Abstract

Introduction: Candidiasis and HIV co-infection may cause increased patient morbidity and mortality due to oropharyngeal or systemic dissemination. Limited information exists on the prevalence, antifungal susceptibility profiles and drug resistance mechanisms of Candida species on the African continent, the highest HIV-affected region globally and home to new and emerging drug resistant Candida species.

Methods: Candida species isolated from the oral mucosa of HIV-positive African patients were found to be resistant to many of the antifungals routinely used in HIV-associated candidiasis. Candida cell membrane fractions were examined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and high performance liquid chromatography mass spectrometry (HPLC/MS) in order to elucidate the cell membrane proteins specifically expressed by antifungal drug resistant isolates.

Results: SDS-PAGE and HPLC/MS allowed for the identification of multi-drug resistance efflux transporter CDR2 proteins and the elucidation of Candida colonization mechanisms and pH-responsive proteins, with significant associations observed between specific drug resistance and the duration of antiretroviral (ART) therapy.

Conclusion: This study provided useful information on the mechanisms of antifungal resistance in Candida species. It also formed the basis for future studies to address the transfer of resistance between Candida species in an oral microbial biofilm.

Introduction

According to the WHO [1], Sub-Saharan Africa has the highest rate of HIV infection globally (71%), with Candidia co-infection contributing to the increased morbidity and mortality seen in immunocompromised individuals.

Access and availability of antimicrobial drugs is often limited in healthcare facilities in most parts of Sub-Saharan Africa while in many parts of Africa, the sale of prescription medications is largely unregulated thereby exacerbating the problem of indiscriminate use and emerging resistance.

Methods

The study sample comprised of 254 African HIV-infected patients who presented at HIV clinics with pseudomembranous plaque on the tongue or visible oral candidiasis. Ethics approval for the study was obtained from the Research Committee at the University of the Western Cape and the study compiled with the Declaration of Helsinki (2013).

Confirmation of Candida species was achieved using conventional routine methods [2] and C. albicans and C. dubliniensis isolates differentiated as previously described [3-5]. Drug susceptibility testing of the isolates was done using the TREK Sensititre® YeastOne™ platform (Thermo Scientific, USA), a CLSI-approved broth micro-dilution method that provides the minimal inhibitory concentration of nine antifungal drugs, including azoles and echinocandins [6]. Proteomic analysis was performed using gel electrophoresis (SDS-PAGE) and liquid chromatography – mass spectrometry (HPLC/MS) [7] and proteins profiles compared between drug-susceptible and -resistant isolates using the Uniprot protein database search.

Results

The isolated species included C. albicans (n=198), C. glabrata (n=36), C. dubliniensis (n=11), Candida tropicalis (n=4), Candida krusei (n=3) and either Candida kefyr, Candida parapsilosis, or Candida lusitaniae (n=2), with Cameroonian patients harbouring double the species of their South African counterparts.

Drug resistance to different classes of antifungals was found to be widespread, especially in the case of azole drugs.

Fluconazole-resistant Candida isolates run on SDS-PAGE expressed proteins with molecular weights consistent with that of tropica (a 24kDa acid proteinase enzyme associated with increased Candida virulence) and exoglucanase (a 44kDa protein involved in host cell surface adhesion). In the case of HPLC/MS, a much more detailed spectrum of fluconazole-resistant related proteins was identified, ranging from multi-drug resistance efflux transporter CDR1 and CDR2 proteins and the elucidation of Candida colonization mechanisms through the action of oxidoreductases that bind to mammalian estrogens, heat shock proteins that bind to human salivary peptides and mediate their fungicidal activity, pH-responsive proteins which may increase the pathogenic ability of the organisms and S-(hydroxymethyl) glutathione dehydrogenase.

Conclusion

The expression of Candida proteins that are related to colonization and pathogenicity mechanisms were found in most Candida species, with resistant species expressing further mechanisms of resistance that allow for their survival when exposed to antifungals. This has serious implications for HIV-associated candidiasis in patients on prolonged antiretroviral therapy.

Studies on the formation of Candida biofilms and the use of natural alternatives in combating candidiasis and/or restoring the actions of antifungal drugs rendered ineffective due to drug resistance are currently underway in our laboratories.

References


This material is based upon work supported financially by the National Research Foundation (NRF) of South Africa. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors, and therefore, the NRF does not accept any liability in regards thereto.