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An exploratory study of contractile force production in muscle
fibers from patients with inflammatory myopathies
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Abstract

Introduction: The mechanism by which weakness develops in idiopathic inflamma-

tory myopathies (IIMs) is still unclear. In this study we investigated the maximum

force of single muscle fibers from patients with IIMs.

Methods: Permeabilized single muscle fibers from patients with IIMs and healthy

controls were subjected to contractility measurements. Maximum force and specific

force production (maximum force normalized to fiber size) and fiber type were deter-

mined for each isolated fiber.

Results: A total of 178 fibers were studied from five patients with IIMs and 95 fibers

from four controls. Specific force production was significantly lower in the IIM group

for all fiber types.

Discussion: The findings from this exploratory study suggest that weakness in IIMs

may, in part, be caused by dysfunction of the contractile apparatus. These findings

provide a basis for further studies into the mechanisms underlying weakness in IIMs.
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1 | INTRODUCTION

Idiopathic inflammatory myopathies (IIMs) are autoimmune muscle

disorders of unknown cause that include dermatomyositis (DM), poly-

myositis (PM), necrotizing autoimmune myopathy (NAM), and

inclusion-body myositis (IBM). In contrast to many hereditary myopa-

thies, where abnormal or dysfunctional proteins may lead to impaired

muscle fiber contractility,1–3 the mechanism of weakness in IIMs is

less clear. Weakness is unlikely to be due solely to the loss of fibers

from inflammatory necrosis, as the degree of inflammation and muscle

weakness do not correlate,4 the number of necrotic fibers from histo-

logical analysis is usually small,5–8 and typically a rapid improvement

in strength follows treatment with corticosteroids.6,7 Theoretically,

weakness results from either a decrease in fiber numbers or impaired

contractile function of individual fibers. We hypothesized that inflam-

mation leads to impaired contractile function, and employed in vitro

permeabilized single-muscle-fiber contractility studies to assess con-

tractile function at a cellular level in IIM patients and healthy controls.

2 | METHODS

2.1 | Muscle biopsies

Adult participants with suspected IIM and who were immunosuppres-

sive treatment-naive were recruited at Tygerberg Academic Hospital,

Cape Town, South Africa, and referred to undergo diagnostic muscle

biopsies. Only tissue from participants with a confirmed diagnosis of

IIM, based on accepted criteria,9,10 and who had responded to cortico-

steroid treatment (initiated after the muscle biopsy) at 6 weeks after

initiation, was included in the study. Patients with IBM were excluded,

due to the different pathogenesis, course, time to diagnosis, and

Abbreviations: CSA, cross-sectional area; DM, dermatomyositis; IBM, inclusion-body

myositis; IIM, idiopathic inflammatory myopathy; MRC, Medical Research Council; NAM,

necrotizing autoimmune myopathy; P0, maximum force; PM, polymyositis; SF, specific force;

TNF-α, tumor necrosis factor-alpha.
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response to treatment.11–13 Controls consisted of healthy adults who

donated muscle samples for research at the University of Cape Town

Research Unit for Exercise Science and Sports Medicine. The human

research ethics committees of both Stellenbosch University and the

University of Cape Town approved the study and participants pro-

vided informed consent.

Muscle biopsies were performed under local anesthesia and were

taken from the vastus lateralis muscle, 2 to 3 cm anterior to the mid-

point of a line connecting the greater trochanter and the superior

patellar margin. In controls, biopsies were performed using a

Bergström needle via a 5- to 7-mm incision. In patients with IIM, open

biopsies were performed to ensure acquisition of sufficient tissue for

diagnostic purposes, and small segments of muscle were allocated to

this study. Fresh muscle specimens were divided into two or three

samples of approximately 6 × 4 × 4 mm, rapidly frozen in liquid nitro-

gen, and stored at −200�C until analysis. Before analysis, each stored

sample was thawed briefly in phosphate-buffered saline at 37�C for

1 minute and divided into smaller bundles, each consisting of 20 to

40 fibers. These bundles were then submerged into skinning solution

containing 50% glycerol (pH 7.00) and stored at 4�C for 24 hours, rep-

laced with fresh skinning solution the following day, and then stored

at −20�C until analysis.14

2.2 | Contractility studies

Contractile properties of skinned single fibers were analyzed as previ-

ously described using a permeabilized single-fiber test system (Aurora

Scientific, Ontario, Canada).15 Cross-sectional area (CSA) was deter-

mined from the diameter of the fiber using the equation π [(0.8 × fiber

diameter) / 2]2, where 0.8 is to correct for an estimated 20% fiber swell-

ing.16 Absolute force was measured in milli-newtons, and specific force

(SF) was calculated as maximum force (P0) normalized to CSA and

expressed as kilo-newtons per meter squared. All experiments were per-

formed at 12�C. The myosin heavy chain composition of each fiber was

individually determined with gel electrophoresis and silver staining.17

2.3 | Statistical analysis

Statistical comparisons between IIMs and controls were performed

for all fiber types combined (types I, IIA, IIX, and hybrid), and for type I

and IIA fibers separately. Type IIX and hybrid fibers were not com-

pared separately due to their absence or small numbers in the biop-

sies. The D'Agostino-Pearson normality test was used to test for

normality of distribution. The unpaired t test with Welch's correction

was used to compare means and medians when data sets displayed a

normal distribution, whereas the nonparametric Mann–Whitney

U test was used for data sets with non–normally distributed data.

Statistical analysis was performed using GraphPad Prism version

7 (GraphPad Software, La Jolla, California). For all parameters, mean

± standard deviation (SD) and median with interquartile range were

calculated. Statistical significance was set at P < .05.

3 | RESULTS

Participants included consisted of four healthy controls (all females;

mean age, 28 years) and five patients with IIMs (all females; mean age,

48 years). The median knee extension Medical Research Council

(MRC) strength score for the IIM group was 4 (Table 1). Select muscle

histology images are shown in Figure S1 online.

3.1 | CSA, P0, and SF

Overall, 178 fibers were studied from patients with IIMs, amounting to

55 type I, 98 type IIA, 6 type IIX, and 19 hybrid fibers (13 I/IIA, 2 I/IIX,

4 IIA/IIX). A total of 95 fibers, consisting of 59 type I, 29 type IIA, and

7 hybrid fibers (all I/IIA), were studied from the healthy control group.

Combined, there was no difference in mean CSA between the IIM

and control groups. When compared separately, mean type I fiber

CSA was 9% smaller in the IIMs group compared with controls,

whereas mean type IIA fiber CSA was 24% smaller in the control

TABLE 1 Demographic and clinical characteristics of participantsa

Participant Diagnosis Age (years)
MRC muscle strength grade
for knee extension

Modified Rankin
Scale score

IIM1 DM 42 5 3

IIM2 PM 60 4 4

IIM3 DM 58 4 3

IIM4 NAM 26 4 1

IIM5 NAM 53 4− 4

HC1 HC 22 Not tested 0

HC2 HC 44 Not tested 0

HC3 HC 27 Not tested 0

HC4 HC 20 Not tested 0

Abbreviations: DM, dermatomyositis; HC, healthy control; IIM, idiopathic inflammatory myopathy; MRC, Medical Research Council; NAM, necrotizing

autoimmune myopathy; PM, polymyositis.
aAll females.
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group (Table 2). Combined, P0 and SF were 15% and 30% lower in the

IIMs group, respectively. P0 and SF of type I fibers were 42% and 30%

lower in the IIMs group, whereas P0 and SF of type IIA fibers were

16% and 35% lower (Figure 1 and Table 2).

4 | DISCUSSION

The findings of this study suggest that contractile force is impaired in

IIMs, which is independent of a decrease in fiber size, as evidenced by

decreased SF after correcting for CSA. The implication of this finding

is that muscle weakness in IIMs is related to a functional impairment

of muscle fiber contraction, and not a decrease in fiber size.

A number of different mechanisms have been proposed to explain

weakness and fatigue in IIMs, including impaired sarcoplasmic reticulum

Ca2+ release18 and abnormalities in energy metabolism, such as adeno-

sine monophosphate deaminase 1 (AMPD1) deficiency.4 However, we

also observed impaired contractility, although Ca2+ and adenosine tri-

phosphate were provided in sufficient quantities by the activating solu-

tion, thus discrediting abnormal Ca2+ release and energy metabolism.

A possible explanation for the impaired contractility may involve

an interaction between one or more components of the inflammatory

response and the contractile apparatus or its supporting structures.

One such component is tumor necrosis factor-alpha (TNF-α), which

has been shown to decrease contractile force of skeletal muscles in

animal models.19–22 in vivo and in vitro experiments utilizing dog,

hamster, and mouse models have shown impaired contractility within

hours after TNF-α administration or incubation, both at the muscle

(diaphragm) and myofibrillar level. The effect of TNF-α was partially

blocked by the cyclooxygenase inhibitor indomethacin and by trolox

(an antioxidant), suggesting that the action of TNF-α is mediated by

cyclooxygenase products and/or intracellular oxidant activity.21,22

Other than the effect of TNF-α, different explanations for the

decrease in contractility should be considered. One such possibility is an

TABLE 2 CSA, P0, and SF for IIM cases and female controls

Median (IQR) Mean ± SD

Contractility parameter IIMs Controls IIMs Controls P value

CSA (μm2)

All fiber types combined 3847 (2462–5806) 3317 (2826–4299) 4366 ± 2337 3657 ± 1309 .144

Type I fibers 2733 (2205–4299) 3317 (2826–4299) 3342 ± 1787 3656 ± 1268 .028

Type IIA fibers 4534 (2641–6325) 3317 (2826–4128) 4796 ± 2462 3623 ± 1423 .047

P0 (mN)

All fiber types combined 0.28 (0.18–0.43) 0.37 (0.29–0.46) 0.33 ± 0.18 0.39 ± 0.15 <.0001

Type I fibers 0.19 (0.14–0.26) 0.33 (0.26–0.45) 0.21 ± 0.09 0.36 ± 0.13 <.0001

Type IIA fibers 0.37 (0.22–0.47) 0.41 (0.33–0.52) 0.37 ± 0.16 0.44 ± 0.18 .047

SF (kN/m2)

All fiber types combined 73 (54–98) 108 (81–136) 81 ± 37 115 ± 48 <.0001

Type I fibers 63 (46–94) 104 (79–131) 73 ± 36 105 ± 38 <.0001

Type IIA fibers 77 (61–104) 121 (101–146) 85 ± 35 131 ± 48 <.0001

Abbreviations: CSA, cross-sectional area; IIM, inflammatory myopathy; IQR, interquartile range; P0, maximum force; SF, specific force.

F IGURE 1 Maximum force (A) and specific force (B) of type I and IIA fibers from controls and idiopathic inflammatory myopathy cases.
P0, maximum force; SF, specific force
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indirect effect of the disease process on force production, mediated by

muscle disuse and inactivity. The effects of both long- and short-term

immobilization have been investigated, and have been shown to

decrease single-fiber force production in some,23–25 but not all, studies.26

However, it should be noted that the extent of immobilization in these

studies was substantial (complete immobilization, bed rest, or chronic spi-

nal cord injury), whereas all participants in the current study were still

mobile, although they had limited mobility from weakness and fatigue.

Our study has potential limitations. First, the number of partici-

pants was small, and the findings should be regarded as preliminary as

the included participants may not be representative. Second, it could

be argued that the different disease entities included in the IIMs

group may have different pathological mechanisms. Although this may

be correct, they also share a number of characteristics, some of which

are likely to be relevant to the context of the current study and pro-

vide sufficient justification for grouping these entities for the purpose

of this investigation. Another limitation is the fact that quadriceps

strength was not tested in controls, but was only assumed to be

normal. Last, due to a paucity of controls, we were not able to fully

match for age. However, this is unlikely to have influenced the results,

as SF does not appear to be affected by age.27

In conclusion, the results of this exploratory study suggest that

force production of muscle fibers from patients with IIM are adversely

affected by the disease process, and this could, at least partially, explain

the weakness in these disorders. Further studies are required to eluci-

date the pathological mechanism responsible for the development of

impaired contractility. In particular, the role of the pro-inflammatory

cytokine TNF-α warrants further investigation in view of experimental

animal data. Furthermore, studies with sufficient numbers of partici-

pants are required to determine contractility in each IIM subgroup.
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