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Abstract We have applied bioluminescent ATP detection methods to microbial enumeration in Antarctic 

Dry Valley mineral soils, and validated our ATP data by two independent methods. We have demonstrated 

that ATP measurement is a valid means of determining microbial biomass in such sites, and that the 

desiccated surface mineral soils of the Antarctic Dry Valleys contain cell numbers over four orders of 

magnitude higher than previously suggested. 
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The authors dedicate this paper to David Wynn-Williams, a friend, collaborator, and colleague, who contributed so much to 

Antarctic microbiology, and who was tragically killed in a road accident in March 2002. 

 

 

Introduction 

The Dry Valley deserts of Eastern Antarctica have long been used as analogs of planetary extremes, first 

for lunar and latterly for Martian exploration (McKay 1993; Andersen et al. 1990; Friedmann 1993a). These 

cold deserts are widely acknowledged to be the harshest arid environments on Earth and, although once 

considered to be inimical to life (e.g., Boyd et al. 1996), are now generally considered to support low 

microbiological populations (Cameron et al. 1970; Vishniac and Mainzer 1972; Vincent 1988; 

Wynn-Williams 1990; McKay 1993; Friedmann 1993b; Vishniac 1993) . In comparison, nutrient- and 

water-rich Antarctic "ornithogenic" and fellfield soils give vastly higher microbial counts (Ramsey and 

Stannard 1986; Wynn-Williams 1990). Dry Valley microclimatology is dominated by extreme aridity [water 

contents as low as 0.3 g % (Vincent 1988)] resulting from low precipitation and atmospheric humidity, and 

low but widely fluctuating seasonal and diurnal temperatures (Vincent 1988; Thompson et al. 1971). Soil 

water activity may be reduced further by very high levels of salinity (Claridge and Campbell 1977). High 

incident solar radiation (Smith et al. 1992) and low substrate-carbon levels (Vishniac 1993) may also be 

significant stress factors for surface soil microbiota. 

 

ATP analysis has been used to measure soil microbial activity (Paul and Johnson 1977) and microbial 

biomass (Jenkinson et al. 1979). Although the technique has suffered from the vagaries of the ATP 

extraction procedures (Sparling and Eiland 1983) and possible variations in cellular ATP content 

(Fairbanks et al. 1984), the recent development of efficient lysis reagents produced and marketed for the 

food industry (Siragusa et al. 1996; Davidson et al. 1999; Zwartkruis et al. 1999) offers improved sensitivity 

and assay reliability. 
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We have applied this method, therefore, to the surface mineral soils of the Antarctic Dry Valleys and, in 

contradiction to previously published studies, have found relatively much higher microbial numbers. 

 

 

 

Materials and methods 

Field sites 

Samples and in situ ATP analysis data were obtained from the vicinity of the Antarctic Dry Valleys of the 

Ross Dependency during the 1998/1999 and 1999/2000 austral summers, over a period of 21 days in 

January 1999 and 2000. Sites sampled included the ornithogenic soils of the Adelie penguin colony at Cape 

Bird, Ross Island (77°13'S, 166°27'E), the western (upper) regions of the Miers Valley (78°06'S, 163°48'E) 

and the Canada Glacier Site of Special Scientific Interest at Lake Fryxell, Taylor Valley (77°37.1'S, 

163°02.7'E). 

 

Sampling methods 

Samples were recovered by sterile transfer of surface (02 cm) and subsurface (2-30 cm) samples to sterile 

15-ml and 50-ml plastic Greiner vessels, 90-ml wide-mouthed Kartell bottles, and 250-ml wide-mouthed 

Nalgene vessels. All samples were maintained at ambient temperature (0° ± 3°C) prior to ATP analysis 

(typically, within 5-30 min of sampling). Samples returned to the UK for subsequent analyses were 

maintained at below 0°C (typically -20°C) during transport and storage. 

 

Environmental parameters 

Soil, water, and atmospheric temperatures were monitored with a Solomat 520c digital thermometer 

equipped with a 10-cm steel probe. 

 

ATP analysis 

ATP concentrations were determined using the commercially available luminometric assay system designed 

to operate with the systemSURE Y2 K portable hygiene monitor (Celsis Instruments, Cambridge, UK). 

The monitor was powered by a 2kW Honda generator. Reagents (systemSURE swabbing (lysis) solution, 

luciferase enzyme buffer, and lyophilized luciferase enzyme), and consumables (sterile swabs, ATP-free 

Rohre tubes, ventilation caps, and ATP-free Rainin pipette tips) were obtained from Celsis Instruments, 

Cambridge, UK. The assay procedure was performed as per the manufacturer's instructions. Reaction and 

reagent temperatures were maintained at 15°C ± 3°C. All ATP analyses were performed in triplicate or 

quadruplicate with appropriate control and blank analyses, and compared with a standard curve generated 

using Na2. ATP solutions in the range of 0.3 ng ml-1 to 0.3 μgml-1. 
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Polar lipid fatty acid (PLFA) analysis 

The fatty acid content of soil samples (1 g) was determined by capillary gas chromatography analysis of 

fatty acid methyl esters (FAMEs), formed from polar lipids extracted from soil using the Bligh and Dyer 

method as described by White et al. (2000). 

 

Moisture content 

Duplicate 1 g soil samples were weighed and incubated at 80°C. Samples were reweighed at 24 and 48 h to 

constant weight. 

 

 

DNA content 

Total DNA was recovered using materials and protocols supplied with the FastDNA SPIN Kit (BIO 101, 

Vista, CA, USA). Soil samples (0.5 g) were suspended in the buffers provided, reciprocated at high speed 

for 30 s, and centri-fuged (14,000 g for 5 min) to clarify the supernatant. Supernatant fractions were further 

purified by adsorption to the BIO 101 binding matrix suspension under the conditions specified in the 

protocol. Aliquots of the eluted DNA were diluted as necessary in TE buffer (10 mM Tris-Cl, 2 mM 

EDTA, pH 7.5) and assayed using the PicoGreen method (Molecular Probes, Eugene, OR, USA). 

 

ATP stability 

As a standard, 7.5 mg of Na2.ATP (Sigma Chemical Company, Poole, UK) was dissolved in 50 ml dH2O to 

generate a 0.27-mM stock solution. Samples (20 ml) of freshly collected surface (0-2 cm) gravels 

(approximately 20 g) in 50-ml Greiner tubes were supplemented with 400 | l volumes of stock ATP 

solution (or other volumes as specified). Samples were agitated vigorously for 5 min to ensure 

homogeneity. All samples were assayed for ATP content using the Celsis systemSURE method (see above) 

prior to addition of exogenous ATP, immediately after homogeniza-tion, and subsequently at intervals over 

12-40 h periods. Between assays, sample vials were repositioned in the vicinity of the sampling sites, the 

depth and orientation of the samples were designed to mimic, as far as possible, the original location. 

 

 

Results 

Environmental ATP analyses 

We investigated the in situ ATP content of samples from a variety of different terrestrial biotopes in the 

Ross Dependency region, Eastern Antarctica, where variations in temperature, nutrient status, and water 

content (Table 1) are expected to introduce wide variations in the in situ microbial activity and biomass 

levels. Samples tested in situ included desiccated surface mineral soils, subsurface soils and permafrost, 

moss/lichen beds from moist "flush" areas, growing and degrading lakeside algal detritus, and 

ornitho-genic soils from an Adelie Penguin colony (Fig. 1, Table 1). Highest bioluminescence assay values 

(expressed as Relative Luminosity Units, RLU) were obtained from samples taken from or immediately 

underlying sites showing visible evidence of actively growing biomass (moss beds, algal mats). These values 
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may well be elevated due to the presence of eukaryotic cells (see below). Desiccated surface mineral soils 

showed lower but highly significant values, while the lowest value was obtained from a permafrost sample. 

 

Table 1. Physical and microbiological characteristics of sample sites 

 

Using data obtained from an ATP standard curve (see Methods section) together with published values 

(D'Eustachio and Levin 1967; Hamilton and Holm-Hansen 1967; Bancroft et al. 1976; Fairbanks et al. 

1984) of ATP bacterium-1 (0.16 and 2.25 fg per cell) we calculate that the luminometric data related to cell 

numbers between approximately 4 x 104 and 5 x 105 cells per 1,000 RLU. From this we calculate that a 

luminometer reading of 1,000 RLU corresponded to a biomass range of between 3 x 106 and 4 x 107 cells 

g-1 wet weight (ww). 

Site Site details Temp. Water RLU ± SD Cell counts 

reference  (°C) content 

(%wt) 
  [from RLU: g 

(ww)-1] 

Rich and/or moist sites      
CB1.1 Ornithogenic surface soil from plateau region in Adelie penguin colony 10.7 8.4 16,037 1,848 5 x 107-7 x 108 

CB3.2 1-2 cm depth sample from moist flush site 7.4 12.5 14,082 5,999 5 x 107-6 x 108 

TV1.1 Algal mat from Lake Fryxell margins 77°36.466'S, 163°07.431'E -0.5 83.8 12,723 3,321 4 x 107-6 x 108 

TV1.2 Decaying algal mat from lake margins 77°36.589'S, 163°06.932'E -0.2 52.9 4,927 744 1 x 107-2 x 108 

TV1.3 Sediment from Nostoc mat in Canada Glacier stream delta 77°37.017'S, 

163°04.752'E 

0.1 87.9 47,609 1,782 1 x 108-2 x 109 

TV2.1 Algal mat covered sediment from Canada Glacier stream 77°36.960'S, 

163°03.875'E 

1.3 70.0 79,472 7,551 3 x 108-4 x 109 

TV3.1 Mixed Nostoc/moss mats from flush area below Canada Glacier 

77°37.030'S, 163° 02.708'E 

0.0 63.7 31,244 5,796 1 x 108-1 x 109 

TV3.3 Soil from Bryum mat in flush area below Canada Glacier 77°37.067'S, 

163°02.668'E 

0.0 48.4 39,965 9.337 1 x 108-2 x 109 

Desert sites       
MV1. Surface mineral soil from southern slopes 78°05.87 S, 163°47.90 E 3.8 2.0 16,422 1,728 5 x 107-4 x 108 

TV4.10 Surface mineral soil from old Fryxell camp site 77°37.067 S, 163°02.712 E 2.4 6.2 828 107 3 x 106-4 x 107 

TV4.11 Surface mineral soil from S slope of ridge approx. 30 m elevation above Lake Fryxell 

77°37.030'S, 163°02.708'E 

- 0.8 8,900 1,233 3 x 107-4 x 108 

TV4.12 Surface mineral soil from N slope of ridge approx. 30 m elevation above Lake Fryxell 
- 1.0 5,424 1,845 2 x 107-2 x 108 

TV7.1 Surface mineral soil from western slope of ridge above Lake Fryxell 

77°36.853 S, 163°04.237 E 

- 1.1 4,946 1,228 2 x 107-2 x 108 

TV7.6 20-25 cm depth from TV7.1 site, permafrost - 19.6 178 14 5 x 105-8 x 106 

Site references are Cape Bird (CB), Taylor Valley (TV), and Miers Valley (MV) 

Fig. 1A, B. Representative microbial biotopes sampled for ATP analysis. A Desiccated surface gravels, Miers Valley, 
Eastern Antarctica; B nutrient-rich ornithogenic soils, Cape Royds Adelie penguin colony, Ross Island 
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Using in situ ATP values, it is calculated that microbial biomass levels in nutrient- and vegetation-rich 

samples (Cape Bird and Taylor Valley ornithogenic soils, algal-rich flush sites, and bryophyte mats) are in 

the order of 107-109 cells g-1 ww (Table 1). These values compare well with direct count estimates of Ross 

Island Adelie rookery ornithogenic soils [1.6-2.1 x 1010 cells g-1 dry weight (dw)] (Ramsey and Stannard 

1986) and vegetated fellfield soils (1.6 x 1010 cells g-1 dw) (French and Smith 1986). 

 

 

Surface mineral soil samples showed surprisingly high ATP content values (828-16,400 RLU; see Table 1). 

Estimates of microbial biomass (see above) based on these values range from 2.6 x 106 cells g-1 ww to 3.9 x 

108 cells g-1 ww. Further extensive spot sampling of desiccated surface mineral soils in the Taylor and Miers 

Valleys gave reliably reproducible RLU values ranging from a few thousands to around 20,000 (data not 

shown), suggesting that the values shown in Table 1 are broadly representative of Dry Valley mineral soils. 

These sites (e.g., MV1, TV4.10-12, TV7.1, TV8.1) all possessed very low water contents (0.8%-6.2%), 

within the range reported from Ross Desert sites (Cameron et al. 1970). On the assumption that levels of 

microbial activity are relatively low due to the low water activity and/ or nutrient status, these values 

potentially represent unexpectedly high levels of biomass. 

 

Effect of metabolic status 

There is some evidence that ATP levels are influenced by the level of cellular metabolic activity (Fairbanks 

et al. 1984). In such cases, ATP values obtained from metaboli-cally active biotopes would potentially 

overestimate cell numbers. The extent of such overestimation is therefore dependent on the quantitative 

difference in ATP content between metabolically active and inactive cell populations. In monitoring ATP 

levels in laboratory-grown psychrotol-erant bacterial isolates, we noted that specific ATP levels (ATP titer 

per unit biomass) were changed little through lag and exponential growth phases (Fig. 2). In addition, peri-

odic field monitoring of in situ ATP levels in Dry Valley gravels over a 87-h period (three diurnal cycles) 

where surface temperatures fluctuated from -1° to +16°C showed that ATP titers varied by considerably 

less than one order of magnitude (maximum of 7-fold variation from minimum to maximum RLU values). 

We therefore conclude that although metabolic activity does influence ATP titers, such fluctuations impact 

on estimates of calculated microbial cell biomass values by less than an order of magnitude. 
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ATP stability 

Alternative explanations might be offered for the high ATP titers in arid Antarctic Dry Valley surface 

mineral soils. A single previous observation of high ATP levels in arid Antarctic Dry Valley soils 

(Friedmann et al. 1980) that had been sampled adjacent to cryptoendolithic communities was attributed to 

the deposition of exfoliated endolithic biomass and the subsequent preservation of extracellular ATP in the 

frozen desiccated soils. The possibility that exogenous ATP derived from lysed cells and stabilized by the 

low environmental temperature might significantly affect biomass estimates has previously been considered 

(Tuovila and La Rock 1987). However, several lines of evidence suggest that this is not the case. Firstly, we 

investigated a variety of samples by bioluminescence assay in the presence and absence of the cell lysis 

reagent. In the absence of the lysis reagent, RLU values of little more than background (data not shown) 

were obtained. Secondly, diNa. ATP solutions added to mineral soils and incubated in situ showed residual 

half-life values of hours (see, for example, Fig. 3), rather than days or years. The increased soil water 

content resulting from addition of the ATP solution cannot be attributed as the basis for the rapid 

degradation, since supplementation of the soil water content over a 1%-24% gg-1 range showed no 

significant change in ATP half-life (2.2 ± 0.7 h). We also note that other studies (Roser et al. 1993) have 

detected little extracellular ATP in continental Antarctic soils. 

 



 

 

Page | 7  

 

 
 

 

 

 

Eukaryotic cell populations 

Estimates of microbial biomass might also be skewed by the presence of substantial populations of 

free-living cyanobac-teria, fungi, or algae which have ATP contents that are 102103-fold higher than 

bacterial cells (Karl 1980). However, on the basis that direct microscopic analysis of samples showed no 

filamentous microbial forms or cyanobacteria, and our failure to isolate any yeast colonies on yeast-specific 

media, we conclude that these organisms, if present, occur in very low numbers. Our conclusion is 

supported by a number of previous studies (Cameron et al. 1970; Vishniac 1993) that have reported only 

very low numbers of free-living cyano-bacterial, algal, and fungal populations in Ross Desert sands [e.g., 

0-2 x 102cfug-1 in surface samples from the Matterhorn Valley (Cameron et al. 1970)]. In addition, it has 

been reported to us that no cyanobacteria were detected in 51 out of 60 samples of comparable arid gravel 

taken from the south side of Lake Hoare, Taylor Valley, and examined using epifluorescence microscopy 

(D. Wynn-Williams, personal communication). We suggest, therefore, that cyanobacterial and eukaryotic 

cells do not make a significant contribution to the total ATP titers of the soils that we tested. 
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Discussion 

The notable discovery from this study is the apparently high level of ATP detected in surface mineral soil 

samples from Ross Desert sites (e.g., MV1, TV4.10-12, 7.1, 7.6). Calculation of biomass levels from 

bioluminescence values using a standard value of ATP/cell), gives values ranging from 2.6 x 106 to 4.0 x 

108 cells g-1 ww, which are four orders of magnitude higher than previously reported microbial populations 

(Vishniac 1993; Vincent 1988; Vishniac and Mainzer 1972). This reevaluation stems from the use of 

techniques more suited to the quantification of total biomass. Previous microbiological studies of Antarctic 

Dry Valley soils have largely employed culture-based quantification methods (Cameron et al. 1970; 

Vishniac 1993; Vincent 1988), now widely accepted as being poor determinants of true biomass. 

 

An independent calculation of biomass based on extract-able DNA confirms both the general validity of 

the biolu-minescence method and finding of cell numbers many orders of magnitude higher than 

previously reported. Using a value of 17 fg DNA per microbial cell (assuming two genomes per cell, with 

an average genome size of 5 MB: Qiagen Technical literature: http://www.qiagen.com/ 

catalog/chapter_13/chap13a11.asp), we calculate that cell numbers in the three Ross Desert samples from 

which DNA was extracted (TV4.10-12; 3.9, 2.5, and 4.6 μg DNA g-1 ww, respectively) range from 1.5 x 108 

to 2.3 x 108 cells g-1 ww. For comparison, a similar calculation for Cape Bird ornithogenic soil samples 

(CB1.1, 43.0 μg g-1; CB3.2, 30.3 μg DNA g-1) yields 2.5 x 109 and 1.8 x 109 cells g-1 ww, respectively, falling 

well within the range calculated from biolumi-nescence data (see above). 

 

A second independent confirmation of the validity of biomass determination using ATP analysis is 

provided by a calculation using extractable phospholipid-fatty acids. A surface soil sample from an adjacent 

but equally arid Taylor Valley site gave a value of 16 μg PL-FA g-1 soil, which equates to approximately 2 x 

108 g-1 dw soil (Neidhardt et al. 1990). 

 

The demonstration by three independent methods that desiccated Ross Desert mineral soils contain much 

higher biomass levels than previously thought has extensive implications. While it might be argued that 

extractable DNA levels are elevated by the accumulation of stable exogenous nucleic acids from lysed cells, 

it seems improbable that over 99.999% of extractable DNA (the percentage required to account for a 

reduction in cell biomass from 108 to 104 cells g-1 soil) is extracellular. Assuming that this is not the case, the 

presence of a substantial population of "uncultur-able" microorganisms existing in this most extreme 

environment offers substantial opportunities for further studies of microbial diversity, molecular 

adaptation, and novel micro-bial bioproducts. 
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