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Since the severe acute respiratory syndrome (SARS) outbreak in 2003, human
coronaviruses (hCoVs) have been identified as causative agents of severe acute
respiratory tract infections. Two more hCoV outbreaks have since occurred, the
most recent being SARS-CoV-2, the causative agent of coronavirus disease 2019
(COVID-19). The clinical presentation of SARS and MERS is remarkably similar to
COVID-19, with hyperinflammation causing a severe form of the disease in some
patients. Previous studies show that the expression of the SARS-CoV E protein
is associated with the hyperinflammatory response that could culminate in acute
respiratory distress syndrome (ARDS), a potentially fatal complication. This immune-
mediated damage is largely caused by a cytokine storm, which is induced by
significantly elevated levels of inflammatory cytokines interleukin (IL)-1β and IL-6, which
are partly mediated by the expression of the SARS-CoV E protein. The interaction
between the SARS-CoV E protein and the host protein, syntenin, as well as the viroporin
function of SARS-CoV E, are linked to this cytokine dysregulation. This review aims to
compare the clinical presentation of virulent hCoVs with a specific focus on the cause
of the immunopathology. The review also proposes that inhibition of IL-1β and IL-6 in
severe cases can improve patient outcome.

Keywords: human coronavirus, SARS-CoV, MERS-CoV, SARS-CoV-2, COVID-19, envelope protein,
immunopathology

INTRODUCTION

Coronaviruses (CoVs) (order Nidovirales) all have positive sense, single-stranded RNA genomes
that range in size between 26 and 32 kb (Gorbalenya et al., 2006; Corman et al., 2018). While they
predominantly infect animals, some have, in decades past, been able to cross the species barrier and
infect humans. Seven human CoVs (hCoVs) have been identified, of which four – hCoVs 229E,
NL63, OC43, and HKU1 – are distributed globally, circulating continuously within the human
population, causing mild-to-moderate, self-limiting infections (Su et al., 2016). Conversely, the
other three hCoVs, – severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory
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syndrome (MERS)-CoV, and SARS-CoV-2 – are more
virulent and have caused deadly outbreaks during the past
two decades (Kahn and McIntosh, 2005; Pyrc et al., 2007;
Chafekar and Fielding, 2018).

SARS-CoV caused the first deadly hCoV outbreak in 2003,
which was successfully contained in little over 6 months
(Hewings-Martin, 2020). The SARS-CoV outbreak resulted in
8096 laboratory-confirmed infections worldwide with 774 deaths,
a case-fatality rate of 9.6% (World Health Organization [WHO],
2003). In 2012, the MERS-CoV was identified as the causative
agent of MERS in Saudi-Arabia (Broadbent, 2020). The MERS-
CoV outbreak of 2012 saw a case-fatality rate of 34.4% from
2499 laboratory-confirmed cases and 861 associated deaths
as of December 2019 (World Health Organization [WHO],
2020b). Then, at the end of 2019, SARS-CoV-2 (formerly
known as 2019-nCoV) was reported to be responsible for
another outbreak of a SARS-like disease in Wuhan, China
(CDC, 2020; Gralinski and Menachery, 2020; Kahn, 2020). As
of 20 May 2020, 4,789,205 confirmed cases of SARS-CoV-2
infections with at least 318,789 deaths were reported worldwide
(World Health Organization [WHO], 2020a).

Undoubtedly, SARS-CoV-2 has an infective profile vastly
different from that of the SARS-CoV and MERS-CoV. This
is especially evident by the incredibly rapid spread, but much
lower case-fatality rate of SARS-CoV-2. The disease associated
with the virus was named coronavirus disease 2019 (COVID-
19) and is the first hCoV outbreak to be declared a pandemic
(World Health Organization [WHO], 2020c,d). This review
compares the clinical presentation of the virulent hCoVs, SARS-
CoV, and MERS-CoV, to the symptoms reported in COVID-19
patients to date. Evidence is also presented to call attention to
the hCoV protein responsible for the immunopathology often
seen in severe cases of pathogenic hCoV infections, and how
this protein drives the hyperinflammatory response behind this
immunopathology. The major inflammatory cytokines involved
in this response are highlighted and linked to the inflammatory
cytokines reported in COVID-19 patients. Interim potential
treatment options that can minimize disease severity, alleviate
the burden of disease, and improve patient outcome are proposed
while antiviral and vaccine research is still ongoing.

SARS-CoV AND MERS-CoV: A
HISTORICAL PERSPECTIVE

SARS- and MERS-CoV cause more severe disease, even in
immunocompetent, healthy individuals (Avendano et al., 2003).
Patients infected with SARS-CoV present with symptoms
resembling atypical pneumonia, exhibiting fever, chills, headache,
malaise, myalgia, and dry cough (Lee et al., 2003; Peiris et al.,
2003a,b). Those infected with MERS-CoV report similar non-
specific symptoms, but demonstrate a much higher case-fatality
rate, particularly for elderly persons and those with underlying
medical conditions (Assiri et al., 2013a,b; Saad et al., 2014).
In some cases, a small proportion of both SARS and MERS
patients develop gastrointestinal symptoms (GIT) such as nausea,
vomiting, or diarrhea.

The incubation period for SARS is typically between 2 and 7
days, but can be up to 14 days, while for MERS it ranges from 2
to 14 days with a median of approximately 5 days (CDC, 2005,
2019). Unlike the four common hCoVs, the severity of SARS
and MERS could likely be attributed to their lack of continuous
circulation in the human population. The latter hCoVs had not
adapted well to humans as hosts and only managed to cause
outbreaks after crossing the species barrier, gaining access to
the human population from their animal reservoir through an
intermediate host (Perlman and Netland, 2009; Reusken et al.,
2013; de Wit et al., 2016).

Patients infected with SARS-CoV and MERS-CoV are at risk
of developing acute respiratory distress syndrome (ARDS), a
common complication for both viruses. SARS-CoV and MERS-
CoV infections have been linked to diffuse alveolar damage
(DAD) and are characterized by increased capillary permeability
in the lungs, fluid accumulation in the alveoli, coupled with
impaired fluid removal mechanisms that culminate in pulmonary
edema, inefficient gas exchange, and death (Fowler et al., 2003;
Lew et al., 2003; Ng et al., 2016). The incidence of ARDS can
be up to 25% in SARS patients, with an associated mortality
rate of approximately 50% in these patients (Fowler et al., 2003;
Lew et al., 2003). In MERS patients, the incidence of ARDS
was less commonly reported, but could develop in 12–20% of
patients (Assiri et al., 2013b; World Health Organization Mers-
CoV Research Group, 2013). In comparison, some studies have
reported that 17–41% of COVID-19 patients had developed
ARDS (Chen N. et al., 2020; Wu et al., 2020).

Pro-inflammatory cytokines drive the inflammatory response
behind ARDS and are a major contributor to the progression
thereof (Channappanavar and Perlman, 2017). Several studies
report elevated levels of pro-inflammatory cytokines and
chemokines [i.e., interleukin (IL)-1β, IL-6, IL-8, IL-12, tumor
necrosis factor α (TNF-α), interferon γ (IFN-γ), CXCL9,
CXCL10, CCL2, CCL3, CCL5, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and interferon-γ inducible protein
10 kD (IP-10)] associated with the development of ARDS in both
SARS and MERS patients (Perlman and Netland, 2009; Totura
and Baric, 2012; Channappanavar and Perlman, 2017).

SARS-CoV-2

A lack of epidemiological and serological information on
SARS-CoV-2 currently limits our understanding of COVID-19,
but patient data from hospitals in Wuhan have provided
some insight into its clinical presentation. Patients exhibit
fever, dry cough, myalgia, and shortness of breath with ARDS
as a common complication (Chen N. et al., 2020; Huang
et al., 2020; Wang D. et al., 2020). A small number of
people also developed GIT symptoms (Guan et al., 2020;
Guo et al., 2020). Similar to SARS and MERS, the elderly
and those with underlying, chronic medical conditions, such
as diabetes, hypertension, cardiovascular disease, and chronic
obstructive pulmonary disease (COPD) are more prone to serious
outcomes; complications associated with ARDS and a cytokine
storm, often succumbing to the infection (Guan et al., 2020;
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Huang et al., 2020). Interestingly, patients who developed ARDS
and are admitted to the ICU also have higher levels of
inflammatory cytokines, consistent with severe SARS and MERS
infections (Lau et al., 2013; Channappanavar and Perlman, 2017;
Mahallawi et al., 2018; Chen N. et al., 2020; Huang et al., 2020).

Like SARS and MERS, these cytokines typically include IL-1,
IL-2, IL-4, IL-7, IL-10, IL-12, IL-13, IL-17, granulocyte colony-
stimulating factor (GCSF), macrophage colony-stimulating
factor (MCSF), IP-10, monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein 1-α (MIP-1α),
hepatocyte growth factor (HGF), IFN-γ, and TNF-α and,
when released collectively in hyperinflammatory conditions, are
referred to as a cytokine storm (Chen C. et al., 2020; Huang
et al., 2020; Liu et al., 2020; Zhou et al., 2020). Already, several
reports have remarked on the clinical similarity between COVID-
19, MERS and SARS with respect to its clinical presentation
(Chan et al., 2020; Chen G. et al., 2020; Chen T. et al., 2020;
Chhikara et al., 2020; Giwa et al., 2020; Huang et al., 2020; Lin
et al., 2020; Prompetchara et al., 2020; Rasmussen et al., 2020;
Wang D. et al., 2020; Wang Y. et al., 2020; Xie and Chen, 2020;
Zhang W. et al., 2020).

The exact cause of this immune-mediated damage, however,
remains largely unknown. However, the answer may lie in
the mechanics of the viral life cycle and the components
that orchestrate it. After all, some viral proteins, especially
those involved in pathogenesis, adversely affect the host
cell and can be directly implicated in the development
of symptoms and, ultimately, the clinical presentation
(Manjarrez-Zavala et al., 2013).

VIRAL PROTEINS: AT THE EXPENSE OF
THE HOST

Viruses by their very nature rely entirely on their host cells
for replication, propagation, and, ultimately, survival which is
achieved by subverting the protein-protein interaction (PPI)
networks of their host cells (Gladue et al., 2012; Guth and
Sodroski, 2014; Brito and Pinney, 2017). This subversion requires
that viruses encode proteins with the necessary motifs to exploit
the network of proteins that govern certain host cell processes
of benefit to them (Davey et al., 2011; Zheng et al., 2014). The
specific motifs, or stretches of peptide sequences, exploited by
viruses have received some attention, but, for the most part,
have been quite understudied, despite their importance in viral
infections. They are grouped into different categories depending
on the purpose of the motif and these motifs are employed by
several pathogenic viruses to exploit the host cell pathways that
can promote the progression of the viral life cycle (Gould et al.,
2010; Davey et al., 2011; Sobhy, 2016).

About one-third of the 3′-carboxyl terminus of hCoVs
genomes encode for structural proteins as well as additional,
so-called accessory proteins (Masters, 2006). While the four
structural proteins, spike (S), membrane (M), nucleocapsid
(N), and envelope (E), are important for the assembly of a
structurally complete virus, the accessory proteins are generally
not essential for viral replication in vitro (Mortola and Roy, 2004;

Masters, 2006; Liu et al., 2014; Wang et al., 2017). While
each structural protein has its respective function(s), the E
protein is the most enigmatic of them all and is also involved
in very important aspects of the coronaviral life cycle. Its
involvement in viral assembly is evident by its requirement
in the formation of the viral envelope and virus-like particles,
while the transmembrane domain (TMD) of E is necessary
for the release of viral particles (Corse and Machamer, 2003;
Ruch and Machamer, 2011). Of particular relevance to this
paper, and the current COVID-19 pandemic, however, is the
function of E in the pathogenesis of hCoV infections. Data on
the role of E exists predominantly for the prototypic SARS-
CoV, which has been studied the most extensively, with some
studies for MERS-CoV E.

E PROTEIN: A CONTRIBUTOR TO HCOV
PATHOGENESIS

Effective management and patient care of COVID-19 dictates
that we have a better understanding of the disease initiation and
progression, or pathogenesis. In the case of virulent viruses, it
stands to reason that the natural progression of the viral life cycle
would adversely affect the host. These adverse effects inherently
give rise to symptoms and, ultimately, manifest clinically. Two
documented functions of the hCoV E protein contribute to the
pathogenesis of severe hCoV infections.

The PDZ-Binding Motif (PBM)
All CoV E proteins share the same general architecture
(Supplementary Figure S1); a short, hydrophilic amino (N)-
terminus, approximately 8–12 residues in length, a subsequent
21–29 residue long hydrophobic region which typically contains
two to four cysteine residues, followed by the hydrophilic
C-terminus, which accounts for the largest portion of the protein,
39–76 residues in length (Masters, 2006). The last four residues
of the C-terminus consists of a motif that allows binding to
the postsynaptic density protein 95 (PSD95)/Drosophila disc
large tumor suppressor (Dlg1)/zonula occludens-1 protein (zo-
1) (PDZ) domain; a domain found in all eukaryotic host cells
that functions as a protein-protein recognition sequence to drive
host PPIs of significance to viruses (Javier and Rice, 2011). These
PDZ domains are found in a multitude of eukaryotic proteins and
bind to a specific peptide sequence usually found at the end of the
target protein C-terminus (Hung and Sheng, 2002; Gerek et al.,
2009). Some viruses, including SARS-CoV, encode proteins with
a PDZ-binding motif (PBM) that enables them to exploit the PDZ
domains of these host proteins to their advantage (Teoh et al.,
2010; Castaño-Rodriguez et al., 2018). This strategy is employed
by viruses to modulate various cellular processes including
cell-cell junctions, cellular polarity, and signal transduction
pathways for the purpose of viral replication, dissemination,
and pathogenesis (Javier and Rice, 2011). The terminal portion
of the SARS-CoV E protein C-terminus contains a PBM that
contributes to its viral pathogenesis and is known to interact with
five host proteins (Schoeman and Fielding, 2019). It is classified
as a type II PBM, characterized by the consensus sequence
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X-ϕ-X-ϕCOOH, where X represents any amino acid and ϕ is a
hydrophobic residue, usually V, I, or L (Harris and Lim, 2001).

The role of SARS-CoV E in the immune-mediated pathology
of severe SARS infections is very well demonstrated by its
interaction with the host cell protein, syntenin (Jimenez-
Guardeño et al., 2014). Mice infected with recombinant SARS-
CoV (rSARS-CoV), containing a fully functional E protein,
exhibited lung pathology characterized by severe edema, areas
of profuse hemorrhage, and cellular infiltrates. Further analysis
showed that the PBM of SARS-CoV E interacted with the PDZ
domain of syntenin and triggered an overexpression of pro-
inflammatory cytokines that was mediated by the p38 mitogen-
activated protein kinase (MAPK) pathway. Expression of pro-
inflammatory cytokines IL-1β and IL-6 as well as the acute phase
protein serum amyloid A was notably increased. This resulted in
an exacerbated immune response toward the infection and the
characteristic tissue damage and edema ensued. The infection
culminated in ARDS, consistent with severe cases of SARS-
CoV infection. Mice infected with rSARS-CoV succumbed to
the infection, while all mice infected with rSARS-CoV lacking
E (1E) survived (Jimenez-Guardeño et al., 2014). Moreover,
the authors reported an 80% increase in the survival rate
of mice infected with rSARS-CoV when treated with a p38
MAPK inhibitor. This, notably, demonstrates a clear relationship
between the pathogenesis and clinical manifestation of SARS-
CoV infections, as a direct consequence of the E protein. It
also shows that the mortality rate of infected cases can be
markedly reduced by limiting the aberrant immune response with
a p38 MAPK inhibitor.

So far, the novelty of SARS-CoV-2 has prohibited its complete
characterization which makes it challenging to confirm whether
the functions of its viral proteins do, in fact, coincide with those
already established for other hCoVs, like SARS-CoV. Despite its
novelty, SARS-CoV-2 shows a remarkable similarity to SARS-
CoV in both clinical and genetic features, making it easier
to use our existing knowledge of SARS-CoV to understand
SARS-CoV-2 better. Previous reports have remarked that the
overall sequence similarity of the E protein among hCoVs is
poor (Supplementary Table S1; Ye and Hogue, 2007; Lopez
et al., 2008). Still, comparing the E proteins of the pathogenic
hCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2, shows a very
high sequence similarity between SARS-CoV E and SARS-CoV-
2 E, confirmed by only one other report and supporting the
observed clinical similarity between the two hCoVs (Grifoni
et al., 2020). This similarity, however, is not shared with the
MERS-CoV E protein.

A sequence comparison of the virulent hCoV E protein
sequences demonstrates that important features such as the
topological domains, conserved residues, and the PBM also
remain largely intact across these hCoVs (Figure 1). The
secondary structure of SARS-CoV E shows that it contains one
TMD after a short N-terminus and, based on the similarity
between SARS-CoV E and SARS-CoV-2 E having only a
four amino acid difference, SARS-CoV-2 E follows the same
architecture; one TMD that is most likely in the same location
and consists of the same residues (Figure 1). Certain key residues
are also conserved, particularly the cysteine residues at positions

40, 43, and 44 (C40, C43, C44), and a proline residue at
position 54 (P54) (Figure 1). Cysteine residues adjacent to the
TMD of integral membrane proteins, like E, serve as targets for
palmitoylation (He et al., 2012). In different CoV E proteins,
palmitoylated cysteine residues are important for viral assembly,
protein-membrane interaction, and stabilization of the E protein
(Boscarino et al., 2008; Lopez et al., 2008). The importance
of residues C40, C43, and C44 is, thus, highlighted by their
conservation and proximity to the TMD. A chimeric SARS-CoV
E protein showed the importance of P54 in the localization of
E to the Golgi complex as a chimeric E protein with a mutated
P54 residue localized to the plasma membrane instead (Cohen
et al., 2011). The conservation of residues C40, C43, C44, and P54
suggest that they might serve similar purposes in SARS-CoV-2
than what they do in SARS-CoV.

The PBM of each hCoV, except MERS-CoV, also consists of at
least two definitive hydrophobic residues (V, I, or L), consistent
with the consensus sequence for a type II PBM (Figure 1; Harris
and Lim, 2001). Only one of the four PBM residues in the PBM
of MERS-CoV E is hydrophobic and another (tryptophan) is
slightly more hydrophilic than hydrophobic, based on the Kyte
and Doolittle (1982) hydropathy table. However, the scarcity of
information on hCoV E proteins other than SARS-CoV, makes it
difficult to determine the exact reason for this. Nevertheless, the
PBMs of SARS-CoV and SARS-CoV-2 are remarkably identical
and, given the role of E in SARS-CoV pathogenesis, it supports
the similarity in clinical presentation and severity of these two
hCoV infections. It also suggests that the SARS-CoV-2 E PBM
might interact with syntenin in manner similar to SARS-CoV E.
Accordingly, this would allow for treatment strategies and patient
care to adopt a more focused approach as the existing data on
the SARS-CoV E PBM and its role in SARS pathogenesis would
be most beneficial in mitigating the immunopathology often
seen in severe COVID-19 cases. Understandably, this sequence
similarity merely suggests the existence of a relationship between
the similarity of the SARS-CoV and SARS-CoV-2 E protein PBMs
and the clinical presentations of these hCoV infections. Although
it certainly is noteworthy, experimental evidence is required to
corroborate whether this relationship is merely incidental, or
whether it could potentially allude to the clinical manifestation
or severity of a particular hCoV infection and whether it might
be of therapeutic value in COVID-19 patients.

The SARS-CoV E PBM further contributes to viral
pathogenesis by its interaction with the PDZ domain of the
protein associated with Caenorhabditis elegans lin-7 protein
1 (PALS1) (Teoh et al., 2010). The binding of SARS-CoV E
to PALS1, a protein normally associated with tight junctions,
redistributed it from the tight junctions of the lung epithelium
to the ER-Golgi intermediate compartment (ERGIC) where
E assembles. The authors proposed that the redistribution of
PALS1 can progressively disrupt tight junctions and contribute
to the desquamation of the alveolar wall, creating a breach
in the epithelial barrier. This would allow virions to infiltrate
the underlying tissues and reach the systemic circulation,
disseminating to other organs. Although the study only managed
to demonstrate the E-mediated redistribution of PALS1 in vitro,
the clinical importance of this interaction is consistent with
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FIGURE 1 | A sequence comparison of the envelope (E) protein amino acid sequences for the pathogenic human coronaviruses (hCoVs). The comparison was
constructed using Jalview software (v 2.11.1.0) and the important sequence features transmembrane domain (TMD) (brown), conserved cysteine (blue) and proline
(red) residues, and the PDZ-binding motif (PBM) (orange) are indicated. The E protein reference amino acid sequences for SARS-CoV (P59637), MERS-CoV
(K9N5R3), and SARS-CoV-2 (QHD43418.1), along with their accession IDs, were obtained from the NCBI database.

histopathological observations made in lung biopsies obtained
from SARS-CoV-infected patients and cynomolgus macaques.
The biopsies consistently demonstrated that severe DAD
to the lung was accompanied by a massive infiltration of
monocytes and macrophages in the alveolar space, a thickened
epithelial wall, fused alveolar septa, and hemorrhagic septa
with necrotic lesions (Kuiken et al., 2003; Peiris et al., 2003a;
Li et al., 2005). Further corroboration comes from studies
that show massive recruitment of leukocytes to the site of
infection through chemokines and cytokines produced by
human airway epithelia, strongly implicating inflammation in
the contribution of DAD (Lau and Peiris, 2005; Thiel and Weber,
2008; Channappanavar and Perlman, 2017).

Granted, although this interaction has only been
demonstrated in SARS-CoV, it should not diminish the
possibility of it occurring in a similar fashion in other virulent
hCoV infections such as SARS-CoV-2. It is likely that the PBM
of SARS-CoV-2 E can also interact with PALS1 in an analogous
manner and cause dissemination of the virus. In fact, the
presence of a PBM at the C-terminus of each virulent hCoV
indicates that they might all be capable of interacting with host
proteins, such as syntenin and PALS1, similar to SARS-CoV.
Experimental evidence is, of course, warranted to provide a solid
scientific basis, but it would also provide much need valuable
insight into why hCoVs clinically manifest in different severities.

A more recent in silico study used molecular docking to show
that the deletion of glutamic acid 69 (E69) and glycine 70 (G70)
residues from SARS-CoV E and the substitution thereof with
arginine 69 (R69) in SARS-CoV-2 E enhances binding between
SARS-CoV-2 E and PALS1 (De Maio et al., 2020). Acquisition of
R69 produced a salt bridge and several hydrogen bonds between
E and the PALS1 binding pocket, strengthening the interaction
between E and PALS1. In comparison, the small sidechain of G70
prohibited the formation of such bonds between SARS-CoV E
and PALS1, reducing the strength of the E-PALS1 interaction.
The Gibbs free energy of SARS-CoV-2 E (−97.10 kcal/mol) also
showed that it had a higher affinity for PALS1 than SARS-CoV
E (−63.62 kcal/mol) did. This data demonstrates that SARS-
CoV-2 E could disrupt the pulmonary epithelial barrier and
amplify the inflammatory process more effectively than SARS-
CoV E does. It could also alter the nature of PPIs with other viral
and host proteins.

Channel Activity and the Inflammasome
The hydrophobic TMD of the E protein is an important
component necessary for the assembly of a multimeric structure
known as a viroporin; low-molecular-weight proteins that

typically contain an amphipathic α-helix and are encoded by
many animal viruses. Viroporins oligomerize and can channel
various ions, altering the permeability properties of membranes
within the host cell. Upon oligomerization, viroporins form a
hydrophilic pore that permits the transport of ions across the
membrane as the hydrophilic residues face the interior of the
pore and the hydrophobic residues face outward toward the
phospholipid bilayer (Gonzalez and Carrasco, 2003; Guo et al.,
2015). The SARS-CoV E protein viroporin possesses ion-channel
(IC) activity and can transport various ions (Na+, K+, Cl−,
and Ca2+) (Wilson et al., 2004; Nieto-Torres et al., 2015). The
importance of this IC property is evident in its contribution to
the pathogenesis observed in a SARS infection.

The (NOD)-like receptor protein 3 (NLRP3) inflammasome
is a multimeric molecular platform that can be activated by
several factors, including increased levels of intracellular Ca2+,
and contributes to the inflammatory response by stimulating
IL-1β production (Allen et al., 2009; Jo et al., 2016). The IC
activity of the SARS-CoV E protein has been linked to activation
of the inflammasome and disease severity (Nieto-Torres et al.,
2014). Mice infected with IC-proficient rSARS-CoV E developed
pulmonary edema, lung damage, and succumbed to the infection
due to significantly increased levels of inflammatory cytokines IL-
1β, IL-6, and TNF-α. Conversely, mice infected with IC-deficient
rSARS-CoV E exhibit reduced levels of inflammasome-activated
IL-1β, and mice recovered from the infection. The IC activity of
SARS-CoV E, therefore, directly correlates with inflammasome
activation and an ensuing inflammatory response that causes
lung damage. The inflammatory pathology was attributed to a
Ca2+ imbalance that activated the NLRP3 inflammasome and
induced the production of IL-1β (Nieto-Torres et al., 2015).
Only two other hCoV E proteins have been shown to possess IC
activity: MERS-CoV and hCoV-229E (Wilson et al., 2006; Surya
et al., 2015). However, since no experimental evidence exists to
link the IC property of either E protein to NLRP3 inflammasome
activation, it can only be hypothesized as to whether these hCoVs
are equally capable of inducing a pathologic immune response
as SARS-CoV does.

Several other pathogenic viruses also possess viroporin
proteins capable of activating the NLRP3 inflammasome; the
small hydrophobic (SH) protein of respiratory syncytial virus,
influenza virus M2 protein, encephalomyocarditis virus 2B
protein, rhinovirus 2B protein, and the hepatitis C virus (HCV)
p7 protein (Guo et al., 2015). It is also worth mentioning that a
number of viroporin inhibitors have been researched in an effort
to inhibit the IC properties of the picornavirus, HCV, SARS-CoV,
HIV-1, and influenza A virus. Most inhibitors, however, have
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FIGURE 2 | A summary of the role that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein plays in the immunopathology of
severe coronavirus disease 2019 (COVID-19) cases. The E protein can induce a cytokine storm through protein-protein interaction (PPI) with the host protein
syntenin and is mediated by the last four residues of the E protein which constitute the PDZ-binding motif (PBM). This activates the p38 MAPK signaling pathway,
triggering the release of inflammatory cytokines. The E protein can also stimulate the release of the inflammatory cytokine interleukin (IL)-1β through its ion-channel
(IC) activity. It forms a viroporin that can channel calcium ions (Ca2+), which activates the NLRP3 inflammasome that produces IL-1β. The resulting cytokine storm is
responsible for the immune-mediated pathology often seen in severe COVID-19 cases and give rise to complications such as pulmonary edema and the acute
respiratory distress syndrome (ARDS).

exhibited some challenges, including mere moderate inhibition,
the formation of resistant variants of viruses, and cytotoxic
concentrations, preventing the clinical implementation of such
inhibitors (Griffin et al., 2008; Nieva et al., 2012; OuYang and
Chou, 2014). Given the challenges faced with these inhibitors,
perhaps it would be more prudent to divert the attention
toward addressing the fundamental source of viroporins: the viral
protein itself. The involvement of the SARS-CoV-2 E protein in
the cytokine storm, and the consequent immunopathology of
COVID-19, would make the viral protein itself a much more
suitable therapeutic target than simply disrupting its PPIs or
its IC activity alone. Based on the literature for the pathogenic
hCoVs, SARS-CoV and MERS-CoV, we propose that the PBM
and IC activity of SARS-CoV-2 E is very likely responsible for the
cytokine storm induction and the consequent immunopathology
often seen in severe COVID-19 cases (Figure 2).

CYTOKINES IL-1β AND IL-6 IN SARS
AND COVID-19 IMMUNOPATHOLOGY

The presence of IL-1β in the pathogenesis and immunopathology
of SARS has been well-demonstrated. Interleukin-1β is a potent

inflammatory cytokine – the result of a series of cellular signals
and stimuli, involving the nuclear factor kappa B (NF-κB)
pathway and the NLRP3 inflammasome (Jo et al., 2016). A variety
of stimuli is capable of inducing IL-1β production, including
products of infectious agents, ionic imbalances inside the cell,
exogenous particulates, and molecules associated with cellular
damage (Jo et al., 2016). Once released into circulation, IL-
1β can cause inflammation and perpetuate the inflammatory
response by inducing IL-6 production (Tosato and Jones, 1990;
Cahill and Rogers, 2008; Tisoncik et al., 2012). Mice deficient
in IL-1β displayed no levels of circulating IL-6 in response to
turpentine (Zheng et al., 1995). Interleukin-1β can also modulate
the production of IL-6 through STAT3 and NF-κB-dependent
signaling pathways and involves acute phase proteins produced
by the liver (Bode et al., 2012). This demonstrates that the NF-
κB pathway is quite involved in the production of inflammatory
cytokines and that targeting this pathway could be of therapeutic
benefit at multiple levels: IL-1β production, IL-6 production, and
IL-1β-induced IL-6 production.

Moreover, mice infected with IC-deficient rSARS-CoV E
exhibited reduced levels of inflammasome-activated IL-1β in
their lungs (Nieto-Torres et al., 2014). This reduction in
IL-1β was accompanied by reduced levels of TNF and IL-6,
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demonstrating the importance of the E protein in the induction
of an aberrant inflammatory response in SARS-CoV mice
that contributes to the development of a cytokine storm, and
ultimately culminates in ARDS. A recent preprint, published
by Xia et al. (2020), reported that SARS-CoV-2 E alone was
sufficient to induce a cytokine storm that caused damage similar
to that observed in ARDS, both in vitro and in vivo. Notably,
SARS-CoV-2 E induced IL-1β, IL-6, and TNF-α production
resulting in histopathological features consistent with ARDS
as observed in the spleen and lungs of mice. Inhibition of
the E protein IC activity significantly reduced IL-1β, IL-6, and
TNF-α production, corroborating its importance in COVID-
19 immunopathology.

DISCUSSION AND CONCLUSION

Despite the importance of the hCoV E protein, it is still
poorly characterized and quite understudied. And although
much progress has been made in hCoV research, the novelty
of SARS-CoV-2 clearly leaves much still to be answered. The
sequence similarity between the E proteins of SARS-CoV and
SARS-CoV-2 strongly suggests the conservation of its functional
characteristics (IC activity and PBM), thereby serving nearly
identical purposes in the pathogenesis of COVID-19. Admittedly,
a great divergence exists in the amino acid sequences of the
E protein between the different CoV groups and, to an extent,
within some of the groups. But the overall features and functions
of the CoV E still remain largely intact (Masters, 2006). The
importance of the E protein is evident by its involvement in the
pathogenesis of SARS-CoV, and possibly SARS-CoV-2, making it
an ideal therapeutic candidate. Already, a p38 MAPK inhibitor
has shown promise in mice by alleviating the inflammation-
induced symptoms brought on by the SARS-CoV E protein.
Given the involvement of hCoV E in various aspects of the
coronaviral life cycle, targeting E could hold the potential to
stopping the spread of infection while simultaneously alleviating
the symptoms and managing complications such as ARDS
in severe SARS-CoV infections. Coronaviral research would
certainly benefit from investigating the therapeutic potential
of a p38 MAPK inhibitor in a SARS-CoV-2 infection of
mice. The gravity of the COVID-19 pandemic warrants more
research into hCoVs and how such outbreaks can be addressed,
now more than ever.

Currently, vaccine and antiviral research are being done at a
near-unprecedented rate, but while an effective countermeasure
might only be available in as soon as 12 months, the hCoV
pandemic continues to have a significant impact on people
all over the world. The SARS-CoV E protein is paramount
to the pathogenesis of the SARS disease as rSARS-CoV-
1E viruses show no excessive inflammatory response and
spare mice from immune-mediated lung damage. Our paper
proposes the use of immunomodulatory or anti-inflammatory
drugs that specifically target the already well-characterized
inflammatory pathways activated by SARS-CoV E. Given
the importance of IL-1β and IL-6 in the development of
ARDS, drugs that expressly target IL-1β and IL-6 could

lead to more favorable patient outcomes and reduce the
rising mortality rate of COVID-19 while vaccine and antiviral
research continue.

Amid the global rise in the mortality rate of COVID-
19, effective management of inflammation and the cytokine
storm, the crucial features of ARDS, should be of considerable
priority. The use of the IL-6 receptor blocker, tocilizumab
effectively reversed the cytokine storm in acute lymphocytic
anemia (Grupp et al., 2013; Barrett et al., 2014). Tocilizumab
has, accordingly, been suggested for use in the treatment of
severe COVID-19, where Xu et al. (2020) has reported some
promise in severe COVID-19 patients (Giamarellos-Bourboulis
et al., 2020; Zhang C. et al., 2020). Already, blocking IL-1β

activity in a broad array of inflammatory diseases has shown
reduced disease severity and a reduction in the burden of
disease (Dinarello, 2011). Inhibitors of IL-1 typically include
the IL-1 receptor antagonist (Anakinra), the soluble decoy
receptor (Rilonacept), and the anti-IL-1β monoclonal antibody
(Canakinumab) (Schlesinger, 2014). The efficacy of rilonacept
and canakinumab has even garnered approval by pharmaceutical
companies, making such IL-1-directed therapies deserving of
study as potential treatments to manage severe cases of COVID-
19 (Dinarello et al., 2012).

The cellular pathways that lead to IL-1β and IL-6
production are well-characterized and could also serve
as valuable therapeutic targets. A p38 MAPK pathway
inhibitor led to an 80% survival rate of rSARS-CoV-
infected mice, showing both the relevance of this pathway
in SARS infections and the potential of this inhibitor in
successfully managing severe cases of COVID-19 (Jimenez-
Guardeño et al., 2014). Furthermore, inhibition of the Janus
kinase/signal transducer and activator of transcription (JAK-
STAT) pathway by ruxolitinib is effective in the treatment of
hemophagocytic lymphohistiocytosis, a hyperinflammatory
condition also characterized by a cytokine storm (Maschalidi
et al., 2016). The JAK-STAT pathway is a common signal
transduction pathway involved in the expression of many
other cytokines also responsible for the immune-mediated
damage of ARDS typical of severe SARS cases. Accordingly,
this pathway can also be a target for blocking multiple
cytokines simultaneously.

The importance of the hCoV E protein and its associated
pathways is also demonstrated in the potential of a SARS-
CoV-2 vaccine that lacks an E protein. Without the E protein
to induce a cytokine storm, and subsequent complications
like ARDS, undesired side-effects will be limited, while the
vaccine still confers the necessary protection. Some studies
have already demonstrated the potential of developing rSARS-
CoV-1E vaccines, or ones with a mutated E protein to
limit pathogenesis while still conferring the needed protection
against a viral challenge after vaccination (DeDiego et al., 2007;
Lamirande et al., 2008; Regla-Nava et al., 2015). Vaccines based
on rSARS-CoV-1E retain their immunogenicity and efficacy,
developing robust cellular and humoral immune responses and
are effective despite an impaired ability to replicate in the host.
One study even showed that a rSARS-CoV-1E-based vaccine
can protect both young and aged mice, with no clinical disease
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observed in mice of any ages (Fett et al., 2013). The authors,
however, cautioned prudence in the design of such vaccines,
highlighting the need to possibly introduce additional mutations
to enhance safety due to the recombinatory nature of CoVs
(Masters, 2006; Perlman and Netland, 2009).

Admittedly, data on CoV E is sparse, but it should not
reflect negatively on the importance of the protein in hCoV
infections, especially not in the case of serious ones such as
SARS-CoV-2. On the contrary, the importance of the E protein
should, instead, underpin the need for more research in an
effort to limit any likelihood of a future outbreak, possibly
a more severe one. If there is anything to learn from the
SARS, MERS, and COVID-19 outbreaks, it is that we do not
know when they will happen nor what the nature of the
outbreak will be.
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FIGURE S1 | Multiple sequence alignment (MSA) of the envelope (E) protein amino
acid sequences from the seven human coronaviruses (hCoVs). The alignment was
done using the Clustal OMEGA algorithm set at default parameters and performed
and visualized with Jalview software (v 2.11.0). Topological domains (blue), the
transmembrane domain (brown), and the PDZ-binding motif (PBM) (orange) are
indicated. The PBM of SARS-CoV is confirmed, whereas the PBM for other
hCoVs are putatively indicated. Accession IDs for hCoV-229E (P19741),
hCoV-NL63 (Q6Q1S0), SARS-CoV (P59637), SARS-CoV-2 (QHD43418.1),
MERS-CoV (K9N5R3), hCoV-OC43 (Q04854), and hCoV-HKU1 (Q5MQC8).

TABLE S1 | Pairwise alignment indicating the percentage (%) similarity of the
envelope (E) protein between the seven existing human coronaviruses (hCoVs)
after multiple sequence alignment (MSA). The alignment was done using the
Clustal OMEGA algorithm set at default parameters and performed and visualized
with Jalview software (v 2.11.0). Accession IDs for hCoV-229E (P19741),
hCoV-NL63 (Q6Q1S0), SARS-CoV (P59637), SARS-CoV-2 (QHD43418.1),
MERS-CoV (K9N5R3), hCoV-OC43 (Q04854), and hCoV-HKU1 (Q5MQC8).
hCoVs are grouped according to genera. a-CoVs: hCoV-229E and hCoV-NL63;
b-CoVs: SARS-CoV, SARS-CoV-2, MERS-CoV, hCoV-OC43, hCoV-HKU1.
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