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Abstract  

In  this paper we present a robust numerical  method to solve several types of European style 

option  pricing  problems. The governing equations are described by variants of Black-

Scholes partial  differential  equations (BS-PDEs) of the reaction-diffusion -advection type. To 

discretise these BS-PDEs numerically,  we use the spectral methods in the asset (spatial)  

direction  and couple them with  a third -order implicit -explicit  predictor -corrector (IMEX -PC) 

method for  the discretisation  in the time direction.  The use of this high-order time integration  

scheme sustains the better accuracy of the spectral methods for  which they are well-known. 

Our spectral method consists of a pseudospectral formulation  of the BS-PDEs by means of an 

improved  Lagrange formula.  On the other hand, in  the IMEX -PC methods, we integrate the 

diffusion  terms implicitly  whereas the reaction and advection terms are integrated explicitly.  

Using this combined approach, we fi rst solve the equations for  standard European options 

and then extend this approach to digital  options, butter fly spread options, and European calls 

in  the Heston model. Numerical  experiments illustrate  that  our approach is highly  accurate 

and very efficient for  pricing  financial options such as those described above. 

 

1. Introduction.   

In  this paper we consider a class of European style options described by Black-Scholes 

equations [7]. In  general, closed-form  analytical  solutions of some of these Black-Scholes 

PDEs do not exist and therefore one has to resort to numerical  methods in order to solve 

them. In  the literature,  the follow ing four  main families of methods have been developed and 

extensively used for  Black-Scholes PDEs: lattice methods [10, 21, 32], Monte Carlo 

simulations [ 5, 13, 41, 45], finite difference (FD) methods [11, 42, 59], and analytical 

approximations  [20, 27, 35]. The fi rst two are classified as stochastic simulation  methods 

since they approximate the underlying  process directly.  The other two methods are usually 

performed on the Black-Scholes PDEs with  appropriate  approximate boundary conditions.  

Popular techniques such as lattice methods can be very efficient for  valuing simple calls 

and puts, however, they become less efficient when valuing more complicated options. FD 

methods are more desirable over binomial  (or trinomial)  trees because the transition  from  a 

differential  equation to a difference equation is easier when the grid/mesh  is simple and 

regular. This offers more flexibility  as compared to the lattice methods. However, it  is well 
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known that  the kink  at the strike price in the payoff function  causes lower-order convergence 

when higher-order FD schemes are applied to solve these option  pricing  PDEs.  

 

Numerous ideas have been proposed to enhance the convergence of FD methods. Clarke and 

Parrott  [19]  used a coordinate transformation,  stretched the region around  the strike price 

where there is a discontinuity  in  the fi rst derivative of the final condition,  and found that  

the accuracy of their  implicit  FD method was improved.  Another  way of obtaining  more 

grid  points around the discontinuity  is to use adaptive grid  points as in Persson and von 

Sydow [44].  Recently, Oosterlee et al. [43] obtained a fourth -order accurate solution  for 

European options using the grid  stretching transformation  [52]  in  combination  with  the 

fourth -order spatial discretisation  based on a five-point  stencil and the fourth -order backward 

differencing  formula  (BDF4) for time discretisation.  More recently, Tangman et al. [50] 

considered the higher-order compact (HOC) schemes and used a grid  stretching that  

concentrates the grid  nodes at the strike price for  the European options. 

 

In this paper we will  explore spectral methods to discretise the option  pricing  problems in 

the asset (spatial)  direction.  Spectral methods are a class of approximation  methods that  are 

well known for  the task of solving partial  differential  equations [17]. For smooth enough 

solutions, they  are  exponentially    convergent   in   the   number   of   degrees   of   freedom 

[16, 24, 49]. Although  widely used in fields such as fluid mechanics, their  use in option  

pricing  have been rare. The main drawback for  their  direct  application  to option  pricing  is 

that  the payoff functions  for  typical  options or the initial  conditions  in the governing PDEs 

are nonsmooth. Thus, the collocation approximations  are reduced to low-order accuracy, 

making them not competitive  with  existing finite difference methods. The literature  is rich  

in ideas for  overcoming this problem. One approach is to regularise the initial  condition  as 

proposed by Greenberg [28]. Suh [47, 48]  used the Broadie-Detemple [12]  approach and 

obtained a significant improvement  of the pseudospectral method over the finite difference 

methods (FDM)  while solving PDEs and PIDEs (partial integro -differential equations) in 

finance. Tangman et al. [51]  presented a new approach which consists in dividing  the set of 

Chebyshev points into  two at the strike price E. To this end, the new set of points will  cluster 

the grid nodes not only at the boundaries but also at the singularity  located at the strike price 

for  a European option.  Using such a strategy, the Chebyshev collocation method achieved 

fourth -order accuracy. Zhu [60]  proposed a spectral element method based on the 

regularisation  approach of Greenberg [28]  to price European options with  and without  jumps 

in one and two dimensions. He successfully recovered the exponential accuracy of spectral 

methods. 

 

To discretise the problem in time direction,  we use a class of implicit -explicit  (IMEX)  

methods. These methods have been used in conjunction  with  spectral methods [16]  to solve 

problems involving  different  types of PDEs. Ascher et al. [4]  constructed families of fi rst-, 

second-, third -, and fourth -order IMEX  multistep  methods to solve convection-diffusion  

equations. Ruuth [46]  used IMEX  multistep  methods and efficiently solved reaction-

diffusion  problems in pattern  formation.  Recently, Hundsdorfer  and Ruuth [34] extended 

the construction  of IMEX  multistep  methods with  general monotonicity  and boundedness 
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properties to hyperbolic  systems with  stiff  source or relaxation terms. IMEX  multistep  

methods also appear in the field of option  pricing.  In  particular,  for  jump -diffusion  PIDE, 

Almendral  and Oostelee [2]  proposed a second-order backward differentiation  formula  

(BDF). Feng and Linetsky [22]  proposed an extrapolation  approach in combination  with  the 

fi rst-order accurate IMEX -Euler scheme. Their  experiments show that  the extrapolation  

method improved signif icantly  over the fi rst-order IMEX -Euler scheme in solving the jump -

diffusion  PIDE. Another  family  of IMEX  schemes is based on Runge-Kutta  methods. Ascher 

et al. [3]  constructed IMEX  Runge-Kutta  methods for  solving convection-diffusion -reaction 

problems. De Frutos [25, 26]  introduced  IMEX -RK methods as an alternative  to other existing 

time integration  methods for pricing  options. We refer the interested readers to [3, 8, 14, 15, 

25, 36]  for  recent developments on IMEX -RK methods. 

 

The class of IMEX  methods that  we will  be using belongs to the family  of IMEX -PC 

schemes. These are successfully applied to solve stiff  PDEs. The main idea is to split  the 

basic multistep  IMEX  into  predictor -corrector (PC) schemes. Cash [18]  used this idea to 

construct a new class of multistep  methods. By splitting  the BDF, he obtained a new BDF 

which has considerably better stability  than the standard BDF while maintaining  the same 

accuracy.  Voss and Casper [55] used a split  version of the Adams-Moulton  formulae as a 

novel family  of PC schemes for stiff  ODEs. Voss and Khaliq  [56]  considered the ȅ-methods in 

a linearly  implicit  form  as the predictor  and derived an implicit  second-order PC scheme for 

reaction-diffusion  problems.  Recently, Li  et al. [40]  adopted the strategy found in [4]  to 

construct a family  of higher-order IMEX -PC schemes for  nonlinear  parabolic differential  

equations. Their  numerical  results show that  these IMEX -PC methods have a significant 

better stability  than those found in [4].  More recently, Grooms and Julien  [29] derived a 

fourth -order IMEX -PC scheme. Their  method used the fourth -order total  variation  IMEX  

scheme found in [34]  as a predictor  and the fourth -order BDF scheme as a corrector. To the 

best of our knowledge, IMEX -PC methods have not been used to price financing options, 

except in  [37]  where a second-order IMEX -PC scheme is used to price American options. 

 

In  this paper we present a spectral method based on the improved  Lagrange formula  to 

compute European, digital,  and butter fly spread options. Our method is coupled with  a 

third -order IMEX -PC for  time integration.  The reason for  using higher-order IMEX -PC is 

that  we expect our spectral method to provide exponential accuracy, which is usually affected 

by lower-order temporal  schemes. We then extend this approach to solve a two-dimensional  

option  pricing  problem described by the Heston model. 

 

The rest of this paper is organised as follows:  in Section 2, we describe the formulation  of the 

option  pricing  problem in the Black-Scholes framework.  In  Section 3, the spatial 

approximations  of the pricing  equations using spectral methods are considered. In  Section 4, 

we review the IMEX -PC methods for  solving the semi-discrete system resulting  from  the 

spatial discretisation.  The overall method is analysed in Section 5. Numerical  experiments 

are conducted in Section 6. The extension of the proposed approach to a two-dimensional 

case is given in Section 7. Finally,  in  Section 8 we present some concluding remarks and 

scope for  future  research. 
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2 .  The  mathematical  model.   

Consider the financial market  model given by the follow ing tuple   
 

where Ý is the set of all possible outcomes of the experiment known as the sample space, F is 

the set of all events, i.e., permissible combinations  of outcomes, P is a map F Ÿ [0 , 1] which 

assigns a probability  to each event, FŰ is a natural  fi ltration,  and SŰ  is a risky underlying  

asset price process. The triplet  (Ý, F, P) is defined as a probability  space. Let ZŰ be a P-

Brownian  motion,  ů > 0 the volatility  of the underlying  asset, µ > 0 the expected rate of 

return,  r > 0 the interest  rate, and ŭ > 0 the continuous  dividend  yield. Without  loss of 

generality, µ, ů, r, and ŭ are assumed to be constant. Then under the equivalent martingale  

measure Q, the stochastic process of the asset price SŰ is assumed to follow  the geometric 

Brownian  motion  

 

 
 

Now, consider a portfolio  that  involves short selling of one unit  of a European call option  and 

long holding  of æŰ units  of the underlying  asset. The portfolio  value ǲ(SŰ , Ű) at time Ű is 

then given by 

 

 
 

where V  = V (ST, T) denotes the value of the option. The jump in the value of the portfolio  in 

one time step is 

 

 
 

Note that æŰ changes with  time Ű , reflecting the dynamic nature of hedging. Since V is a 

stochastic function  of SŰ , we apply Itoôs lemma to compute its differential,  which gives 

 

 
 

Substituting ( 2.1) and (2.3) into ( 2.2) and simplifying, we obtain  

 

 
 

The cumulative financial gain on the portfolio  at time Ű is given by 
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The stochastic component of the portfolio  gain stems from  the second term of (2.4). 

 

Suppose we adopt the dynamic hedging strategy by choosing  at all ÖSu 

times u < Ű .  Then the financial gain becomes deterministic  at all times.  By virtue  of no 

arbitrage, the financial gain should be the same as the gain from  investing on the risk  free 

asset with  a dynamic position  whose value equals  The deterministic  gain from  

this dynamic position  of the riskless asset is given by 

 

 
 

By equating these two deterministic  gains   and , we have 

 

 
 

which is satisfied for  any asset price S if  V (S, Ű) satisfies the equation 

 

 
 

The above partial  differential  equation is called the Black-Scholes equation [7]. 

 

Now, by a change of variables t = T ī Ű (T is the time of expiration),  we can rewrite  the 

above equation as 

 

 
 

The boundary and the final conditions  make the difference between American and 

European style options as well as between puts and calls and other types of options. In  this 

article,  we consider European vanilla,  binary,  and spread options, whose final and 

boundary conditions  are given in Section 6, where we provide numerical  results. We then, in 

Section 7, extend this approach to solve a two-dimensional  option  pricing  problem 

described by the Heston model. 
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3.  Spectral  method  for  the  discretisation  in  space.   

In  our spectral discretisation  in space, we will  be using a class of Lagrange interpolation  

formulae.  This interpolation  is theoretically  very powerful  and deplored mainly  for 

numerical  practice as reported in many textbooks of numerical  analysis [1].  With  slight  

modi fications, the Lagrange formula  is indeed of great practical  use. This has been noted by 

several authors, including  Henrici  [30]  and Werner [58]. Berrut  and Trefethen [6]  modi fied 

the Lagrange polynomial  through  the formula  of barycentric interpolation  and proposed an 

improved Lagrange formula.  In  this section, we review the improved  Lagrange formula and 

propose a spatial dicretisation  of the option  pricing  problems discussed in earlier sections. 

 

3.1 Lagrange  interpolation.   

We would like to find  the polynomial  pN (x) from  the vector space of all polynomials  of 

degree at most N that  interpolates the data fj at distinct  interpolation  points xj , j = 0, . . . , N 

, i.e., 

 

 
 

Recall that the Lagrange form of pN(x) is ([39])  

 

 
 

where the Lagrange polynomial żj corresponding to the node xj has the property 

 

 
 

The drawbacks of the Lagrange formula  (3.1) are 

1. It  takes O(N 2) additions  and multiplications  for  each evaluation of pN (x). 

2. A new computation  from  scratch has to be performed if  we add a new pair  of 

data (xN +1, fN +1). 

3. Instability  may be present in  numerical  computation.  

It  would be advantageous to modify the  formula ( 3.1) in order to overcome the above short- 

comings. 

 

3.2.  A modi fi ed  Lagrange  formula.  Following  [6], the Lagrange formula  (3.1) can be 

rewritten  in such a way that  pN (x) is computed in O(N ) operations. We define ż(x), the 

numerator  of żj in  (3.1), as 
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In addition, if we define the barycentric weight by  

 

 
 

Consequently, the Lagrange formula (3.1) becomes 

 

 
 

3.3.  Barycentric  formula.  The formula  (3.2) can be written  in  a more elegant way. If  we 

represent the constant function f (x) = 1, we obtain 

 

 
 

Dividing ( 3.2) by (3.3), we get the barycentric formula for pN 

 

 
 

This is the most used form  of Lagrange interpolation  in practice. We see that  the formula  (3.4) 

is special case of (3.2). 

 

A significant advantage of the spectral collocation method based on the modi fied barycentric  

Lagrange interpolation  is that  after the transformation,  the derivatives in the underlying  

differential  equation do not have to be transformed  correspondingly  as it  is usual in  other 

spectral  collocation methods. More details regarding the convergence and stability  properties 

of the modi fied Lagrange formula  are extensively discussed in [6, 33, 57]. 

 

3.4.  Calculation  of  the  component  matrices.  Suppose that  the solution  u of the semi-

discrete version of the PDE (2.5) is represented in the Lagrange form  
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Then the first and the second derivatives of (3.8) yield the following equations  

 

 
And 

 

 
 

To find the entries of the fi rst and second differentiation  matrices, we solve (3.9) and (3.10) at 

x = xi. This gives 
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The above can be used for  the entries of the fi rst- and second-order differentiation  matri ces 

D(1) and D(2) which are given by 

 

 
 

3.5.  Chebyshev  grid  transformations.   

Spectral methods are exponentially  accurate for smooth problems but in  option  pricing  

problems the initial  condition  is typically  not differen tiable and may be discontinuous.  It  is 

known (see, e.g., [53])  that  local grid  refinements may improve the accuracy near a region of 

singularity and hence improve the overall  accuracy of the numerical  method. Therefore, a 

local grid  refinement near the non-differentiable  or discontinuous payoff condition  seems to 

be a logical choice to retain  a satisfactory accuracy. In  this paper we use an analytic 

coordinate transformati on to stretch grids around strike prices. Following  [53], we use the 

transformation  

 

 
 

where Ŭ is the point  of singularity  in  the Chebyshev domain [ī1, 1], ȁ is a parameter that  

determines the stretching rate around Ŭ, and zk = cos(ɸk/N ) are the Chebyshev-Gauss- 

Lobatto (CGL) collocation points. 

 

In  the case of multiple  regions of singularity,  it  is possible to combine maps with  a single point  

of singularity  in  order to concentrate points around these regions. Suppose that  we have a 

collection of maps hk(z), k = 1, . . . , n, which cluster points around regions of rapid  change ŭk 

with  distribution  parameters ȁk. We define such maps by 

 

 
 

In the case of butterfly spread options, we have three singularities and therefore we will have 

 

 
 

Maps such as (3.12) are nonlinear  and have to be solved numerically  using generic nonlinear  

equation solvers. 
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3.6.  Application  to  the  Black -Scholes  PDE.   

The Black-Scholes PDE (2.5) is discretized in the asset (space) direction  by means of a 

modi fied barycentric Lagrange collocation  (BLC) approach.  Let x = g(zj ) be the 

transformed  Chebyshev points.  Then the fi rst step is to transform  x  ɴ[ī1, 1] into  S  ɴ[Sm, 

SM ]  that better suits the option  at hand. We do this through  x = (2S ī (SM ī Sm)) / (SM + 

Sm) where Sm and SM are the minimal  and the maximal  values of the underlying  asset. 

Now writing  V (S, t) = u(x, t), the PDE (2.5) together with  its initial  and boundary conditions  

yield 

 

 
 

Substituting ( 3.5) and (3.6) yields the following system of nonlinear ODEs 

 

 
 

In order to write ( 3.14) in matrix form, we introduce the following matrix and vector notation  

 

 
 

moreover I  denotes an (N ī 1) × (N ī 1) identity  matrix.  P and Q are diagonal matrices 

whose entries are p(xi ) and q(xi), i = 1, 2, . . . , N ī 1, respectively. Consequently, (3.14) can 

be expressed as an initial  value problem of the form  
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4.  Implicit -explicit  predictor -corrector  meth od  for  the  discretisation  in  time.   

The system of ODEs (3.15) can be solved by means of standard ODE time integrators.  The 

main challenge when dealing with  this type of problems is that  explicit  time integrators  are 

inadequate because the diffusion  term is typically  stiff  and necessitates excessively small 

time steps. On the other hand, the use of stif fly accurate implicit  time integrators  which are 

unconditionally  stable is practically  time consuming. In order to avoid these problems, it 

could be inter esting to separate non-stiff  and stiff  terms. The non-stiff  term has to be solved 

explicitly  whereas the stiff  term has to be integrated implicitly.  Such time integrators  are 

known as implicit -explicit  (IMEX)  time integrators  and have been used for  the tim e 

integration  of spatially  discretised PDEs of reaction-diffusion  type [46]. In  this article,  we use 

IMEX -PC methods to integrate the system of ODEs obtained after a spatial discretisation  of 

the PDE (2.5) mentioned above. 

 

Let us consider the system of ODEs (3.15) 

 

 
 

and let k be the time step-size and un the approximation of the solution at tn = kn. Following 

the strategy of [4], we may write the general s-step IMEX method when applied to the system 

of ODEs (3.15) as 

 

 
 

where as Í 0. Following [ 40], the split form of ( 4.1) yields the following IMEX -PC 

 

 
 

The above IMEX -PC uses the IMEX  of [4] as the predictor  and implicit  schemes as the 

corrector. Only the non-stiff  term is corrected; the corrector treats the stiff  term implicitly.  

This significantly reduces the computational  cost compared with  general implicit  methods. 

As compared to the PC used in [37, 55], the present strategy does not require the use of 

iterative  solvers such as Newtonôs method. 
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We denote by IMEX -PC(s, m) the s-step implicit -explicit  predictor -corrector of order m. 

IMEX -PC(1, m): the IMEX -PC(1, m) is a family  of 1-step, one-parameter (Ȃ) IMEX -PC 

schemes of order m and can be written as follows: 

 

 
 

where the parameter 0 Ò Ȃ Ò 1 prevents large truncation  errors. The choice Ȃ = 1 yields an 

IMEX -PC(1,1) scheme. 

 

IMEX -PC(2, m):  the IMEX -PC(2, m) is a family  of 2-step, two-parameter (Ȃ and c) IMEX -

PC schemes of order m and can be written  as follows:  

 

 
 

Choosing (Ȃ, c) = (0 , 1) we obtain an IMEX -PC(2,2) scheme. 

 

IMEX -PC(3,m): the IMEX -PC(3,m) is a family of 3-step, three-parameter (Ȃ, ȅ, and c) IMEX -

PC schemes of order m and can be written as follows: 
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The choice (Ȃ, ȅ, c) = (1, 0, 0) yields an IMEX -PC(3,3) scheme. 

 

5. Analysis  of  the  method.    

In  [40], Li  et al. gave stability  and convergence results for  IMEX -PC methods for  solving 

stiff  problems.  We briefly recall some of them and associate these with  our option  pricing  

problems.  Then we compare the stability  regions of these IMEX -PC methods to those of the 

existing IMEX  methods [4]. The order of accuracy of the present IMEX -PC is given by the 

following  theorem. 

 

THEOREM  5.1 ([ 40]).  Let us suppose that the s-step IMEX predictor  schemes (4.2) are of 

order  p and that  the corrector  schemes (4.3) have order  q. Then the resulting  IM EX-PC is of 

order  min {p + 1, q} . 

 

We would like to analyse the stability  of the IMEX -PC schemes (4.2) and (4.3) when 

applied to the PDE problem (2.5). It  is beneficial to transform  this PDE into  one with  constant 

coefficients by considering the transformat ion x = log(S/E ), where E is the strike price. 

Therefore the problem (2.5) becomes 

 

 
 

Where  denotes the value of the European options, 

t = T ī Ű is the time to expiry, and T is the expiration (maturity) time.  

 

The first step is to find a spectral representation of this problem. To this end, we consider the 

following change of variables 

 

 
 

The substitution of ( 5.2) into ( 5.1) yields the scalar test equation 
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Where   By applying the IMEX -PC methods (4.2) and (4.3) 

to the scalar test equation (5.3) with step size k, we obtain 

 

 
 

Substituting the variables into the Equations 

(5.4) and (5.5) and plugging in (5.4) into ( 5.5) yields the followin g characteristic equation 

 

 
 

Note that the IMEX -PC is linearly stable when all the roots of the characteristic polynomial 

(5.6) have modulus less than or equal to one. In other words, let Ri(z,w) be the roots of the 

characteristic polynomial for i = 1, 2, . . . , s. Then we define the stability region S of the 

method as 

 

 
 

The root of the characteristic polynomial of the IMEX -PC(1,2) method is given by 

 

 
 

For higher-order PC methods we do not provide general explicit expressions of their 

characteristic polynomials. We rather confine our study to special cases. The choice (Ȃ, c) = 

(1, 0)  gives the following characteristic polynomial  

 

 
 

whereas the root of the characteristic polynomial of the second-order IMEX method [ 4] is 

given by 
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Similarly, the choice (Ȃ, ȅ, c) = (1, 0, 0) for the 3-step PC gives 

 

 
 

whereas the root of the characteristic polynomial of the third -order IMEX method [ 4] is 

given by 

 

 
 

Figure 5.1 shows the stability region of the IMEX scheme (4.1) and the IMEX -PC schemes 

(4.2) and (4.3) in the (z,w)-plane. Figure 5.1 (top) represents the region of stabili ty of the 

IMEX(1,2) and IMEX -PC(1,2) schemes with Ȃ = ½ . Figure 5.1 (left bottom)  shows the 

stability region of the IMEX(2,2) and IMEX -PC(2,2) methods with (Ȃ, c) = (1, 0) , and Figure 

5.1 (right bottom) shows the stability region of the IMEX(3,3) and IMEX -PC(3,3) methods 

with (Ȃ, c, ȅ) = (1, 0, 0) . Clearly, we observe that in all cases the stability region of the IMEX 

scheme [4] is included in the stability region of the proposed IMEX -PC scheme. This show 

that the proposed IMEX -PC methods have larger stability regions and therefore are more 

stable than the IMEX methods suggested in [4].  

 

6.  Numerical  experiments.   

In  this section, we present some numerical results  that  we obtained using the proposed 

approach.  We consider European call, put, digital  call, and butter fly spread options. 

Further  extensions will  be discussed in Section 7. 

 

6.1 European  call  options.  A European call option  gives the holder the right  to 

exercise the option  at maturity  time T. To buy the underlying  asset at maturity  time T makes 

sense if  the asset price is higher than the exercise pri ce (S > E) because one can buy the 

asset for  E and sell it  immediately  on the market  for  S. If  this is not the case, then the option  

is worthless. The value of a European call option  can be determined by solving equation (2.5) 

subject to the initial  condit ion 
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where E is the strike price of the option V . The boundary conditions are 

 

 
 

The analytic solution of the Black-Scholes equation (2.5) for European call options is known 

[7, 59] and expressed as 

 

 
 

And N(ה) is the cumulative probability distri bution function for a standardised normal 

variable 

 
 

Numerical results are obtained with T = 0.5, 1, and 2 years as maturity times with Smin = 0 

and Smax = 200 with strike price E = 45. The number of space mesh points is N = 80 , and 

the other parameters are as indicated in the Tables 6.1ï6.5. The accuracy of the present 

method was measured by means of the maximum error 
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and the root mean square error 

 

 
 

where N is the number  of points used in the discretisation  in one particular  direction,  Vi 

is the exact solution  of the Black-Scholes equation given by (6.3), and ui is the numerical  

approximation  to the exact solution  of the Black-Scholes equation. For comparison purposes, 

we present the absolute, maximum,  and root  mean square errors. However, we also add 

the relative errors to get a better idea of the performance of our method. We evaluate the 

value of a European option  by finite differences (FD) using uniform  grids, and barycentric 

Lagrange collocation (BLC) using the Chebyshev-Gauss-Lobatto (CGL) points for  various 

option  parameters. The results are displayed in Table 6.1. 

 

Although  in theory and for  a range of practical  problems, the higher accuracy of general 

spectral methods over finite difference methods [9, 23, 24] has been shown and 

demonstrated, one can observe from  Table 6.1 that  the BLC has a moderately smaller error  

than that  of the FD. Numerically,  higher-order methods, in  particular  spectral methods, have 

dif ficulties in accurately approximating  the solution  in the region of singularity,  i.e., the 


