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Abstract 

In this study, we determine the most suitable multispectral sensor that can accurately 

detect and map eroded areas from other land cover types in Sekhukhune rural district, 

Limpopo Province, South Africa. Specifically, the study tested the ability of multi-date (wet 

and dry season) Landsat 8 OLI and Sentinel-2 MSI images in detecting and mapping 

eroded areas. The implementation was done, using a robust non-parametric classification 

ensemble: Discriminant Analysis (DA). Three sets of analysis were applied (Analysis 1: 

Spectral  bands as independent dataset; Analysis 2: Spectral vegetation indices as 

independent and Analysis 3: Combined spectral bands and spectral vegetation indices). 

Overall classification accuracies ranging between 80% to 81.90% for MSI and 75.71%–

80.95% for OLI were derived for the wet and dry season, respectively. The integration of 

spectral bands and spectral vegetation indices showed that Sentinel-2 (OA = 83, 81%), 

slightly performed better than Landsat 8, with 82, 86%. The use of bands and vegetation 

indices as independent dataset resulted in slightly weaker results for both sensors. 

Sentinel-2 MSI bands located in the NIR (0.785–0.900 μm), red edge (0.698–0.785 μm) 

and SWIR (1.565–2.280 μm) regions were selected as the most optimal for discriminating 

degraded soils from other land cover types. However, for Landsat 8OLI, only the SWIR 

(1.560–2.300 μm), NIR (0.845–0.885 μm) region were selected as the best regions. Of the 

eighteen spectral vegetation indices computed, NDVI and SAVI and SAVI and Global 

Environmental Monitoring Index (GEMI) were ranked selected as the most suitable for 

detecting and mapping soil erosion. Additionally, SRTM DEM derived information 

illustrates that for both sensors eroded areas occur on sites that are 600 m and 900 m of 

altitude with similar trends observed in both dry and wet season maps. Findings of this 

work emphasize the importance of free and readily available new generation sensors in 

continuous landscape-scale soil erosion monitoring. Besides, such information can help to 

identify hotspots and potentially vulnerable areas, as well as aid in developing possible 

control and mitigation measures. 

 

1. Introduction 

Soil plays a vital role in many economies of the world, particularly in developing countries, 

such as South Africa, agriculture and forestry forms the backbone of the economy 
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(Department Of Agriculture Forestry and Fisheries, 2015). A review on the outlook of 

Agriculture in South Africa by the Department of Agriculture Forestry and Fisheries (2010) 

shows that agriculture accounts for approximately 15.2% of the country’s Gross Domestic 

Product (GDP). Currently, the sector consisting of 82% (100 million hectares) of the 

South African land area whereas, in developed countries like Scotland, Europe, 79% of the 

land area is attributed to agriculture, accounting for 1.8% of the GDP and directly   

employing   over   25,000   people   (Scottish   Environment Protection Agency, 2001). 

Despite their economic importance, soils in most developing countries are subject to 

continuous deterioration due to poor land management practices in place (Ighodaro et al., 

2013), leading to severe soil degradation at a phenomenal rate (Pretorius, 1998; Garland 

et al., 2000; Le Roux et al., 2007). For example, in South Africa over 70% of the land is 

affected by soil erosion (Le Roux et al., 2007), with an estimated occurrence rate of 8–30 

times faster than the rate of regeneration (Baade et al., 2012, Seutloali et al., 2017). Human 

activities like land clearing for farming, deforestation, overgrazing, or land abandonment 

coupled with climate change, accelerate the rate of land degradation (Alatorre and Beguería,  

2009). In addition, the negative effects of land degradation are not limited to agriculture; 

they extend to other hydraulic structures, including reservoir sedimentation, which is 

associated with water treatment costs. 
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This complicates water availability, which is already a problem, especially in the developing 

world of Africa. For example, South Africa alone losses approximately two billion rand 

annually including off-site costs for purification of water whose poor quality is caused by 

the siltation of dams in eroded surfaces rehabilitation (Department of Environmental 

Affairs and Tourism, 2006) whereas, other countries like Malawi and Kenya lost about 

US$2 billion and US$11 billion between 2001 and 2009 periods from land degradation, 

respectively (Kirui and Mirzabaev, 2015; Voortman et al., 2003; Nkonya et al., 2013). 

Additionally, Dube et al. (2017) indicated that pressure, due to these processes, has caused 

serious implications on rural economies; as most of them rely on agriculture as a source of 

living. Therefore, the need for reliable information on degraded areas and possible 

vulnerable areas has increased in order to understand the level of degradation and to 

come up with possible control measures. It is thus important to provide an accurate and 
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update, as well as detailed soil erosion maps for the former homelands of South Africa as 

baseline information for monitoring, rehabilitation and control purposes. 

 

Soil erosion, which is considered to be the most critical environmental problems leading to 

land degradation (Seutloali et al., 2017; Le Roux et al., 2007; Le Roux et al., 2008), has put 

a burden on national economies. Although great strides have been made in land degradation 

or soil erosion monitoring, the accuracy of the derived thematic maps remains questionable, 

especially in developing countries, as the availability of high-resolution data remains a 

challenge (Luleva et al., 2012). The Landsat series data have so far been the most commonly 

used remotely sensed data in soil erosion modeling and monitoring. For instance, Dube et 

al. (2017) assessed the potential of using freely available Landsat series in mapping 

degradation levels in Eastern Cape, South Africa. They found out that degraded areas can be 

detected from the Landsat series data. Additionally, the main benefit of Landsat sensor is the 

multi-temporal aspect (De Jong et al., 1999), although the medium spectral resolution of 

the scenes presents a limitation. In addition, Lo Curzio and Magliulo (2010), by means of 

Landsat data series assessed the spatial distribution of degraded areas, with a good spatial 

accuracy of 97,48% Overall Accuracy (OA) and limited cost in southern Italy. Moreover,  

Seutloali  et  al.  (2017) mapped the  severity  of  soil erosion, using the 30 m Landsat 

multispectral satellite data in the former South African homelands of Transkei and the results 

of the study have indicated that a variety of soil erosion levels (i.e. sheet, slight rills, deep rills, 

medium gullies to deep gullies) could be detected and mapped. 

 

Even though Landsat data is viewed and appraised as the most reliable and appropriate 

dataset for soil erosion modeling, especially when compared with other multispectral 

sensors, such as MODIS or AVHRR which are provided at coarse spatial resolution, its 

applications remain largely restricted. This dataset’s associated slightly poor spatial 

resolution largely compromises its fullness in erosion-related studies, especially were farm 

or catchment level monitoring is required. For example, fine-scale erosional problems 

remain difficult to document from Landsat ETM + 7 which has since experienced scanline 

errors resulting in approximately 22% data loss. Most studies that have tested the utility of 

historical Landsat archival data concluded that the sensor has an outstanding performance 

in mapping soil erosion at a larger scale. However, the performance of Landsat ETM + 7 

remains compromised for farm level monitoring, due to 22% data loss from the scanline 

errors. 

 

The newly launched Landsat 8 unlike its predecessors, has been highly rated in most of 

its applications and these include biomass mapping (Yavaşlı, 2016; Zhang et al., 2017), 

land surface temperature mapping (Adeyeri et al., 2017; Avdan and Jovanovska, 2016), and 

invasive species mapping (Gavier-Pizarro et al., 2012; Wang et al., 2017). For instance, 

studies by Vågen et al. (2013) demonstrated that land degradation and soil health in 

Ethiopia at scales appropriate for management can be assessed, using Landsat-8 bands. 

Most of the studies associated the successful performance of the sensor to its improved 

sensing characteristics (Wulder et al., 2008). Landsat 8 OLI also occupies a unique spatial-

temporal position in the sense that its bands can better detect and monitor human changes 
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in land cover, whereas at the same time having an imaging footprint that is sufficiently large 

to enable wide-area applications (Wulder et al., 2012). Given the sensor’s recommended 

performance we, therefore, assume its improved sensing characteristics can aid in 

determining and mapping, as well as monitoring eroded areas in the former homelands of 

South Africa – a previous challenging task with broadband sensors like MODIS. 

 

Similar to Landsat 8, Sentinel-2 MSI (Multi-Spectral Instrument) data available at 10 m 

spatial resolution is considered as one of the most possible solutions to most environmental 

related challenges in sub-Saharan African, due to its free availability, global footprint, high 

temporal resolution ( ± 5days), presence of new multiple bands, previously missing from 

the previous batch of broadband multispectral sensors, such as ASTER, Landsat 4, 5 and 7, 

MODIS etc. Studies that have applied sentinel 2 data, for instance in forest mapping, 

Korhonen et al. (2017) indicated that the sensor’s addition red edge (RE1, RE2, RE3) 

spectral bands have the capability to improve the accuracy of estimating key plant 

biophysical variables. They have also shown that the sensor provides the most unique and 

robust datasets required for understanding environmental problems. For example, 

Korhonen et al. (2017) have shown that the specific information content of a batch of the 

broadband multispectral Sentinel-2 sensor may be useful in the monitoring of canopy 

properties. 

 

Testing the ability of this free-and-readily available remotely sensed datasets in soil erosion 

monitoring is, therefore critical. So far, the rich information contained in these sensors has 

not yet been fully exploited in mapping and monitoring eroded areas. This is primarily due 

to the fact that these sensors were launched recently. Among the different types of the 

readily-available multispectral remote sensing sensors, archive digital dataset with a wider 

swath-width (185 km Landsat 8 OLI; 290 km Sentinel-2 MSI) and a 16 (OLI) and 5 (MSI) 

day temporal resolution makes the two sensors to be perceived as the key primary data 

sources highly suitable for providing practical or operational regional or district level 

analysis of eroded areas. This study for the first time sought to assess soil erosion mapping 

abilities of two new non-commercial multispectral remote sensing data: Landsat 8 OLI and 

Sentinel-2 MSI in the Sekhukhune district, Limpopo Province of South Africa. To determine 

the most optimal bands and vegetation indices that can accurately detect and map soil 

erosion regardless of form. Further, the study wanted to determine whether the areas 

identified as degraded in the dry season could be as well be detected during the wet season or 

it was a dry season phenomenon associated with the non-cropping. The study also 

establishes if the observed soil erosion patterns are a function of elevation or land use. 

 

2. Materials and methods 

2.1 Description of the study area 

The research was conducted in the Greater Sekhukhune District Municipality, Limpopo 

Province, South Africa. The area is located at the coordinates 24°23′27.52‵‵S and 

29°50′06.83‵‵E and lies across the border of Mpumalanga and Limpopo province. The 

district comprises approximately 13 528 km2 of geographical area, the majority of which is 
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rural. The district lies in the south-eastern part of the province and is comprised of five local 

municipalities: Elias Motsoaledi, Ephraim Mogale, Fetakgomo, Makhuduthamaga, and 

Tubatse. The district is situated in a semi-arid environment, with average annual rainfall 

± 560 mm and temperatures showing a moderate fluctuation with average summer 

temperatures of ± 23 °C (Mpandeli et al., 2015; Stronkhorst  et al., 2009). The topography 

of the area is generally. 
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2.2. Field data collection 

The field survey was conducted from the 26th to 28th of June 2017, coinciding with the dates of 

remotely sensed data acquired for the study area. Data collection was done by recording 

coordinates at sub-meter accuracy using GPS device, to validate satellite remote sensing data. 

Eroded areas were identified during field surveys using random walks and google earth maps 

of the area. A similar approach was used in collecting data on other major land cover classes 

in the area, and these included built-up areas, cultivated areas, eroded areas forest-woodland, and 

grass-shrubland, vegetation cover and water bodies. Land cover classes were identified using 

visual observation. The vector maps of the study, courtesy of Sekhukhune District together with 

the aid of google earth were used to navigate to areas affected within the study area. During 

the field operation, a total of 300 (50 per class) points were recorded, using a Trimble GeoXH 

6000 series handheld Global Position System (GPS) at sub-meter accuracy. These GPS points 

were used in extracting spectral data from the two satellite data sets. Furthermore, 

photographs of eroded areas and other land cover types were taken, using a handheld 

camera. During the collection of photographs, GPS coordinates were also recorded and these 

were used to verify the classified maps. 

 

2.3.  Remote sensing data acquisition and preprocessing 

Landsat-8 and Sentinel-2satellite images were used in mapping eroded areas across two 

seasons (dry and wet season) in the Greater Sekhukhune District Municipality (Table 

1).Landsat-8 acquires global moderate-resolution measurements of the Earth’s surface in the 

visible, near-infrared, shortwave, and thermal infrared. The sensor was launched on the 11th 

of February 2013, with a combination of two push broom instruments: the Operational Land 

Imager (OLI) consisting of nine spectral bands (refer to Table 2) and (ii) the Thermal 

Infrared Sensor (TIRS) which encompasses thermal bands 10 and 11 at a 100 m spatial 

resolution. Sentinel-2 mission, launched on the 23rd of June 2015, is a land monitoring 

constellation of two satellites (Sentinel-2a and Sentinel-2b) providing global optical imagery 

with 13 spectral bands at a 5-day interval, using MSI (Multispectral Imager) instrument. 

 

In this study, cloudless Landsat 8 OLI and Sentinel 2 MSI images were acquired 

respectively during the 1st of June 2017 and 31st July 2017 for the dry season and between 

1st of December 2016 and 31st January 2017 accessed from the USGS Earth Resources 

Observation and Science (EROS) Centre archive (http://earthexplorer.usgs.gov/). 

Subsequently, the images were re-projected and mosaicked. Both images were 

atmospherically corrected, using the dark object subtraction (DOS1) model in QGIS version 

2.1.8 software. 

 

2.4. Digital elevation model data 

The Shuttle Radar Topography Mission (SRTM)-derived digital elevation model (DEM) was 

used to generate information on the elevation of the area and this data was used to 

determine whether the occurrence eroded areas can be explained as a function elevation 

(slope).This study used SRTM DEM because of its higher spatial resolution (30 m/pixel) 

corresponding to that of the two sensors and accessibility. The DEM was converted to 

meters (m) and the elevation of the area under study ranged between 495 m and 2101 m.  
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DEM rugged ranging from hilly to mountainous with an average altitude of 494 m above sea 

level. Subsistence or smallholder agriculture accounts for 70% of the farming activities in the 

district, whilst the other 30% is commercial agriculture (Siambi et al., 2007). Preprocessing 

was done using ArcGIS tools 10.4.1 software. 
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2.5. Landsat 8 OLI and Sentinel-2 derived spectral data and vegetation 

indices 

Spectral reflectance values (Table 2) along with selected simple spectral band ratios were 

applied in this study. The choice of vegetation indices was based on their performance as 

demonstrated from previous studies (Vaidyanathan et al., 2002; Taruvinga, 2009; Singh et 

al., 2004) were retrieved from Landsat-8 OLI and Sentinel-2 data sets. The spectral 

reflectance was extracted from the images, using points collected during field surveys. The 

extraction was done, using the Hawths spatial analysis tool embedded in ArcGIS 10.4.1 

software. Eighteen vegetation indices were computed (Table 2). The indices were selected 

based on their  successful  application  in  the  classification  and  analysis  of degraded 

surface mapping from the highlights made by previous studies and remotely sensed variables 

for validation (Seutloali et al., 2017; Kwanele and Njoya, 2017; King et al., 2005). 

 

2.6. Statistical data analysis 

One-way analysis of variance (ANOVA) was used to test whether there were significant 

differences between the mean reflectance of the six identified classes. Also, the variable 

ranking was performed to test the significant performance (α = 0.05) of spectral indices. 

These six classes we tested for a significant difference (α = 0.05) using reflected 

multivariate extracted values. The variable ranking was performed to identify the optimal 

spectral indices that can detect and discriminate eroded areas from other land cover types. 

To map eroded areas, three stages of analysis (presented in Table 3) were implemented 

based on the two sets of variables (bands and indices) derived from the two sensors. 
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2.7. Image classification and accuracy assessment 

The Discriminant Analysis (DA) classification ensemble was used to discriminate eroded 

lands from other land cover types. DA is a non-parametric classification ensemble, which 

searches for a linear combination that best discriminates amongst land cover types (Sibanda 

et al., 2015). Sibanda et al. (2015) and Dube et al. (2017), indicated that this non-

parametric classification, converts the reflectance data of land covers at each waveband into 

several components that account for the difference in reflectance amongst the land cover 

types. The DA algorithm assumes that the samples are random (Dube et al., 2017), which is 

the case with land management units samples that were used, hence appropriate for this 

kind of study. This algorithm provides cross-validated results with variable scores 

(Eigenvalues) that indicated the strength of a specific function in discriminating eroded 

surfaces under different land management units. 

 

Eigenvectors also knew as variable scores were produced by DA and used to evaluate the 

relative contribution of each waveband and vegetation indices to the DA function that 

optimally discriminated eroded surfaces under different management practices. The DA 

algorithm applies the Box test (Chi-square asymptotic approximation), Box test (Fisher’s F 

asymptotic approximation), Mahalanobis distances, Wilks’s Lambda test (Rao’s 

approximation), and Kullback’s test to test whether within-class covariance matrices were 
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equal. These tests exhibited significant classification power (P < 0.05). The classification   

was conducted using XLSTAT for Microsoft Excel 2013 software and confusion matrices 

were derived. In each confusion matrix, the columns represented the test data, while the 

rows represented the classes to which each sample was allocated to by the DA classifier 

(Fig. 1). 

 

To assess the classification accuracy of the results, quantity disagreement, and allocation 

disagreement was used following its best application from Sibanda et al. (2016) as a way of 

separating data into training tested data also recommended by Pontius and Millones (2011) 

as the successor of Kapa Statistic. Quantity disagreement is a sum of least perfect matches 

between the training (70%) and the testing (30%) reflectance datasets of each land 

management practice. Precisely, the quantity disagreement follows when the column total of 

a management practice class deviates from the row total of that class in a confusion matrix. 

To estimate the extent of the difference between Landsat 8 OLI data accuracy and that of 

Sentinel-2 MSI agreement between classification results and ground truth data was 

measured using the producer accuracy (PA), user accuracy (UA) and overall accuracy (OA) 

generated from the confusion matrices. These two parameters were used in accuracy 

assessment, as suggested by Pontius and Millones (2011). 

 

3. Results 

3.1. Discrimination of eroded areas from other land cover types 

Fig. 2 shows the differences amongst averaged spectral bands values or curves of eroded areas 

and other land cover types for the wet and dry seasons. ANOVA results reveal significant 

differences (p < 0.05), which implies eroded areas can be discriminated from other land 

cover types.   
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It  can  be  observed  that  sentinel-2  MSI  could  optimally  discriminate eroded areas from 

other land cover types, using bands located in the NIR (0.785–0.900 um), and red edge 

(0.698–0.785 um) and SWIR (1.565–2.280 um) regions for both dry and wet season (Fig. 

2b and d). Similarly, Landsat 8 OLI illustrated  the  ability  of  SWIR (1.560–2.300 um) 

region, followed by NIR (0.845–0.885 um) region to optimal in discriminate eroded areas 

eroded areas. However, the visible regions (from 0.433–0.578 um) from both sensors show 

close or inseparable reflectance curves, which implies weaker discrimination capabilities for  

both dry and  wet   season.  But  the  visible (0.450–0.680 um) region of Landsat 8 still 

became worse than that of Sentinel-2. Moreover, it can be observed that when using Landsat 

8 OLI data, eroded areas could be discriminated from the built-up and grass-shrublands in 

the SWIR region, when compared with the red and green region of the visible range on the 

electromagnetic (EM) spectrum. However, when using Sentinel 2 MSI data, more eroded 

areas were discriminated from the built-up and grass-shrublands in the red edge region as 

compared with the SWIR region in the wet season than dry season. When using Landsat 8 

OLI data, the dry season shows that most of the eroded areas were discriminated from the 

woodland-forest in the SWIR region of the EM spectrum but there were some overlaps in 

the visible region and NIR of EM spectrum (Fig. 2). On the other hand, when using 

Sentinel 2 MSI, most of the woodland-forest unit was differentiated from the eroded areas 
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in the SWIR, VRE, NIR and visible (red, green) regions of the EM spectrum except for the 

blue region of the spectrum (Fig. 2). 

 

3.2 Spectral indices performance 

Variable ranking (P < 0.05) was performed and of eighteen spectral indices used, results 

reveal that Landsat 8 derived NDVI and SAVI had the highest ranking in discriminating 

eroded areas from other land cover types. Using Sentinel-2, SAVI and GEMI had the highest 

ranking. 

 

3.3 Image  classification 

3.3.1 Analysis 1: soil erosion classification using spectral bands as an 

independent dataset 

Table 4 illustrates overall classification accuracies derived from Landsat 8 OLI and Sentinel 2 

as an independent data set for two seasons (dry and wet seasons). The results indicated that 

the spectral reflectance information of Landsat 8 OLI alone produced slightly good 

classification results, with an overall accuracy (OA) of 80.95% over Sentinel-2 in the dry 

season but Sentinel outperformed  Landsat  8 with ± 0.48 OA in the wet season. The results 

showed the superiority of Landsat 8 over Sentinel-2 in the dry season by achieving an 

overall classification accuracy of ± 80 while Sentinel performed better in the wet season 

(Table 4). Both sensors yielded good user and producer accuracies of above 50% in all 

land cover types of the study area for both dry and wet season. In agreement to this, eroded 

areas had user accuracy (UA) of 79.31%, using Sentinel-2, higher than that of Landsat 8 

(magnitude of 5.63%) in the dry season (Fig. 3). In the wet season, eroded areas specifically 

produced UA of 76% (Sentinel) and 66% using Landsat 8. Over the six classes, better soil 

erosion PA and UA were achieved from both sensors for the dry season data, whereas in the 

wet season, a UA of 96.30% using Landsat 8 OLI. 
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3.3.2. Analysis 2: soil erosion mapping classification using vegetation 

indices as an independent data 

For the dry season, Landsat 8 OLI derived vegetation indices performed slightly less in 

detecting and mapping eroded areas with an OA of 75.71%. On the other hand, Sentinel-2 

derived spectral indices had a considerably high OA of 81.90% (Table 4). For the wet season, 

derived vegetation indices performed slightly less in detecting and mapping eroded areas 

with an OA of less than 75.71% when compared with the dry season. When compared to 

classification results based on spectral bands (analysis I), the OA decreased by ± 5.24% 

for Landsat 8 OLI datasets and increased by ± 5.9% for Sentinel-2 MSI datasets in the wet 

season (Table 4). Furthermore, user and producer accuracies for Landsat 8 OLI also 

slightly decreased with most of the classes ranging from ± 2.78% to ± 18.92% whereas 
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Sentinel-2 maintained an increase of ± 2.58% to ± 14.70% in most of the classes (Table 

5). The results attained using Landsat 8 OLI and Sentinel-2 derived vegetation indices 

separately produced slightly high classification accuracies when compared to the use of 

spectral bands as an independent dataset. Sentinel-2 achieved better accuracy results than 

Landsat 8 with user accuracy of 79.31% in validating eroded areas and whilst Landsat 8 

OLI scored 78.13% of user accuracy, respectively. The difference with regards to the 

magnitude of performance using vegetation indices as a separate data set for detecting and 

mapping eroded areas was ± 6.19% between the two sensors. Landsat 8 OLI thus had slightly 

lower accuracies when compared to the 10-m Sentinel 2 data. 

 

 
 

3.3.2 Analysis 3: soil erosion classification using a combination of spectral 

bands and spectral vegetation indices 

As illustrated in Table 4 the combined dataset (i.e. spectral bands and vegetation indices) 

achieved high classification results, when compared to analysis 1 and analysis 2. For 

instance, in the dry season using the combined data set, Landsat 8 OLI and Sentinel-2 

produced high overall accuracies of 82.86% and 83.81%, respectively. Landsat 8 OLI sensor 

performed slight less than the Sentinel-2 sensor. Eroded areas were classified as a 
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producer and user accuracy results of about 80% demonstrating an increase of more than 

10% for both sensors, particularly in dry season. Furthermore, during the wet season eroded 

areas were classified with high UA and PA accuracies of ± 70% for both the sensors (Table 

4), although less than that of the dry season. The results obtained from combined dataset 

significantly improved classification accuracies, although Sentinel-2 produced slightly good 

classification accuracy of 85% when compared Landsat 8. In general, both sensors yielded 

the best performance in classifying eroded areas based on combined spectral bands and 

spectral vegetation indices (Fig. 3). 

 

3.3.3 Derived soil erosion maps 

Fig. 4 shows the derived maps of the eroded areas. Overall it can be observed that both 

Landsat 8 and Sentinel-2 sensors have depicted a similar pattern in the distribution of 

eroded areas and the trend is identical across the wet and dry seasons. The derived maps 

indicate that the central part of Sekhukhune is more eroded when compared to other areas. 

However, comparatively, Landsat 8 (Fig. 4a and c) demonstrate high levels of erosion when 

compared to Sentinel 2 (Fig. 4b and d). For instance, Fig. 5 demonstrates the area in 

percentage of each classified land cover class in comparison of the two sensors. Landsat 8 

showed that most classes are more than 5% when compared to Sentinel-2 in dry season while 

with more than 6% in a wet season (Fig. 5). 

 

Fig. 6 illustrates eroded areas as detected by the two sensors. Fig. 3 further shows the 

zoomed areas for clear visualization of the eroded areas. Extensive levels of eroded areas 

can be observed in Fig. 6(a)–(f). It can be observed that the majority of the land 

disturbances through erosion are concentrated along villages and agricultural fields. Fig. 7 as 

it also compares the two sensors; it can be perceived that sentinel-2 managed to detect 

eroded surfaces than Landsat 8 from the classified images. Moreover, it can be observed 

that the major disturbances in Sekhukhune are mainly related to croplands. Fig. 7(b) shows 

evidence of disturbed areas along agricultural farms. In addition, photographs were taken 

during field, observation indicates that some of the eroded surfaces are detected along 

villages (Fig. 8b and d). From the observation, it is noticed that some of the eroded surfaces 

were detected along mines as one anthropogenic activity (Figs. 7(d) and 8(c)) and also some 

of the open areas like abandoned croplands appear to experience severe erosion. 

 

3.3.5. Relationship between eroded areas and elevation 

Derived erosion layers were extracted and overlaid on the elevation map (Fig. 9). It can be 

observed that much of the area between 600 m and 900 m exhibited high levels of erosion 

when compared to low-lying and mountainous areas (Fig. 10). From the map, it can as well 

be noted that high proportions of eroded areas occurred in areas with an elevation between 

600 and 1500m. Moreover, areas in the extremes (495 m–600 and 1800 m– 2101 m) areas 

show less rate of soil erosion (Fig.  10). 
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4. Discussion 

The main essence of this study was to test the effectiveness of two new generation sensors in 

detecting and mapping the spatial distribution of eroded areas amongst other land cover 

types in the former homelands of Sekhukhune, South Africa. Accurate mapping of eroded 

areas provides a critical input dataset required for soil conservation strategies. Specifically, 

the study aimed at assessing soil erosion mapping abilities of two new non-commercial 

multispectral remote sensing data: Landsat 8 OLI and Sentinel-2, as well as determine the 

optimal bands and indices  that can detect and  map soil erosion in  former homelands. 

Also, the study sought to find out if the variations in terms of soil erosion can be explained 

using variations in elevation. 

 

Although the provision of remote sensing multispectral sensors provides an attractive 

alternative for mapping and monitoring eroded areas, one of their primary challenges is 

the inability to reduce the mapping error. Results of this study demonstrated the potential 

of the newly launched Sentinel-2 MSI in detecting and mapping eroded areas with  overall  

accuracy  results  that  are  slightly  higher  than  that  of Landsat 8 OLI. Combined spectral 

vegetation indices and extracted Sentinel-2 MSI spectral reflectance information were used 

to accurately discriminate eroded surfaces from other land cover types and high 
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classification accuracies in terms of percentages (OA, PA, and UA) were observed as 

compared to Landsat 8 OLI. The same results were also observed when only extracted 

spectral information were used with Sentinel-2 MSI slightly outcompeting Landsat 8 OLI. 

However, when spectral vegetation indices were used, Landsat 8 OLI performed slightly 

better than Sentinel-2 MSI. Overall, Sentinel-2 MSI outperformed Landsat 8 OLI. 

 

It can be observed that the use of the combined dataset improved the classification 

accuracies, were Sentinel-2 outperformed Landsat 8. The unique performance of the 

Sentinel 2 imagery can be attributed to the uniqueness of sensor design. For instance, 

Sentinel 2 is a pushbroom scanner, with numerous new and strategically positioned bands 

that provide unique information about the earth’s surface (Clark and Kilham, 2016; Guidici 

and Clark, 2017). For example, Sentinel-2′sNIR (0.785–0.900 um),  red  edge  (0.698–

0.785 um)  and  SWIR (1.565–2.280 um) region of the EM spectrum have been depicted as 

the most important bands providing separability windows for discriminating eroded surfaces 

from other land cover types. On the other hand, Landsat 8 OLI does not cover the red edge 

portion of the EM spectrum, hence slightly weaker performance. In that regard, the lack of 

information from the red edge region could also explain the unsatisfactory performance of 

Landsat 8 OLI in this study. The study by, Korhonen et al. (2017) has shown that the lack of 

red edge bands in most multispectral sensors downplays their potential in mapping 

environmental properties. 
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Moreover, since accuracies increased in both sensors after combining spectral bands and 

vegetation indices, the results of the current study, therefore, clearly indicate the importance of 

combining vegetation indices with spectral bands in the discrimination of eroded areas from 

other land cover types. This combination agrees with the result from the study made by 

Sibanda et al. (2016) where they demonstrated that the high classification accuracies exhibited 

using vegetation indices and wavebands in spectrally discriminating grasses grown under 

different management practices. Similarly, Matongera et al. (2017) integrated the spectral 

bands and derived vegetation indices yielding the best overall classification accuracy 

(80.08% and 87.80% for Landsat 8 OLI and Worldview-2 respectively) in detection and 

mapping the spatial configuration of bracken fern weeds. 

 

The results of this study show significant variations of the spatial distribution of eroded areas 

derived using the two sensors (Landsat 8 and Sentinel-2). For example, it can be observed 

from the results that the Sentinel-2 sensor with high spectral bands can depict eroded surfaces 

from other land cover types as when compared to the Landsat 8. Furthermore, spectral 

separability results indicated slight weaknesses of Landsat 8 when compared to Sentinel-2. 

However, this can be linked to the fact that images with low spectral reflectance have a 

challenge of mixed pixels. Although Landsat 8 demonstrated moderately poor quality (i.e. 

poor radiometric, spatial, spectral characteristics), particularly for detecting spatial 

occurrence of soil erosion, it holds a good record, especially large-scale mapping, as it is 

acknowledged by researcher on similar studies (Millington and Townshend, 1984; Whitlow, 

1986; Vrieling, 2006; Zhou et al., 2008; Taruvinga, 2009; Seutloali et al., 2017; Dube et al., 

2017). Based on the digital classification of Landsat thematic mapper and JERS-1 data, the 

study by Metternicht and Zinck (1998) detected and mapped different soil erosion feature in 

Bolivia and concluded that the synergy of Landsat TM provides a unique combination that 

allows more accurate identification of eroded areas. Furthermore, the study by Seutloali et al. 

(2017), in the former South African homelands of Transkei has indicated the effectiveness of 

utilizing Landsat data as a free and readily available multispectral remote sensing in mapping 

soil erosion levels. Even though Landsat 8 seems to yield comparatively good results than 

Sentinel-2 its spatial resolution makes it difficult to map eroded areas or vulnerable areas 

especially at plot or farm level due to mixed pixels. 

 

The plausible classification results can also be attributed to Discriminant Analysis (DA) 

algorithm applied in mapping eroded areas, performed best results. The studies made by 

Sibanda et al. (2015) and Dube et al. (2017) indicated the potential of using this algorithm over 

other classification techniques. Unlike the traditional classification approaches, such as the 

maximum likelihood classification algorithms, Sibanda et al. (2015) have shown that the DA 

classification ensemble has the potential to spectrally detect and discriminate complex classes. 

Furthermore, Dube et al. (2017) stated that this classification ensemble is repeatable and simple 

to use and it is illustrated by its usefulness across a wide range of research areas, including 

natural resources management, electronics, finance, and accounting. The major hindrance 

of this algorithm, however, is that it requires data sets that are normally distributed of which 

according to Dube et al. (2017), is not usually the case. 
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The study further showed that soil erosion varies with a change in elevation. It can be observed 

that most the mapped eroded areas are found within areas that are not in slightly higher 

elevation. For example, the results showed that much of the eroded areas occurred in highly 

elevated areas i.e. between 600 m and 900 m when compared to low-lying or flat areas. Slightly 

elevated areas are likely to experience soil erosion due to runoff during the rainy season 

(Balaguer-Puig et al., 2017). Rain water has limited time to infiltrate into the soil as the areas will 

be a slope, hence more runoff and vice-versa. 

 

 
 

This observation is also confirmed by previous studies that have found out that highly 

elevated experience more runoff and consequently due to high gravitational force. For 

example, the study by Mondal et al. (2017) used open source DEMs of different resolution 

and ascertained their effects on soil erosion which mostly were detected in less steeped 

areas and reports that the DEMs gives better results with less uncertainty. 
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Future research studies should, therefore, focus on using Sentinel 2 MSI, as it provides a 

better alternative for mapping and monitoring at various scales given it’s the high resolution 

and other related sensing characteristics. Also, the free and readily available nature of the 

sensors makes it the most optimal solution for mapping soil erosion problems in sub-Saharan 

Africa, which is currently characterized with limited resources for  accurate mapping of soil 

erosion for  management and monitoring of environmental problems. In a nutshell from a 

land management side, the results of this study are vital and relevant to related 

stakeholders, i.e. environmental managers, soil scientists, and agriculturalists, as  well  as  

policymakers. The findings provide  significant information on location and extent of the 

affected areas, and this will help in decision making, rehabilitation or remedial purposes. 

 

5. Conclusions 

The main aim of the study was to assess the effectiveness of Landsat 8 OLI and Sentinel-2 in 

mapping the spatial distribution of eroded areas in Sekhukhune district, Limpopo Province of 

South Africa. The findings of this work have shown that Sentinel 2 offers free, effective and 

time efficient of acquiring information on the spatial distribution of eroded areas. Sentinel 2 

produced an overall classification accuracy of more than 80% whilst Landsat 8 with more 

than 75% of all tested analytical stages. The integration of Landsat 8 and Sentinel 2 derived 

raw spectral bands and vegetation indices significantly (α = 0.005) improved the detection 

and mapping accuracies. The study further showed that soil erosion varies with a change in 

elevation. For example, much of the eroded areas were occur in elevated areas when 

compared to low-lying or flat surfaces. In summary, the findings of this study have shown that 

the new generation of readily available multispectral remote sensors together with 

discriminant analysis classification ensemble presents a potential for mapping and 

monitoring the spatial occurrence of eroded areas in resources constraints areas across 

different scales. 
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