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Abstract

In this paper we present a robust numerical method to solve several types of European style
option pricing problems. The governing equations are described by variants of Black-
Scholespartial differential equations (BS-PDES) of the reaction-diffusion -advection type. To
discretise these BS-PDEs numerically, we use the spectral methods in the asset (spatial)
direction and couple them with a third -order implicit -explicit predictor -corrector (IMEX -PC)
method for the discretisation in the time direction. The use of this high-order time integration
scheme sustains the better accuracy of the spectral methods for which they are well-known.
Our spectral method consists of a pseudospectralformulation of the BS-PDEsby means of an
improved Lagrange formula. On the other hand, in the IMEX -PC methods, we integrate the
diffusion terms implicitly whereasthe reaction and advection terms are integrated explicitly.
Using this combined approach, we first solve the equations for standard European options
and then extend this approach to digital options, butter fly spread options, and European calls
in the Heston model. Numerical experiments illustrate that our approach is highly accurate
and very efficient for pricing financial options such asthose described above.

1. Introduction.

In this paper we consider a class of European style options described by Black-Scholes
equations [7]. In general, closed-form analytical solutions of some of these Black-Scholes
PDEs do not exist and therefore one has to resort to numerical methods in order to solve
them. In the literature, the following four main families of methods have been developedand
extensively used for Black-Scholes PDEs: lattice methods [10, 21, 32], Monte Carlo
simulations [5, 13 41, 45], finite difference (FD) methods [11 42, 59], and analytical
approximations [20, 27, 35]. The first two are classified as stochastic simulation methods
since they approximate the underlying processdirectly. The other two methods are usually
performed on the Black-Scholes PDEs with appropriate approximate boundary conditions.
Popular techniques such as lattice methods can be very efficient for valuing simple calls
and puts, however, they become less efficient when valuing more complicated options. FD
methods are more desirable over binomial (or trinomial) trees becausethe transition from a
differential equation to a difference equation is easier when the grid/mesh is simple and
regular. This offers more flexibility as compared to the lattice methods. However, it is well
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known that the kink at the strike price in the payoff function causeslower-order convergence
when higher-order FD schemesare applied to solvetheseoption pricing PDEs.

Numerous ideas have been proposed to enhance the convergenceof FD methods. Clarke and
Parrott [19] used a coordinate transformation, stretched the region around the strike price
where there is a discontinuity in the first derivative of the final condition, and found that
the accuracy of their implicit FD method was improved. Another way of obtaining more
grid points around the discontinuity is to use adaptive grid points as in Persson and von
Sydow [44]. Recently, Oosterlee et al. [43] obtained a fourth -order accurate solution for
European options using the grid stretching transformation [52] in combination with the
fourth -order spatial discretisation basedon a five-point stencil and the fourth -order backward
differencing formula (BDF4) for time discretisation. More recently, Tangman et al. [50]
considered the higher-order compact (HOC) schemes and used a grid stretching that
concentrates the grid nodesat the strike price for the European options.

In this paper we will explore spectral methods to discretise the option pricing problems in
the asset(spatial) direction. Spectral methods are a class of approximation methods that are
well known for the task of solving partial differential equations [17]. For smooth enough
solutions, they are exponentially convergent in the number of degrees of freedom
[16, 24, 49]. Although widely used in fields such as fluid mechanics, their use in option
pricing have been rare. The main drawback for their direct application to option pricing is
that the payoff functions for typical options or the initial conditions in the governing PDEs
are nonsmooth. Thus, the collocation approximations are reduced to low-order accuracy,
making them not competitive with existing finite difference methods. The literature is rich
in ideas for overcoming this problem. One approach is to regularise the initial condition as
proposed by Greenberg [28]. Suh [47, 48] used the Broadie-Detemple [12] approach and
obtained a significant improvement of the pseudospectral method over the finite difference
methods (FDM) while solving PDEs and PIDEs (partial integro -differential equations) in
finance. Tangman et al. [51] presented a new approach which consists in dividing the set of
Chebyshevpoints into two at the strike price E. To this end, the new set of points will cluster
the grid nodes not only at the boundaries but also at the singularity located at the strike price
for a European option. Using such a strategy, the Chebyshev collocation method achieved
fourth -order accuracy. Zhu [60] proposed a spectral element method based on the
regularisation approach of Greenberg[28] to price European options with and without jumps
in one and two dimensions. He successfully recovered the exponential accuracy of spectral
methods.

To discretise the problem in time direction, we use a class of implicit -explicit (IMEX)
methods. These methods have been used in conjunction with spectral methods [16] to solve
problems involving different types of PDEs. Ascher et al. [4] constructed families of first-,
second, third -, and fourth -order IMEX multistep methods to solve convection-diffusion
equations. Ruuth [46] used IMEX multistep methods and efficiently solved reaction-
diffusion problems in pattern formation. Recently, Hundsdorfer and Ruuth [34] extended
the construction of IMEX multistep methods with general monotonicity and boundedness

2



properties to hyperbolic systems with stiff source or relaxation terms. IMEX multistep
methods also appear in the field of option pricing. In particular, for jump-diffusion PIDE,
Almendral and Oostelee [2] proposed a secondorder backward differentiation formula
(BDF). Feng and Linetsky [22] proposed an extrapolation approach in combination with the
first-order accurate IMEX -Euler scheme. Their experiments show that the extrapolation
method improved significantly over the first-order IMEX -Euler schemein solving the jump -
diffusion PIDE. Another family of IMEX schemesis basedon Runge-Kutta methods. Ascher
et al. [3] constructed IMEX Runge-Kutta methods for solving convection-diffusion -reaction
problems. De Frutos [25, 26] introduced IMEX -RK methods asan alternative to other existing
time integration methods for pricing options. We refer the interested readersto [3, 8, 14, 15,
25, 36] for recent developmentson IMEX -RK methods.

The class of IMEX methods that we will be using belongs to the family of IMEX-PC
schemes. These are successfully applied to solve stiff PDEs. The main idea is to split the
basic multistep IMEX into predictor -corrector (PC) schemes. Cash [18] used this idea to
construct a new class of multistep methods. By splitting the BDF, he obtained a new BDF
which has considerably better stability than the standard BDF while maintaining the same
accuracy. Voss and Casper [55] used a split version of the Adams-Moulton formulae as a
novel family of PC schemes forstiff ODEs. Vossand Khaliq [56] considered the e-methods in
alinearly implicit form asthe predictor and derived an implicit second-order PC scheme for
reaction-diffusion problems. Recently, Li et al. [40] adopted the strategy found in [4] to
construct a family of higher-order IMEX -PC schemes for nonlinear parabolic differential
equations. Their numerical results show that these IMEX -PC methods have a significant
better stability than those found in [4]. More recently, Grooms and Julien [29] derived a
fourth -order IMEX -PC scheme. Their method used the fourth -order total variation IMEX
schemefound in [34] as a predictor and the fourth -order BDF scheme as a corrector. To the
best of our knowledge, IMEX -PC methods have not been used to price financing options,
exceptin [37] where asecond-order IMEX -PCschemeis usedto price American options.

In this paper we present a spectral method based on the improved Lagrange formula to
compute European, digital, and butterfly spread options. Our method is coupled with a
third -order IMEX -PC for time integration. The reason for using higher-order IMEX -PC is
that we expect our spectral method to provide exponential accuracy,which is usually affected
by lower-order temporal schemes. We then extend this approach to solve a two-dimensional
option pricing problem described by the Heston model.

The rest of this paper is organised asfollows: in Section 2, we describe the formulation of the
option pricing problem in the Black-Scholes framework. In Section 3, the spatial
approximations of the pricing equations using spectral methods are considered. In Section 4,
we review the IMEX -PC methods for solving the semi-discrete system resulting from the
spatial discretisation. The overall method is analysed in Section 5. Numerical experiments
are conducted in Section 6. The extension of the proposed approach to a two-dimensional
caseis given in Section 7. Finally, in Section 8 we present some concluding remarks and
scopefor future research.



2. The mathematical model.

Consider the financial market model given by the following tuple M= (Q‘F‘ P, (FT)TZU'(S")TE“)

where Y is the set of all possible outcomesof the experiment known asthe sample space,F is
the set of all events, i.e., permissible combinations of outcomes, Pis amap F Y [0, 1] which
assigns a probability to each event, F(J is a natural filtration, and SU is a risky underlying
asset price process. The triplet ( YF, P) is defined as a probability space.Let Z(Jbe a P-
Brownian motion, 0 > 0 the volatility of the underlying asset, u > 0 the expected rate of
return, r > 0 the interest rate, and G > 0 the continuous dividend yield. Without loss of
generality, Y, U r, and U are assumedto be constant. Then under the equivalent martingale
measure Q, the stochastic process of the asset price SU is assumedto follow the geometric

Brownian motion

dS,

(2.1) <

= pdt + odZ.

Now, consider a portfolio that involves short selling of one unit of a European call option and
long holding of agj units of the underlying asset. The portfolio value D£SU), U at time Uis

then given by
(2.2) M=-V+A,S,,

where V. =V (Sr, T) denotes the value of the option. The jumpin the value of the portfolio in
onetime stepis

dll = —dV + A,dS..

Note that ) changeswith time U, reflecting the dynamic nature of hedging. SinceV is a
stochasticfunction of SUj,weapply| t tedrsato compute its differential, which gives

ol Vs 1/ 2q2 5217
:dl dr + oV dST_JSTdI

or T 8s; 5 aezm

(2.3) AV

Substituting (2.1) and (2.3) into (2.2) and simplifying, we obtain

AV o252 92V ov av
= |-— - — - . ——— | &8 .
dll o 3 952 + (AT 6).5'.,) ,L.:ST] dr + (AT 657) oS, dZ -

The cumulative financial gain on the portfolio at time Uis given by



(2.4) G(I(S,, 7)) = /D —dV + /DT A.dS;

[ ooV o282 0%V oV
- /0 {_% T2 982 T (Au - E) usu} du

The stochastic component of the portfolio gain stemsfrom the secondterm of (2.4).

— 9V .
Suppose we adopt the dynamic hedging strategy by choosing Au = IS« at all G5u
times u < U. Then the financial gain becomes deterministic at all times. By virtue of no
arbitrage, the financial gain should be the same as the gain from investing on the risk free

—V+8,2%

assetwith a dynamic position whose value equals %39S, 'The deterministic gain from

this dynamic position of the riskless assetis given by

u v
G, = -V +(r—8)S,— | du.
/0 ( Vit (r=9) dsu) u

By equating thesetwo deterministic gains G(IL(S7,7)) and Gr, we have

oV
a5,

oV 0282 92V ]
_or Y (v (r—0)s
ou 2 052 ( V(= 0)S,

). 0<u<T,

which is satisfied for any assetprice Sif V (S,U }atisfiesthe equation

AV 0282 9%V oV
’ +(r— ‘))S(‘Ts V=0, 0<7r<T.
;

or 2 052

The abovepartial differential equation is called the Black-Scholesequation [7].

Now, by a change of variablest = T 1 U(T is the time of expiration), we can rewrite the
aboveequation as

v 1, 0%V av
5 o282 4 (r—86)S— — V.
(2:5) ot =27 9 ggz t(r—0)S55 7

The boundary and the final conditions make the difference between American and
European style options as well as between puts and calls and other types of options. In this
article, we consider European vanilla, binary, and spread options, whose final and
boundary conditions are given in Section 6, where we provide numerical results. We then, in
Section 7, extend this approach to solve a two-dimensional option pricing problem
described by the Heston model.



3. Spectral method for the discretisation in space.

In our spectral discretisation in space, we will be using a class of Lagrange interpolation
formulae. This interpolation is theoretically very powerful and deplored mainly for
numerical practice as reported in many textbooks of numerical analysis [1]. With slight
modifications, the Lagrange formula is indeed of great practical use. This has been noted by
several authors, including Henrici [30] and Werner [58]. Berrut and Trefethen [6] modified
the Lagrange polynomial through the formula of barycentric interpolation and proposed an
improved Lagrange formula. In this section, we review the improved Lagrange formula and
propose a spatial dicretisation of the option pricing problems discussedin earlier sections.

3.1 Lagrange interpolation.
We would like to find the polynomial pN (x) from the vector spaceof all polynomials of

degreeat most N that interpolates the data fj at distinct interpolation points xj,j=0,...,N
e,

pn(j) = fj, §=0,...,N.

Recall that the Lagrange form of pN(x) is ([39])

N
(3.1) pr (@) =) fiti(x), () =
=0

N
I —
L1 S

i — @&
B0,k J k

where the Lagrange polynomial 7 corresponding to the node xj has the property

Ej(i?k) _ {1 j:k__

0 otherwise.

The drawbacks of the Lagrangeformula (3.1) are

1. It takes O(N2) additions and multiplications for eachevaluation of pN (X).

2. A new computation from scratch has to be performed if we add a new pair of
data(XN +1,fN +1).

3. Instability may be presentin numerical computation.

It would be advantageousto modify the formula (3.1) in order to overcome the above short-
comings.

3.2. A modi fied Lagrange formula. Following [6], the Lagrange formula (3.1) can be
rewritten in such a way that pN (x) is computed in O(N) operations. We define Zx), the
numerator of Z in (3.1), as

1 N
(o) = —— [[ (=),
k=0

T — Iy



In addition, if we define the barycentric weight by

1
= —% : .
Hk:ﬂ.k;ej(ij — Tp)

ie.w; =1/¢'(z;). then £; in (3.1) becomes

i=0,...,N,

.u,J

() = {(x)

?_L"J
€T — .EJ

Consequently, the Lagrange formula (3.1) becomes

N

(3.2) pr() = L)Y —2f;.

.'E—.'E}'

=0

3.3. Barycentric formula. The formula (3.2) can be written in a more elegant way. If we
represent the constant function f(x) = 1, we obtain

N N

- SR orers
—x;

=0 =0

Dividing ( 3.2) by (3.3), we get the barycentric formula for pN

PPN =
(3.4) py(z) =

E;’:D T—x;

This is the most usedform of Lagrangeinterpolation in practice. We seethat the formula (3.4)
is special caseof (3.2).

A significant advantage of the spectral collocation method basedon the modified barycentric
Lagrange interpolation is that after the transformation, the derivatives in the underlying
differential equation do not have to be transformed correspondingly as it is usual in other
spectral collocation methods. More details regarding the convergenceand stability properties
of the modified Lagrangeformula are extensively discussedin [6, 33, 57].

3.4. Calculation of the component matrices. Supposethat the solution u of the semi-
discrete version of the PDE (2.5) is representedin the Lagrangeform



N
(3-5) w(a) = uil;(w).
=0

Then the first and the second derivatives of u are given by

N N
(3.6) u'(x) = Z uli(x), u'(x)= Z u b (x).
=0 3=0
The barycentric formula of ¢; is given by
(3.7) Li(z) = #
ZL 0 z—x; x;,_.
Multiplying both sides of (3.7) by @ — x; and simplifying. we get
N T — x; r—x
3.8 ¢; h—— = wy——— .
(.8 J(x)kZ:jomm_mk Wi
Let

N
T —x
s(z) = E Wi —3:1 .
k=0 Tk

Then the first and the second derivatives of (3.8) yield the following equations

(.9) ti(@)s(z) + £;(x)s'(z) = w; (i - i)
1
And
(3.10) 0! (x)s(z) + 265(x) s () + £;(x) " (x) = w; (j - :) .

To find the entries of the first and seconddifferentiation matrices, we solve (3.9) and (3.10) at
X = Xi. This gives

Ji\lv
s(x;) =w;, s§'(x;)= Z wi/(z; —x1), 8"(x;)) = -2 Z wy /(T — ;LL) )
k=0 ki k=0.k#i

When 7 # j we obtain

Jf\.'

a4 I ] ! ] ]_
) =0, e = 00 Gy =2l | S R
T — T Ti = Tj | SF T — T Ti— T
When 7 = j we obtain
Jf\.'
by = =3 ), ) = =3 £,
i i#]



The above can be used for the entries of the first- and second-order differentiation matri ces
D(1) and D(2) which are given by

(1) (2) _

2] 1]

3.5. Chebyshev grid transformations.

Spectral methods are exponentially accurate for smooth problems but in option pricing
problems the initial condition is typically not differentiable and may be discontinuous. It is
known (see,e.g.,[53]) that local grid refinements may improve the accuracynear a region of
singularity and hence improve the overall accuracy of the numerical method. Therefore, a
local grid refinement near the non-differentiable or discontinuous payoff condition seemsto
be a logical choice to retain a satisfactory accuracy. In this paper we use an analytic
coordinate transformati on to stretch grids around strike prices. Following [53], we use the
transformation

G.11) @ =g(z) = a+ Gsinh [bmh—l (1 *3 “) 1% _ sinh~! (“Tﬂ) 1 ;} _

where U is the point of singularity in the Chebyshevdomain [T 1, 1], & is a parameter that
determines the stretching rate around U, and zk = cos(® k / )Nare the ChebyshevGauss

Lobatto (CGL) collocation points.

In the caseof multiple regions of singularity, it is possible to combine maps with a single point
of singularity in order to concentrate points around these regions. Supposethat we have a
collection of maps hk(z), k = 1,...,n, which cluster points around regions of rapid changeuk
with distribution parameters ak. We define such maps by

(3.12) G(z) = H }(2).
where
H(z)= Zakhgl(;), Zak =1, ax > 0.
k=1 k=1

In the case of butterfly spread options, we have three singularities and therefore we will have

(3.13) H(z)= (illzfl(:) + [22]?;1(:) +a3h§1(;‘). ay +ag +asz =1, ay,as,as > 0.

Maps such as (3.12) are nonlinear and have to be solved numerically using generic nonlinear
eqguation solvers.



3.6. Application to the Black -Scholes PDE.

The Black-Scholes PDE (2.5) is discretized in the asset (space) direction by means of a
modified barycentric Lagrange collocation (BLC) approach. Let x = g¢(z ) be the
transformed Chebyshev points. Then the first stepis to transform xN [T 1,1]into SN [Sm,
SM] that better suits the option at hand. Wedo this through x = (2ST (SM T Sm))/(SM +
Sm) where Sm and SM are the minimal and the maximal values of the underlying asset.
Now writing V (S,t) = u(x,t), the PDE (2.5) together with its initial and boundary conditions
yield

up = p)ug, + q(a)uy + ru,
w(e,0) =, —1< 0 <1,8,<8 <8y,
u(—1,t) = ug, u(l,t) = up, 0<t<T,

where

Substituting ( 3.5) and (3.6) yields the following system of nonlinear ODEs

N N

N
ug(x,t) = p(x) Z uk(t)lf; (x) + q(x) Z uk(_l‘.)(:k (x) +r Z wg ()0 (),
k=0

(314) 7j=0 k=0

g = u(—1,¢), uy =u(l,7).

In order to write ( 3.14) in matrix form, we introduce the following matrix and vector notation

u—= [U-l, U, ..., UN_le.

1 1 K o .
p® — (D). DY = £(xs), ij=1,... . N—1,
p® = (D). D@ = ¢ (x,), ij=1,...N-1,
P = diag(p(x;)), Q = diag(q(x;)), i=1,....1 N — 1.

moreover | denotesan (N1 1)x (N 1 1)identity matrix. P and Q are diagonal matrices
whose entries are p(xi) and q(xj),i = 1,2,...,N T 1, respectively. Consequently, (3.14) can
beexpressedasaninitial value problem of the form

(3.15) % =Au+g(t.u). u(0)=um,

where
A=pPD®
o(t,u) = |QDWu — rTu + (p(4~,;)p§§> +q(z) DY + ,-11-0) o

T
+ (P(M)Di(?v) Jrq(;i'i)Di(}V) + ."IiN) UN] .
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4. Implicit -explicit predictor -corrector meth od for the discretisation in time.
The system of ODEs (3.15 can be solved by means of standard ODE time integrators. The
main challenge when dealing with this type of problems is that explicit time integrators are
inadequate becausethe diffusion term is typically stiff and necessitates excessively small
time steps. On the other hand, the use of stiffly accurate implicit time integrators which are
unconditionally stable is practically time consuming. In order to avoid these problems, it
could be inter esting to separate non-stiff and stiff terms. The non-stiff term hasto be solved
explicitly whereas the stiff term has to be integrated implicitly. Such time integrators are
known as implicit -explicit (IMEX) time integrators and have been used for the time
integration of spatially discretised PDEs of reaction-diffusion type [46]. In this article, we use
IMEX -PCmethods to integrate the system of ODEs obtained after a spatial discretisation of
the PDE (2.5) mentioned above.

Let us consider the systemof ODEs (3.15

du
— =Autg(tu), ulto) =,

and let k be the time step-size andun the approximation of the solution at tn = kn. Following
the strategy of [4], we may write the general s-step IMEX method when applied to the system
of ODEs (3.19) as

K s—1

s
(41) Z AjlUp4j = ke Z bjfllln",j + k Z ng(tnij- UnJrj).

=0 =0 =0

where as  0l. Following [40], the split form of ( 4.1) yields the following IMEX -PC

s—1
(4.2) (asl — kbgA)iip s = Z(faj Un g+ kbj Aty ; + keje(tnj,uny;)), Predictor
j=0

s—1

: (as] = kbA)unts = Y (—ajupny; + kbjAuny; + kbjg(tngs, tngs))

=0 Corrector

+ kbsg(tnis, tinys)-

The above IMEX -PC uses the IMEX of [4] as the predictor and implicit schemes as the
corrector. Only the non-stiff term is corrected; the corrector treats the stiff term implicitly.
This significantly reduces the computational cost compared with general implicit methods.
As compared to the PC used in [37, 55], the present strategy does not require the use of
iterative solverssuchasN e wt anetbosl.
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We denote by IMEX -PC(s, m) the s-step implicit -explicit predictor -corrector of order m.
IMEX -PC(1, m): the IMEX-PC(1, m) is a family of 1-step, one-parameter (A) IMEX-PC
schemesof order m and can be written as follows:

(I —~vkA) i1 =[L + (1 — y)EA] up + kg(tn, un), Predictor
(I = ~kA) uper = [T + (1 = y)kA up + (1 — ) kg(tn, un)

- Corrector
+vkg(Int1, tny1),

where the parameter 0 O A O 1prevents large truncation errors. The choice A= 1yields an
IMEX -PC(1,1) scheme.

IMEX -PC(2,m): the IMEX -PC(2, m) is a family of 2-step, two-parameter (A and c¢) IMEX -
PCschemesof order m and can be written asfollows:

[ +2) 1= (v 5) kAl i
=29+ (1 =~y —c)kdlun+ [(§ =) I + kAl un_1  Predictor

+(v + Dkg(tn, un) — vhg(tn_1,un—1),

[(v+3) T = (v + §) kA]

=291 + (1 — v — ¢)kAuy, + [(% — ) I+ SkA] un_q

Corrector
+(v + 5)kg(tnt1, 1) + (1 =7 — )bg(tn, un)

—%ll{g(fn_l. lln_lj.

Choosing (A ,) = (0, 1) we obtain an IMEX -PC(2,2) scheme.

IMEX -PC(3,m): the IMEX -PC(3,m) is a family of 3-step, three-parameter (A &, and c) IMEX -
PC schemes of ordem and can be written as follows:

(e e (57 5 ) )
[

(32 +2y—34+0)1 +(1—+*—3c+ 20) kA] un

>

32y 1) 1+ (72;7 43— ge)) m] .

o i Predictor
Y= T+ (&0 — ) kA] un—2

(S
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I+ (15—28 - C) A‘A} tUn—2 Corrector

2 ~ P -
T ("f g (‘) Rt 1, iin 1+ (1= % = 3c+ 230) ka(tn, un))
("f = P %9) kg(tn_1,un_1)

2
+ (1%6 o C) ‘l“g(fn—z- Un_g).
The choice(A, )& (1, 0¢0) yields an IMEX-PC(3,3) scheme.

5. Analysis of the method.

In [40], Li et al. gave stability and convergence results for IMEX -PC methods for solving
stiff problems. We briefly recall some of them and associate these with our option pricing
problems. Then we compare the stability regions of these IMEX -PC methods to those of the
existing IMEX methods [4]. The order of accuracy of the present IMEX -PC is given by the
following theorem.

THEOREM 5.1 ([40]). Let us suppose that thes-step IMEX predictor schemes(4.2) are of
order p and that the corrector schemes(4.3) have order g. Then the resulting IM EX-PCis of
order min{p+1,q}.

We would like to analyse the stability of the IMEX-PC schemes (4.2) and (4.3) when
applied to the PDE problem (2.5). It is beneficial to transform this PDE into one with constant
coefficients by considering the transformation x = log(S'E), where E is the strike price.
Therefore the problem (2.5) becomes

VRV av
.1 e Y << 0<E<T,
ot Ou2 O

Where ! = 50% @ = =(r = d = 50%). ¢ = 1.V genotes the value of the European options,
t = T1 Uis the time to expiry, and T is the expiration (maturity) time.

The first step is to find a spectral representation of this problem. To this end, we consider the
following change of variables

(5.2) V(e t) = eu(t).
The substitution of (5.2) into (5.1) yields the scalartest equation

(5.3) w' = H(u(t) + G(Eult)
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Where H(§) = —b&% and G(&) = —iag — c. By applying the IMEX -PC methods (¢.2) and (4.3)
to the scalar test equation (5.3) with step size k, we obtain

s—1

(5.4) (as — KH(&)bs)nts = Z[*([j + EH ()b + kG(&)cjlussj,
=0

and

s—1
(5.5)  (as—kH(E)b)tupys = Zif”j + kH(E)bj + kG()bjluerj + hG(E)bgtin s -

=0

Substituting the variables = = AH (&), w = EG(£). and B™ = uyn. into the Equations
(5.4) and (5.5) and plugging in (5.4) into (5.5) yields the followin g characteristic equation

s—1

(5.6) p(R:z,w)=R*— Z

j=0

—aj + zbj + whby whyg

(ag — zb) (as — zbg)

5 (—a; + zbj + wey) R,

Note that the IMEX -PC is linearly stable when all the roots of the characteristic polynomial
(5.6) have modulus less than or equal to one. In other words, letRi(z,w) be the roots of the
characteristic polynomial for i = 1, 2, . . . , s Then we define the stability region S of the
method as

S ={(z.w) € C*: |Ri(z.w)| < 1,Vi}.
The root of the characteristic polynomial of the IMEX -PC(1,2) method is given by

_ 1 =27z 424 V222 — y22 + w + yw?
a (1 —vz)? '

R(z,w)

For higher-order PC methods we do not provide general explicit expressions of their
characteristic polynomials. We rather confine our study to special cases. The choicgA ,) =c¢
(1, 0) gives the following characteristic polynomial

3 . dw + dw? 1w+ 2uw?
o2 Ry (2 TR\ g (TR
( 2) +( T3 ) (2+ :3—2:.-)

whereas the root of the characteristic polynomial of the second-order IMEX method [ 4] is
given by

3 1
(2 — 4> R?* — (24 2w)R + (2 + u') = 0.
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Similarly, the choice (A, )& (1, 0¢0) for the 3-step PC gives

1\ 3 5 6w(B+3w)\
(F - ;,) R — (r_) —ll — GL _R

3 6w(—3—6w) 1 2w(l + 3w) _
—(—= “JR—|(-+———7-—">) =0,
( 2 i 22 — 12z ) (3 N 11 — 62

whereas the root of the characteristic polynomial of the third -order IMEX method [ 4] is
given by

11 3 _ 5 3 1 )
— =z — (s + [ = ) — (= +w) =0.
(G )R (3+3w)RR (2+u)]? (3 u) )

Figure 5.1 shows the stability region of the IMEX scheme (4.1) and the IMEX -PC schemes
(4.2) and (4.3) in the (z,w)-plane. Figure 5.1 (top) represents the region of stability of the
IMEX(1,2) and IMEX -PC(1,2) schemes withA = % . Figure 5.1 (left bottom) shows the
stability region of the IMEX(2,2) and IMEX -PC(2,2) methods with (A ,) = €1, 0), and Figure
5.1 (right bottom) shows the stability region of the IMEX(3,3) and IMEX -PC(3,3) methods
with (A, )& (1, 080). Cleardy, we observe that in all cases the stability region ofthe IMEX
scheme [4] is included in the stability region of the proposed IMEX -PC scheme.This show
that the proposed IMEX -PC methods have larger stability regions and therefore are more
stable than the IMEX methods suggested in [4].

6. Numerical experiments.

In this section, we present some numerical results that we obtained using the proposed
approach. We consider European call, put, digital call, and butterfly spread options.
Further extensionswill be discussedin Section?7.

6.1 European call options. A European call option gives the holder the right to
exercise the option at maturity time T. To buy the underlying assetat maturity time T makes
senseif the asset price is higher than the exercise price (S > E) becauseone can buy the
assetfor E and sell it immediately on the market for S. If this is not the case,then the option
is worthless. The value of a European call option canbe determined by solving equation (2.5)
subject to the initial condition

(6.1) V(5,0) = max(5 — E,0),
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Fic. 5.1. Absolute stabilitv regions of the IMEX (4.1) and IMEX-PC (4.2)—(4.3): IMEX(1,2) and IMEX-
PC(1,2) with v = % (top), IMEX(2,2) and IMEX-PC(2,2) with (v,¢) = (1,0) (bottom left), and IMEX(3,3) and
IMEX-PC(3,3) with (v, ¢,0) = (1,0, 0) (botrom right).

where E is the strike price of the option V . The boundary conditions are

V(0,¢) =0,

6.2
(62) V(S,t) = Se™® — Ee™™, as S — occ.

The analytic solution of the Black-Scholes equation @.5) for European call options is known
[7, 59] and expressed as

(6.3) V(S.t) = Se % N(dy) — Be " N (dy),

where

111(%) + (:'—6+%2)t
(64) dl = gﬁ y (]2 = (il - O’\/;.

And N(n ) is the cumulative probability distri bution function for a standardised normal
variable

1 Y 22
(6.5) N(y) = / e 2 du.

2

Numerical results are obtained with T = 0.5, 1, and 2 years as maturity times with Smin =0
and Smax = 200 with strike price E = 45. The number of space mesh points isN = 80, and
the other parameters are as indicated in the Tables 6.1 6.5. The accuracy of the present
method was measured by means of the maximum error

-

Lo =max;—;_ n|u; — Vj

'
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and the root mean square error

where N is the number of points used in the discretisation in one particular direction, Vi
is the exact solution of the Black-Scholes equation given by (6.3), and uj is the numerical
approximation to the exact solution of the Black-Scholesequation. For comparison purposes,
we present the absolute, maximum, and root mean square errors. However, we also add
the relative errors to get a better idea of the performance of our method. We evaluate the
value of a European option by finite differences (FD) using uniform grids, and barycentric
Lagrange collocation (BLC) using the ChebyshevGaussLobatto (CGL) points for various
option parameters. The results are displayed in Table 6.1.

Although in theory and for a range of practical problems, the higher accuracy of general
spectral methods over finite difference methods [9, 23, 24] has been shown and
demonstrated, one can observe from Table 6.1 that the BLC has a moderately smaller error
than that of the FD. Numerically, higher-order methods, in particular spectral methods, have
difficulties in accurately approximating the solution in the region of singularity, i.e., the
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