as it led to the lowest

% CaCOg output (Fig. 11).
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Fig. 14. Interaction effect of BC for all factor combinations (<150 represent the 20 um-150
um particle size range) (color figure available online).



Interaction
Design-Expert® Software D: S/L ratio

% CaCO3 ey
@

Ol 0

5.625 —

L

0.5
-

D!
W N -

X1 = B: Temperature

X2 = D: S/L ratio 4.65—

% CaCO3

Actual Factors 0
A: Pressure = 4

C: Particle size = Bulk 3675

2.7—

B: Temperature
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These observations correlate with the XRF analysis done on the un-carbonated FA (Table 2)
where it was observed that the 20 um-150 um particle size range had the highest CaO
(averaging at 9.3 %), while the >150 um particle size fraction had the lowest CaO of 5.894 %.
CaO in the FA is the main source of the Ca2* though the Ca2* in brine also contributes
towards the total Ca cations available for carbonation. Evaluated the effect of particle size in
the carbonation of municipal solid waste incinerator (MSWI) ash and observed that
carbonation was higher with smaller particle sizes. They attributed this observation to the higher
CaO content of the smaller particle sizes, homogeneity of the particle sizes as well as the higher
surface area of these particles.

Figures 12 and 13 give the effect of S/L ratio at low and high temperature respectively. At low
temperatures (30°C), a S/L ratio of 1 gave a higher amount of CaCOgj arising due to
carbonation (Fig. 12). On the other hand, at high temperatures (90°C) the S/L ratio of 0.5
gave the highest % CaCOg formation compared to a S/L ratio of 0.1 or 1 (Fig. 13). This
implies that the S/L ratio is temperature dependent. A low S/L ratio and high temperature
will lead to higher carbonation efficiency as will a high S/L ratio at low temperature. This
would be attributed to the i re]ased kinetics at high temperatures, hence low S/L ratio will
suffice and vice versa. Li et al.l19/] in their study on the effect of S/L ratio on the carbonation of
MSWI ash obtained an optimum value of 3.

According to them, as water is the medium of dissolution, ionization and transportation of
COz2, very low or very high liquid ratios will retard the reaction. Hydration and dissolution of
CO2 occurs in the presence of water as well as the dissolution of Ca2* ions from the solid
phase which reacts with the carbonate ions to form CaCOs3. In low S/L ratios, the gas
permeability is high and the gas can effectively diffuse into the ma{ter]:lal. Increase of the liquid
content seals off the pores in the ash thus inhibiting the reaction.l19

Interpretation of interactions between the input factors

A factor interaction is the variation between the mean for different levels of one factor over
different levels of the other factor, Two factor interactions should be examined first, then
three factor interactions and so on.[5] The reader is reminded that only BC (temperature and
particle size in- teraction) and BD (temperature and S/L ratio interaction) factor interactions
were found to be significant (Table 6). Only general trends are reported here in order to reduce



the number of graphs to be discussed. Observation of the BC interaction at all the levels of the
different factors yielded a similar trend that is presented by Figure 14.

The “I-beam” symbols on the plot giveﬂgﬁn Figure 14 depict the 95 % least significant difference
(LSD) interval for the plotte<f points. The points that have non-overlapping intervals are
significantly different. In other words if the lines describing the simple main effects are not
parallel, then the possibility of an interaction exists. As can be seen in Figure 14, the lines
for 20 yum—-150 um and the <20 ym (blue and grey lines, respectively) are almost parallel and
straight. However, the lines for bulk ash and >150um fraction (red line and green line,
respectively) show an increasing % CaCO3g with increasing temperature.

In other words, high temperatures are recommended for these two larger particle fractions
while on the other hand temperature will have little effect on the smaller particle size fraction,
i.e.,, the 20 um—150 um and <20 um fractions. Hence for effective carbonation without high
energy inputs, it would be necessary to use the smaller size fractions of FA. The interaction of
temperature and S/L ratio (BD interaction) investigates the effect of the different temperatures
at each S/L employed and is given in Figure 15.

Overlapping of the lines on the high temperature side depicts lack of interaction between
temperature and all the S/L ratios used. This is due to the fact that only the points that have
non-overlapping intervals are significantly different, but in Figure 15 all the S/L ratios
overlap at the high temperature (90°C). However one observes that on the lower temperature
side (30°C), S/L ratio of 0.1 and 0.5 interact with temperature. The 0.5 ratio will however
give a higher % CaCOg. This is contrary to what was observed in Figures 12 and 13, where a
S/L ratio of 1 was observed to have a higher effect on the amount of CaCO3 at 30 °C and a S/L
ratio of 0.5 optimum at 90°C. As it had been pointed out earlier, main effects that are involved
in interactions cannot be relied upon solely to investigate their effect on the carbonation
efficiency. The interaction plots are more robust and hence one would therefore consider
experimenting at low temperature using a S/L ratio of 0.5, i.e., relying on the interaction plots.

Conclusions

Run R31 carried out at 4 Mpa, 90°C, using bulk ash and a S/L ratio of 1 gave the highest
percentage CaCOg yield (6.5 %) as determined by chittick tests while quantitative XRD gave
Run R2 conducted at 1 Mpa, 90°C, using the 20 um—150 um particle size range at a S/L ratio
of 0.5 as the one with highest % CaCO3 (8.14 %). ANOVA analysis, gave the main effects of
pressure, temperature and particle size as significant together with the interactions of
temperature and S/L ratio as well as the interaction of temperature and particle size. The model
was found to be statistically significant and could explain 93.40 % of the variability in the
percentage of CaCO3 data. Diagnostic plots were observed to follow the ideal situation.
Pressure had a slight influence on the percentage of CaCO3g, while the effect of temperature
was pronounced. The particle size range of 20 um —150 um enhanced the degree of
carbonation that could be achieved. This was closely followed by the bulk ash while the >150 um
particle fraction had the least influence on the % CaCOsg. The effect of S/L ratio was
temperature dependent. At low temperature a S/L ratio of 1 resulted in the highest
percentage CaCOg formation. On the other hand at high temperature, the ratio of 0.5
resulted in the highest percentage CaCOg formation. The temperature dependence of the S/L
ratio could also be explained in terms of the higher percentage contribution value observed for
the temperature-particle size interaction. In the temperature- particle size interaction, both
the bulk ash and the>150 um fractions gave higher values of percentage of CaCOg
formation at high temperature. Overall the two most important parameters in the
carbonation of FA and brine were found to be particle size and temperature.

Other studies have shown the importance of temperature in carbonation of either MSWI ash or
FA, while pressure has been shown to be an insignificant variable. The observations in this
study using South African class F ash thus confirm the literature observations. The effect of
particle size was observed to be highest at smaller particle sizes due to the higher surface area
to volume ratio hence better contact. For the S/L ratio, very low or very high values were
observed to inhibit carbonation. High temperatures were shown to favor carbonation
reactions as the reaction kinetics were enhanced while the particle size range of 20



um—150 um was found to enhance carbonation. On average, this particle size range had a CaO
content of 9.3 %, compared to the bulk ash’s CaO content of 9.198 %, further confirming that
CaO was enriched in the smaller ash particles fraction.

The application of statistical design in carrying out the experiments resulted in a clear
understanding of the effect of the applied input ?actors. Two main advantages were achieved
using this statistical approach; first, the number of experimental combinations was greatly
reduced compared to studying the factors one at a time. Considering the same cost and time
expenditure, the statistical approach was found to be robust in generating the desired data.
Secondly, it was possible to investigate the effect of each factor as well as the arising interactions,
which would not have been possible with one factor at a time approach.
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