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Abstract 

This paper presents a detailed study on the role of various annealing treatments on organic 

poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different 

experimental conditions. A combination of analytical tools is used to study the alteration of 

the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend 

during the annealing process. Results showed that the thermal annealing yields PCBM 

‘‘needle-like’’ crystals and that prolonged heat treatment leads to extensive phase 

separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The 

substrate annealing method demonstrated an optimal morphology by eradicating and 

suppressing the formation of fullerene clusters across the film, resulting in longer P3HT 

fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in 

the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the 

limited diffusion of the PCBM molecules. An effective strategy for determining an optimized 

morphology through substrate annealing treatment is therefore revealed for improved 

device efficiency. 

 

Introduction 

Organic photovoltaic (OPV) solar cells have attracted significant attention due to their great 

potential for large-area, light-weight, flexible, and low-cost devices [1–4]. Recently, OPV 

research has been dominated by the poly(3-hexylthiophene):[6]-phenyl C61-butyric acid  

methyl  ester (P3HT: PCBM) blend reaching power conversion efficiencies (PCEs) of 5–7 % [5, 

6]. Most recently a record PCE of about 8.13 and 8.5 % has been reported [7, 8]. Despite 

recent achievements, improvement in PCEs, stability and lifetime of the devices are 

necessary before organic solar cells become commercially viable [9–11]. The PCE of the solar 

cells based on the P3HT/fullerene system depends strongly on the processing conditions [12] 

and can be improved by increasing the crystalline content of the P3HT. Different 

approaches have been suggested for the optimization of the morphology, such as thermal 

annealing [5, 6, 13–15], solvent annealing [16], electric field treatment [17], the use of various 

solvent additives, e.g., alkanedithiols [18], 1-chloronaphthalene [19], 1,8-diiodooctane [20], 

and nitrobenzene [21], or the use of different solvents [22, 23] to lead to a molecular 
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rearrangement of the spin-coated film. Thermal annealing has been shown to be a critical 

step in the fabrication of P3HT/PCBM solar cells [24]. In most cases to find the optimal 

annealing time and temperature requires many devices with many annealing conditions. 

Differential scanning calorimetric (DSC) has been employed to study the glass transition 

temperature, crystallinity and the melting point of the P3HT; nevertheless,  this  does  not  

provide  a  specific  annealing temperature for best device performance [25]. 

 

Although thermal annealing of the P3HT:PCBM blend  has been reported on extensively, 

little or no comparative studies has been reported on the effect of thermal (in air and 

under argon (Ar) atmospheres) and substrate annealing on the structure, morphology, 

optical, and photovoltaic properties of the P3HT:PCBM blend. Therefore, in this 

contribution we report on the role of various annealing treatments on the organic 

P3HT:PCBM blend by employing thermal (conventional), and substrate annealing 

strategies at various conditions, temperatures, and times. We demonstrate in detail that 

the thermal annealing results in PCBM ‘‘needle-like’’ crystals and that prolonged heat 

treatment leads to extensive phase separation, as demonstrated by the growth in the size 

and quantity of PCBM crystals—this result in lower power conversion efficiencies. We 

also emphasize that the substrate annealing method leads to optimal morphology which 

results in the formation of ‘‘fibrillar-like’’ structures by eradicating and suppressing the 

formation of the fullerene clusters across the film, which results in improved efficiencies. 

 

Experiment details 

Sample preparation 

The blended films were prepared according to the following procedure. Regioregular P3HT 

(molecular weight Mn * 64,000 g mol-1, regioregularity [98.5 % and PCBM (99.5 % 

purity) poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and 

chlorobenzene (anhydrous, C99 %) were purchased from Sigma-Aldrich and used as received. 

 

The active layer containing P3HT (*5 mg or a weight percentage of 50 %) and PCBM with 

a concentration of *5 mg was dissolved in 1 mL of chlorobenzene (CB) solution to 

obtain a ratio of 1:1 by weight. The CB solution was used since it has a relatively high 

boiling point (111.0 °C), and because spin-coated films must have some remaining solvent 

for controlling the growth rate of the films. The solution was stirred overnight on a 

hotplate at 50 °C to attain a complete dissolution. The thin films were obtained by spin-

coating the constituents on top of ultra-sonically cleaned indium tin oxide and silicon 

substrates. Film thicknesses were measured using spectroscopic ellipsometry (Table 1). The 

annealing process was carried out according to the following schemes: (i) films were 

annealed at different conditions (in air and Ar atmospheres) at 80–160 °C for 15 min, (ii) the 

temperature was fixed at 140 °C   and   measurements   were   taken   over   time (5–30 

min) to find an optimal annealing time, and (iii) the substrates were annealed at 80–160 °C 

on a hot plate in air for 15 min, prior to spin-coating the photoactive layer to control the 

evaporation rate of the solvent. In this experiment the Ar gas was allowed to flow at 200 

sccm. 
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Solar cells were fabricated by means of hot-pressing. The counter electrode of the cell 

consisted of an aluminium coated indium tin-oxide (ITO)/glass substrate. The ITO/ 

PEDOT:PSS/P3HT:PCBM acted as the working electrode and was placed at an appropriate 

displacement on top of the glass/ITO/Al counter electrode. The two electrodes were sealed 

using 25 lm-thick Surlyn® and applying a pressure of 1 MPa for 2 min at 100 °C using a 

hydrostatic pressurizer with hot plates. 

 

Characterization methods 

X-ray diffraction (XRD) patterns of the annealed films were recorded using a Panalytical 

X’pert PRO PW 3040/60 X-ray diffractometer with a Cu Ka (k = 0.154 nm) 

monochromated radiation source, operating at 45.0 kV and 40.0 mA. Data were recorded in 

the 2h range of 1–25° with a step size of 0.02°. All measurements were carried out at room 

temperature. The morphology of the annealed films was  measured  using  AFM  (Digital  

Instruments,  Veeco Nanoscope IV Multi-Mode) in tapping mode, and a high resolution 

scanning electron microscopy (HR-SEM, Auriga ZEISS), which was operated at 2 kV. For 

polarised optical microscopy (POM) analysis, spin-coated thin films were placed  between  

two  covering  glasses  and  placed  on  a Linkam hot-stage (Linkam Scientific Instruments 

Ltd, UK), mounted on a POM instrument. 

 

 
 

A UV/Visible spectrophotometer (Perkin-Elmer Lambda 750 UV–Vis) was used to 

characterize the absorption properties of the P3HT:PCBM layer in the 200–900 nm 

wavelength range at room temperature. The photoluminescence (PL) measurements were 

carried out to characterize the P3HT:PCBM blended films using a Jobin–Yvon NanoLog 

spectrometer. The emission was detected with a Jobin–Yvon PMT detector. Ellipsometry 

measurements were performed using a Woollam J.A., M-2000  variable  angle  

spectroscopic  ellipsometer  with rotating analyzer, VASE. The ellipsometric angles Ψ and Δ 

were obtained for variable incidence angles by measuring the complex Fresnel reflection 

coefficients rp and rs 
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Measurements    were    obtained    in    the    range    of 250–1000 nm at room temperature 

for multi angles of incidence (AOI) (55–70°). For simplicity we display spectra only at 

70° AOI since they behave similarly at different AOI. The films were regarded as a 

homogeneous material with film thickness modelled using a Cauchy model [27]. The 

experimental data were fitted to obtain the optical functions of the blends using a Lorentz 

model. Model parameters were obtained by minimizing the error function which is defined 

by the following equation [28]: 

 

 
 

where MSE is the mean square error, Ψexp, Δ exp are the measured values and Ψcal, 

Δcal  are the calculated values, N is the number of wavelengths at which measurements 

were performed, and M is the number of parameters used in fitting. The current–voltage (I–

V) characteristics were measured using a Keithley 4200 Semiconductor Characterization 

System. The devices were irradiated at 100 mW cm-2 using a  xenon  short  arc  lamp-based  

Sciencetech  SF150  solar simulator with a power of 150 W. It should be noted that for 

consistency, all the as-prepared results were kept the same in order   to   compare   the   

results   measured   at   different conditions. 

 

Results and discussion 

X-ray diffraction 

The structural analysis of the P3HT:PCBM films annealed at different conditions (air, Ar 

and substrate annealing) was obtained by XRD. Figure 1 illustrates the effect of different 

annealing conditions on the structure of the P3HT:PCBM thin films. The as-prepared film 

shows a weak diffraction peak at 5.35°, which is associated with the (100) reflection of the 

P3HT. This peak corresponds to the a-axis orientation, with the main polymer chain 

parallel and the side chains perpendicular to the substrate [29]. It is observed that the 

films annealed at different temperatures in air and Ar  atmospheres  result  in  improved  

diffraction  peaks, indicating an improvement of the degree of crystallization of the P3HT 

structure [30]. However, annealing at higher temperature (150 °C) demonstrated a 

decrease in the diffraction peaks of both films annealed in air and Ar atmospheres due to a 

slight disordering in the P3HT structure. It is interesting to point out that the substrate 

annealed films reveal sharper diffraction peaks compared to the thermally annealed films, 

indicating enhancement in the crystallite sizes (Fig. 2), estimated with the Scherrer 

formula [31]: 

 

 
 

where λ  is the wavelength of the X-rays, B2h  is the full width at half maximum intensity 

(FWHM) and θ is the diffraction angle. 
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Atomic force microscopy 

To determine the optimal morphology and the phase separation between the P3HT and 

PCBM, the films were annealed at different temperatures and times. Measurements were 

taken over time to find an optimal annealing time. The topography of the films was 

determined by the AFM technique. AFM images of the polymer blended films revealed the 

surface morphology variation of the P3HT:PCBM as a function of annealing temperature. 

It is evident that the height image (Fig. 3a) of the as-prepared film reveals small PCBM 

domains which are distributed evenly across the film. It can be seen that when the film is 

annealed at 80 °C small ‘‘needle-like’’ crystals and PCBM clusters are observed, Fig. 3b. 

However, when the P3HT:PCBM film is annealed at 140 °C (for 15 min), the size of the 

‘‘needle-like’’ crystals increases as shown in Fig. 3c. The results also revealed that the 

‘‘needle-like’’ crystals grow at an early (for 5 min) annealing stage (results not shown). This 

indicates that the crystallization process starts rapidly during the first stages of the thermal 

annealing process. As high-density P3HT crystals start to form, pathways between the 

polymer’s crystallites are created, which facilitate the diffusion of the PCBM molecules. It 

is evident from Fig. 3d that prolonged (30 min) heat treatment results in extensive phase 

separation, as demonstrated by the large growth and quantity of the PCBM crystals. At 

longer annealing times the P3HT chains become soft and flexible, and the surface of the 

blended film becomes flatter than that at the shorter annealing time. 
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Hence, the PCBM particles are aggregated easily inside the soft P3HT, thus resulting in a 

large extent of phase-separation [32]. It is further observed that at 150 °C, the growth and 

quantity of the PCBM crystals improves (Fig. 3e). Swinnen et al. [33] noted that the spatial 

distribution and dimensions of PCBM crystals can be tuned by controlling the P3HT:PCBM 

blend ratios and annealing conditions. Bull et al. [34] observed the formation of 

mesoscopic PCBM crystallites in the  solvent annealed  bulk  heterojunction layers and 

concluded that the formation of large PCBM crystallites does not improve the device 

efficiency. They postulated that higher device performance can be obtained by inhibiting 

the formation of larger PCBM crystallites. 

 

To further investigate the effect of temperature, the substrate annealing strategy was 

carried out at different temperatures. As depicted in the height and phase images, Fig. 4a, 

b, the substrate annealed film at 80 °C reveals a possible growth of the ‘‘fibrillar-like’’ 

structures across the film surface which is related to P3HT polymer [35]. 
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It is interesting to note that after annealing the  substrate  at 100 °C, the growth and size of 

the ‘‘fibrillar-like’’ structures increase. Moreover, at 120 °C, as shown in Fig. 4e, f, larger 

and longer fibrillar structures are predominantly observed across the film. We suggested 

previously that these fibrillar structures are induced by a large free volume in the 

blended films after substrate annealing, and that they form due to early crystallization 

from the presided crystals on a hot substrate, before spin-coating the solution, due to the 

controlled evaporation rate [36]. Therefore, in this study we validate that the formation of 

the fibrillar structures is induced by a hot substrate, meaning that a simple drop-casting 

method can result in the formation of fibrillar structures as shown in the supplementary 

information, Fig. A1. However, the growth of these ‘‘fibril-like’’ structures is slightly limited, 

due to the improved formation of the PCBM clusters induced by a drop  casting  method,  

on  a  hot  substrate  allowing  the PCBM molecules to diffuse easily across the film 

resulting in larger PCBM clusters [32]. 

 

However, it is noteworthy to mention that the spin-coating technique reduces the diameter 

and rearranges the order of the fibrils and suppresses the growth of the fullerene clusters. 

The pre-annealed substrate, 140 °C, with the film deposited thereafter, demonstrates 
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longer fibrils (and with smaller diameter) that are even  more locally ordered and better 

connected with neighbours as shown in Fig. 4g, h. Furthermore, the increased length of the 

nanorods should reduce the number of required inter-rod hops to traverse the film. This 

denotes that, annealing at 140 °C (or 150 °C, results not shown) results in further 

suppressed diffusion of the PCBM molecules into the blend under the substrate annealing 

condition, and subsequently restricts any growth of the PCBM crystals/clusters, and thus 

results in the formation of fibrils that are clearly resolved in both the topography and phase 

signals across the entire area of the scan. 

 

 
 

To quantitatively investigate the changes in the morphology, the surface roughness (rms) 

values for the thermally (air and Ar atmospheres) and substrate annealed films were 

measured as shown in Fig. 5. As depicted in Fig. 5a, b, it is evident that the rms 

roughness and the PCBM average diameter of the thermally annealed films (air and Ar) 

increases linearly due to larger PCBM needles, resulting in a macroscopic-phase separation 
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between the polymer and PCBM. It should be noted that the average diameter of the 

PCBM ‘‘needle-like’’ crystals was estimated using SEM and AFM analysis. For substrate 

annealed films in Fig. 5a, a moderate increase for rms roughness is observed. Such a 

restrained increase in rms roughness is probably due to the controlled evaporation of the 

solvent, resulting in the suppressed diffusion of PCBM molecules. Campoy-Quiles et al. [37] 

suggested that crystallization of the P3HT chains occurs first, followed by the diffusion of 

PCBM molecules to nucleation sites where the PCBM agglomerations grow. From our 

observations we can conclude that annealing the substrate is an unconventional method 

whereby highly ordered and crystalline P3HT can be obtained. This indicates that highly 

ordered P3HT crystals suppresses or retards the diffusion of PCBM molecules into the 

blend and subsequently limits the enlarge growth of the PCBM crystals. Therefore, this 

method provides an alternative approach to produce improved efficiencies. 

 

Polarized optical microscopy 

Polarized optical microscopy (POM) was used to monitor the surface morphology of the 

blended films spin-coated from CB. Figure 6 shows the microscopic images of the 

P3HT:PCBM films annealed at different temperatures and times. The annealed film at 120 

°C (Fig. 6b) reveals a change in its optical clarity, and ‘‘needle-like’’ shaped crystals with 

different densities grow out to form a 2D network of PCBM needles. When the film is 

annealed at 140 °C, for 5 min, the number of ‘‘needle-like’’ crystals increases (Fig. 6c). 

The observed coloured halos around the needles are attributed to the light interference 

originating from the changes in the film thickness, and is due to the PCBM-depleted regions 

[38, 39]. Despite the difference in the density of crystals formed, the individual crystals are of 

similar shape. The resilient disparity in the crystal density offers insight into the 

nucleation of the crystals, signifying that the PCBM crystals nucleate at the film 

surfaces/interfaces. The crystal density contrasts indicate that the two surface/interfaces of 

the film are not equivalent in terms of crystal nucleation. It was demonstrated by Campoy-

Quiles et al. [37] that the PCBM tends to be more concentrated at the glass/film interface 

than at the film/air surface. Thus, the nucleation of the PCBM crystals is correlated with 

the PCBM concentration at the film surface/interface. Now, the growth of the crystals 

requires unobstructed space, sufficient energy and temperature to expand. Bjö  rströ m et 

al. [40] and Wang et al. [41] reported that the PCBM and P3HT have surface energies of 38.2 

and 26.9 mN/m, respectively. As a result, the PCBM concentration is reduced at the 

film/air surface due to its higher surface energy, and therefore the PCBM concentration 

and density of the crystal nucleation sites is low. However, the film/air surface as well as the 

higher annealing temperature easily yields space for crystal growth due to improved 

volume expansion, induced by the soft chains of the polymer and so these nucleation sites 

always lead to observed crystals [32]. At annealing times of 15 min, the shape of the 

crystals change and their ends become sharper, as shown in Fig. 6d. It is evident from Fig. 6e 

that ‘‘needle-like’’ crystals agglomerate at longer annealing times (30 min) at the micro-

meter scale resulting in a degradation of the morphology due to the overgrowth of the 

PCBM clusters. 
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Optical microscopy micrographs of the annealed films in Ar atmospheres, Fig. 7, 

demonstrate small ‘‘needle-like’’ crystals across the film. Fewer amounts of these needles are 

observed for the film annealed at 80 °C. However, upon increasing the annealing 

temperature to 120 and 140 °C, the amount of these needles increases, indicating that their 

growth depend on the temperature. Moreover, the halo surrounding the PCBM clusters is 

still noticeable on these films. It is worthy to note that an enormous growth of these needles 

is slightly suppressed (see Fig. 8b, supplementary information Fig. A2) as compared to the 

films annealed in air, probably due to the flow of the Ar gas that minimises the diffusion of 

the PCBM molecules. However, up on annealing at 150 °C or (160 °C), number of the 

needles increases (see supplementary information Fig. A3) [32]. 
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Scanning electron microscopy 

To supplement the POM results, HR-SEM analysis was carried out to monitor the surface 

morphology changes of the P3HT:PCBM blend as shown in Fig. 8. SEM micrographs (Fig. 

8a) of the thermally annealed films in air at 140 °C  (15 min) reveal ‘‘needle-like’’ crystals  

with different  densities.  It  is  evident  from  the  inset  that  these ‘‘needle-like’’ crystals are 

in the diameter regime of 10–15 lm and length of several micrometers, some up to 30 lm. 

Moreover, an increase in annealing temperature showed that ‘‘needle-like’’ the diameter and 

length crystal increases (see supplementary info A3). Films annealed in Ar at 140 °C, 

demonstrate thinner ‘‘needle-like’’ crystals with diameter regime of about 2 lm and length 
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of 10 lm, as shown in the inset of Fig. 8b. The substrate annealed P3HT:PCBM   film   at   

140 °C   (Fig. 8c),   demonstrates fibrillar structures across the film which are up to 500 nm 

in length. It can be seen from Fig. 8c, that the fibrillar structures are randomly 

distributed across the film indicating improved connectivity. 

 

Ultraviolet–Visible spectroscopy 

Photon harvesting is the main key issue to obtain high performance in polymer solar 

cells. Figure 9 depicts the UV–Vis absorption spectra of the P3HT:PCBM blend annealed 

at different temperatures and times, as well as through the substrate annealing method. It 

is observed from Fig. 9a that the annealed films in air show a trivial red-shift and an increase 

in intensity of the absorption spectra. It is further visible from Fig. 9b that the thermally 

annealed films in air at different times demonstrate that annealing at shorter times results 

in improved absorption. Longer annealing time (30 min) reveal a decrease in absorption 

and a blue-shift in the absorption spectra as compared to the films annealed at shorter 

times. This indicates that the crystallization process starts rapidly at the first stages of the 

thermal annealing process. 
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However, substrate annealed films in Fig. 9c reveal a higher degree of P3HT absorption 

which favours more photon harvesting and better device performance. This is evident 

from a relatively large red-shift of the spectrum in the energy range of P3HT absorption, 

and a reduction in the optical band-gap (Fig. 10) because of an escalation of effective 

conjugations. Stronger vibronic shoulders at the  shorter-energy side of an absorption 

maximum due to the enhanced interchain interaction [42] also contribute to this. 

 

Spectroscopic ellipsometry 

The refractive index and extinction coefficient, n and k, of the polymer blend, were 

obtained by calculating the pseudodielectric functions of P3HT:PCBM films at various 

angles of incidence (AOI), together with data of Ψ and Δ (see supplementary info, Fig. A4). 

The fits displayed excellent agreement between the model calculation and the experimental 

data, as confirmed by low MSE values listed in Table 1. Figure 11 shows the calculated  

extinction coefficient (k) of the P3HT:PCBM blend films of the as-prepared and annealed 

films at various conditions. It is clear from Fig. 11a, that the as-prepared P3HT:PCBM film 

reveals five optical absorptions at the wavelengths of 343, 384, 515, 553 and 600 nm, 

respectively. The first two electronic transitions at shorter wavelengths originate from the 

PCBM [26, 43]. The optical absorption at 515 and 553 nm is considered to arise from the 

0–0 transition and the 0–1 transition of an intrachain exciton [26, 44], whereas the 

transition around 600 nm is attributed to the singlet excitonic transition of the P3HT 

conjugated polymer [45]. The singlet exciton is an electron–hole pair with spin 0, bound 

by Coulomb attraction. It is observed from Fig. 11a that the thermally annealed films in air 

reveal a red-shift of the extinction coefficient and an improved absorption. Upon increasing 

the annealing temperature to 150 °C, extinction coefficient decreases slightly. However, the 

annealed films in Ar atmosphere (Fig. 11b) show improved absorption and pronounced 

shoulders at 605 nm as compared to films annealed in air. Karagiannidis et al. [46] 

demonstrated that the extinction coefficient of the P3HT:PCBM film increases with 

annealing time. It is of interest to note that the optical absorption spectrum related to 

PCBM is minimised for the substrate annealed films (Fig. 11c). These results are 

consistent with the AFM analysis, where no (or less) PCBM clusters were observed. It is 
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further observed that the extinction coefficient in Fig. 11c is more enhanced as compared to 

thermally annealed films. The extinction coefficient (at 550 nm) for thermally annealed (air 

and Ar) and substrate annealed films at 150 °C is centred at 0.137, 0.151 and 0.167, 

respectively. This excitonic enhancement is related to the increase of the P3HT 

crystallization, which increases the inter-chain interaction [37, 47]. This is attributed to 

the controlled growth or restricted diffusion of the PCBM molecules induced by substrate 

annealing [36]. 

 

 
 

 
 

Figure 12 demonstrates the refractive index curves of the P3HT:PCBM films. The peaks of 

the refractive index are red-shifted due to the enhanced intermolecular order from flatter 

molecular conformation and reduced torsion of the P3HT after annealing. The results 
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demonstrate that the refractive indexes of the films annealed in Ar (Fig. 12b) are slightly 

improved as compared to the films annealed in air (Fig. 12a). This is due to the reduction 

in the diffusion of the PCBM molecules, caused by the Ar flow, which prevents the 

formation of larger PCBM clusters. Moreover, the substrate annealed films shown in Fig. 

12c reveal larger refractive index as compared to films annealed in air and Ar, 

respectively. The increased refractive index of the substrate annealed samples is due to the 

increased density of  the  P3HT  crystallization,  induced  by  the  controlled evaporation rate 

of the CB solvent. 

 

 
 

Photoluminescence spectroscopy 

Photoluminescence measurements of the films annealed at various conditions provide 

further evidence of the formation of polymer crystallites, as shown in Fig. 13. It is observed 

that the degree of PL quenching decreases for the annealed films [48] (air and Ar 

atmospheres), as depicted in Fig. 13a, b. Since PCBM is known to quench the PL of P3HT 

effectively, therefore, the increase in PL intensity suggests that the interface area between 

the polymer and PCBM is decreasing. This is due to the fact that the PCBM molecules are 

diffused away from the P3HT polymer chains during annealing, so that the interaction 

between the P3HT polymer chains and PCBM molecules is reduced, leading to a recovery 

of the PL emission of P3HT [49–51]. 
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The more significant increase in the PL intensity of the P3HT:PCBM blend after 

annealing indicate a higher degree of phase separation between  the P3HT polymer 

chains and PCBM molecules. This can be well explained by SEM analysis, as shown in 

Fig. 8a, b. Larger PCBM needles are observed across the film offering an inappropriate 

morphology for charge transport. Therefore, most of the photogenerated holes simply 
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recombine with electrons which transport through the polymer-rich matrix phase leading to 

a higher emission. 

 

It is evident from Fig. 13c that the substrate annealed films show reduced PL intensity, 

indicating a charge transfer between the polymer and PCBM [51]. This charge transfer is more 

significant for the substrate annealed film at 140 and 150 °C. A quenching of the PL 

intensity provides direct evidence for exciton dissociation, and thus an efficient PL 

quenching is necessary to obtain efficient organic solar cells [52]. PL quenching suggests an 

increase in the interfacial area between the polymer and PCBM materials in the active layer. 

Moreover, a significant red-shift from 585 to 610, 620 and 625 nm for the as-prepared and 

the substrate annealed films at 100, 120 and 140 °C, as well as 150 °C showing 

distinguishable vibronic features is observed. This red-shift in the PL spectra is attributed to 

the reorganization of the polymer chains and PCBM particles during annealing resulting in 

a homogeneous phase segregated interpenetrating structure of the donor and acceptor 

molecules. This facilitates exciton dissociation within the P3HT:PCBM heterojunction, 

stimulating additional quenching of the PL emission from the P3HT chains. 

 

Photovoltaic properties 

In order to compare the device performance for different annealing conditions, the 

P3HT:PCBM devices were fabricated. The photovoltaic properties were studied  by J–V 

characteristics under AM 1.5 G condition with illumination intensity of 100 mW/cm2 and 

the obtained results are presented in Fig. 14 and Table 2. It can be seen from Fig. 14a that 

the short-circuit current density (Jsc) factor (FF) increase upon annealing the device at 

100°C in air. 
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With a further increase in annealing temperature, 140 and 150 °C, the Jsc, and FF improve, 

resulting to a PCE of about 1.42 and 1.65 %, respectively. The restricted PCE for the films 

annealed in air is probably due to larger PCBM needles offering an inappropriate 

morphology for charge transport. Parlak [53] demonstrated that higher quantities of 

PCBM needles lead to less efficient charge transport and lower short current of the polymer 

solar cells. It is interesting to note that the annealed device under Ar atmosphere at 150 °C 

(Fig. 14b) shows improved efficiency as compared to the device annealed in air. This is 

probably due to the improved crystallization induced by Ar flow which prevents the 

formation of larger PCBM clusters across the film. Moreover, it is worthy to note that the 

substrate annealed devices (Fig. 14c; Table 2) at 150 °C revealed   more   improved   PCE   

of   about   2.88 %,   as compared to  the  devices  annealed in  air  and  Ar  atmospheres. 

This is due to the improved interfacial area, light absorption and the charge transportation 

property of the highly ordered P3HT crystallites [54] induced by substrate annealing 

resulting in a well-ordered morphology as depicted in Fig. 4. 

 

Based on the various annealing methods described above, we conclude that the substrate 

annealing strategy facilitates the charge separation and transport to the electrodes, and 

enhances the formation of an ordered structure as indicated by vibronic peaks in the 

absorption spectra (Fig. 9c). Therefore, higher absorption, 3D interpenetrating networks 

and the increase in the carrier mobility are conceivable [36]. This strategy can provide a 

feasible solution for controlling the crystallization rate of the fullerene molecules by 

suppressing the formation of larger fullerene crystals, which will therefore result in the 

evolution of well-ordered bulk-heterojunction (BHJ) morphology such that improved 

efficiencies are conceivable. 
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Conclusion 

In summary, a possible method for evaluating optimal annealing temperature and annealing 

time of P3HT:PCBM through conventional and substrate annealing prior to deposition of 

the active layer was developed. The substrate annealing strategy resulted in a more 

favourable morphology than the thermal annealing in air and Ar atmospheres. 

Conventional annealing and prolonged heat treatment resulted in extensive phase 

separation and incomplete charge transfer, as demonstrated by the growth in the size and 

quantity of PCBM ‘‘needle-like’’ crystals, resulting in a degradation of the morphology. 

This was attributed to the relatively fast diffusion and aggregation of the PCBM molecules 

during P3HT crystallization. The substrate annealing of the blended films demonstrated 

formation of a well-ordered morphology, revealing fibrillar structures. This resulted in 

improved optical constants, PL quenching and a decrease in the P3HT bad-gap due to the 

suppressed diffusion and aggregation of the PCBM molecules. These results demonstrate 

an effective strategy that determines an optimized annealing treatment approach to 

produce improved efficiencies through substrate annealing. Consequently,  a  power  

conversion  efficiency  of  about 2.88 % was attained through this strategy. 
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