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ABSTRACT
We present a framework and an open-source PYTHON toolkit to analyse the two-point statistics
of 3D fluctuations in the context of H I intensity maps using the multipole expansion formalism.
We include simulations of the cosmological H I signal using N-body and lognormal methods,
foregrounds and their removal, as well as instrumental effects. Using these simulations and
analytical modelling, we investigate the impact of foreground cleaning and the instrumental
beam on the power spectrum multipoles as well as on the Fourier space clustering wedges. We
find that both the instrumental beam and the foreground removal can produce a quadrupole
(and a hexadecapole) signal, and demonstrate the importance of controlling and accurately
modelling these effects for precision radio cosmology. We conclude that these effects can be
modelled with reasonable accuracy using our multipole expansion technique. We also perform
a Markov Chain Monte Carlo (MCMC) analysis to showcase the effect of foreground cleaning
on the estimation of the H I abundance and bias parameters. The accompanying PYTHON

toolkit is available at https://github.com/IntensityTools/MultipoleExpansion, and includes an
interactive suite of examples to aid new users.

Key words: cosmological parameters – large-scale structure of Universe – cosmology: obser-
vations – cosmology: theory – radio lines: general.

1 IN T RO D U C T I O N

A large portion of our understanding of the Universe comes from
probing large-scale cosmic structure using galaxy redshift surveys.
Since galaxies trace the underlying dark matter density field, we
can study the cosmic web’s structure and evolution by mapping the
position of the galaxies on the sky using angular coordinates and
inferring a distance from their redshift. This approach has provided
some excellent constraints on cosmological parameters (see e.g.
Percival et al. 2001; Blake et al. 2011; Samushia et al. 2014; Satpathy
et al. 2017; Alam et al. 2017; Abbott et al. 2018).

Obtaining accurate redshifts for resolved galaxies through spec-
troscopic analysis is time consuming and expensive. Consequently
spectroscopic surveys are usually incomplete, insufficiently dense
samples, especially at high redshifts where they can be shot noise
dominated. Another method is to use galaxies from imaging surveys
where photometric redshifts can be inferred based on the amount of
signal received through each of the telescopes broad colour bands.

� E-mail: s.cunnington@qmul.ac.uk

However, the error on these photometric redshifts can often be
large and prone to systematic errors and therefore what is gained in
increased sample size, is paid for with an increase in redshift-based
distance uncertainty.

A promising alternative to galaxy redshift surveys comes from 21-
cm intensity mapping (Battye, Davies & Weller 2004; Chang et al.
2008; Seo et al. 2010; Pritchard & Loeb 2012). Neutral hydrogen
(H I) resides in many galaxies and spontaneously emits radiation
from its single electron’s ground state hyperfine transition. This
radiation is emitted with an energy of 5.87μeV and hence has a rest
wavelength of 21 cm (equivalently, a 1420 MHz rest frequency).
By detecting this signal with radio telescopes (single dishes or
interferometers), we can effectively map large-scale structure since
H I should be a reliable tracer of the underlying dark matter density
(Masui et al. 2013). Intensity mapping works by detecting the
combined, unresolved 21-cm emission from numerous galaxies
binning them into low angular resolution maps. When using single
dishes, the radio telescope beam (which modulates the survey’s
effective angular resolution) can be around or above the degree
scale and therefore small angular scale information is lost. However,
most of the scales of interest for probing large-scale structure are of
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sufficient size that intensity mapping can still be used. Furthermore,
the broad telescope beam means fewer pointings are needed to
cover the target area of sky thus allowing large volumes of sky to
be mapped very quickly.

A large challenge to overcome for H I intensity mapping experi-
ments lies in understanding and controlling the various instrumental
and systematic effects, of which 21 cm foregrounds is particularly
demanding. In this context, foregrounds refer to galactic and
extragalactic radio signals present in a similar frequency range to
the H I signals we are aiming to detect. These can be several orders
of magnitude larger than the cosmological signal and thus their
removal is required. The fact that foregrounds are often continuum
signals and have smooth frequency coherence along the line of sight
(LoS), provides a feature to distinguish them from the cosmological
signal that is highly oscillatory with frequency. Previous work
has provided very encouraging results suggesting foregrounds can
be cleaned. However, foreground removal techniques invariably
cause some unwanted consequences to the cosmological signal, for
example by removing large-scale power (Wolz et al. 2014; Alonso
et al. 2015; Witzemann et al. 2019; Cunnington et al. 2019b; Asorey
et al. 2020). Understanding the effects of foreground removal on
our ability to use H I intensity mapping observations for precision
cosmology is therefore important and an active area of research.

The process of obtaining angular coordinates in large-scale
structure surveys is well understood and fairly straightforward.
Obtaining a reliable radial distance based on redshift is more
complicated. Even assuming an accurate redshift can be measured
using spectroscopy, a well-constrained distance–redshift relation
is still required to obtain the third coordinate for the tracer data.
Furthermore, if relying on redshifts, consideration must be given
to the inherent peculiar velocity of the galaxy caused by local
density perturbations. There are two contributions to the observed
redshift zobs from both the cosmological Hubble flow r (zcos) =∫ zcos

0 c d z/H (z) and the peculiar velocities such that

1 + zobs = (1 + zcos)

(
1 − v

p
‖(r)

c

)−1

, (1)

where the peculiar velocity v
p
‖ introduces more scatter in the

measurement of objects closer to us. Since these peculiar velocities
are correlated to density perturbations, any attempted measurement
of a density field using redshift will therefore be distorted. The
resulting distortions to the density correlations are known in the
literature as redshift space distortions (RSD).

The impact RSD have on the density field measured in redshift
space is that on large scales, objects tend to fall in to high-
density regions which squashes the density field and the clustering
amplitude becomes stronger along the LoS – this is known as the
Kaiser effect (Kaiser 1987). RSD effects are also apparent in the
non-linear regime on small scales. There, objects are virialized,
the density field becomes stretched and the clustering amplitude
becomes smaller along the LoS – this is called the Finger-of-God
(FoG) effect (Jackson 1972). While at first sight RSD might seem
like a problem, they turn out to be extremely useful for measuring
the logarithmic growth rate of structure f (Hamilton 1997), which
strongly depends on cosmology and gravity (Guzzo et al. 2008). For
H I intensity mapping, they can also be used to break the degeneracy
between the H I bias, bH I, and mean H I abundance, �H I (Masui
et al. 2013; Pourtsidou, Bacon & Crittenden 2017).

The multipole expansion method represents a useful way to
compress the data from the clustering statistics with respect to the
local LoS. All the cosmological information is encoded in the first

three even multipole moments in linear theory and thus represents
a convenient way to analyse cosmological data. Furthermore,
extensive work has been done to develop techniques that overcome
complications induced by curved sky effects to allow multipole
analysis on large-sky surveys (e.g. Bianchi et al. 2015; Beutler et al.
2017; Castorina & White 2018; Blake, Carter & Koda 2018). Using
clustering statistics as a function of the angle from the LoS has also
been suggested to attempt to suppress survey systematics (Reid et al.
2014; Hand et al. 2017) or to avoid foreground contaminated regions
in 21-cm Epoch of Reionization studies (Raut, Choudhury & Ghara
2018).

In this work, we aim to investigate the prospects for probing the
anisotropic H I clustering using the expansion of the power spectrum
into multipoles. While the use of power spectrum multipoles
is standard practice in the data analysis of large-scale structure
surveys, the effect of 21 cm foregrounds on the H I monopole,
quadrupole, and hexadecapole has not been investigated. We are
particularly interested in the modelling of the signal and the effect
of the instrumental beam and foreground removal on the multipoles.
For this purpose, we will extend upon the work in Blake (2019,
hereafter B19), which looked at modelling the power spectrum
for galaxy and H I intensity map data including observational
effects. Here, we focus on the H I autopower spectrum, and we
include more sophisticated simulations of the H I signal as well
as foregrounds and their removal. We aim to provide analytical
phenomenological models to describe foreground removal and
other observational effects, and then test these with measurements
from our simulations. The outline of this paper is as follows: in
Section 2, we introduce a theoretical model for the H I multipoles,
which aims to be able to emulate the expected impact from the
telescope beam and foreground contamination and removal. In
Section 3, we present our approach for simulating cosmological
H I signal data along with relevant observational effects and 21 cm
foregrounds. We then discuss the method we use for removing these
foregrounds. In Section 4, we present our results from this analysis
that demonstrate how observational effects impact the H I power
spectrum multipoles, and how important it is to take them into
account in parameter estimation studies. To illustrate this point, we
perform an MCMC analysis to estimate the H I parameters in the
presence of foregrounds. We summarize and conclude in Section 5.

2 MODELLI NG O BSERVATI ONA L EFFECTS

2.1 Power spectrum multipoles

To account for RSD, we use the anisotropic power spectrum which
is explicitly dependent on the direction of the wave vector k relative
to the LoS. This can be written as

PH I(k) ≡ PH I(k, μ) = T
2
H I

[
b2

H I

(
1 + βμ2

)2
PM(k)

1 + (kμσv/H0)2 + PSN

]
.

(2)

The μ-dependent terms account for the anisotropic effect of RSD,
where μ is defined as the cosine of the angle θ between the LoS and
k, that is μ ≡ cos θ . This means that modes perpendicular (parallel)
to the LoS have μ = 0 (μ = 1). Equation (2) also depends on
the bias of the H I tracer bH I, the mean H I temperature T H I and
β = f /bH I, where f is the linear growth rate of structure which can
be approximated by f � �M(z)γ where γ is the growth rate index
(Linder 2005). We note that �M(z) = H 2

0 �M,0(1 + z)3/H (z)2 and
γ � 0.55 for �-cold dark matter. The factor on the denominator
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Multipole expansion for H I intensity mapping experiments 417

accounts for the FoG effect and σ v is the velocity dispersion of
the tracers. For a full derivation of the above we refer the reader
to the review in Hamilton (1997), while examples of studies of
the FoG effect for H I intensity mapping are Sarkar & Bharadwaj
(2018, 2019). The term PSN, is the Poisson shot noise, which appears
because of the fact that a finite number of galaxies is used to probe a
continuous density field. This is a scale invariant term and in optical
galaxy surveys it is simply the inverse of the galaxy density in a
redshift bin, that is PSN = 1/ng. In intensity mapping the shot noise
effect is expected to be negligible, especially with respect to the
instrumental noise contribution, since every galaxy with H I content
contributes to the total intensity map signal.

The anisotropic power spectrum PH I(k, μ) can be expanded in
Legendre polynomials as

PH I(k, μ) =
∑

	

P	(k)L	(μ) , (3)

where L	(μ) is the 	th Legendre polynomial. Given that the
Legendre polynomials are orthogonal over [ − 1, 1], we have the
identity∫ 1

−1
L	(μ)Lm(μ)d μ = 2

2	 + 1
δ	m , (4)

where δ	m is the Kronecker delta. By multiplying both sides of
equation (3) by an orthogonal Legendre polynomial, integrating
and then re-arranging we can derive a general expression for the
power spectrum multipoles given by

P	(k) = 2	 + 1

2

∫ 1

−1
d μPH I(k, μ)L	(μ). (5)

In linear theory, the only non-zero power spectrum multipoles
are given by 	 = 0, 2, and 4 (monopole P0, quadrupole P2,
and hexadecapole P4), and even when non-linearities are taken
into account these multipoles contain most of the cosmological
information (see e.g. Taruya, Saito & Nishimichi 2011). Therefore,
the Legendre polynomials we need are given by

L0 = 1, L2 = 3μ2 − 1

2
, L4 = 35μ4 − 30μ2 + 3

8
. (6)

In this work, we investigate how the power spectrum multipole
measurements are influenced by the main observational effects
relevant to single-dish intensity mapping surveys (with instruments
like MeerKAT, Pourtsidou 2018; SKA-MID, Santos et al. 2015)
from foreground contamination and the telescope beam. The beam
effect can be modelled as a convolution of the density field and the
Fourier transform of this smoothing term is given as (Villaescusa-
Navarro, Alonso & Viel 2017)

B̃beam(k, μ) = exp

(−k2R2
beam(1 − μ2)

2

)
, (7)

where Rbeam is the scale of the beam at the effective central redshift
of the survey. This is defined as Rbeam = σ θχ (zeff), where σθ =
θFWHM/(2

√
2 ln(2)) and θFWHM is the full width at half-maximum

of the beam in radians. We also need to take into account the
instrumental (thermal) noise from the telescope, PN, which will be
described in detail later on.

As shown in B19, further consideration could be given to the
damping from the binning of the H I data into angular pixels and
frequency channels. However, in this work we will be using a
flat-sky, Cartesian data cube (we discuss the reasons for this in
Section 3). Therefore we will simply correct for the aliasing effect
following Jing (2005) – this comes from sampling effects when

using a mass-assignment function to assign the particle distribution
on to grids. Since our resulting fast Fourier transform grid will
have the same dimensions as our intensity map data this should
sufficiently encapsulate all effects from discretization. Were there
to be some re-gridding, necessary in cases where large-sky light-
cone data are transformed into a Fourier cuboid, then further
consideration would be needed to properly deal with angular
pixelization (see B19 for details). For our purpose, the Fourier
transform of the mass-assignment function is given by

W̃grid(k) =
[

sin (kxHx/2)

(kxHx/2)

sin
(
kyHy/2

)(
kyHy/2

) sin (kzHz/2)

(kzHz/2)

]p

, (8)

and it is sufficient to account for the damping from this discretiza-
tion; consequently, our resulting measurements will be divided
through by W̃ 2

grid. Here, Hi = Li/Ni is the grid spacing where Li

define the comoving size of our Fourier cuboid and Ni the number
of pixels in each dimension. The choice of p relates to the mass-
assignment method chosen (see Jing 2005 for details). For this work,
we use the nearest grid point assignment with p = 1.

The damping factor from the beam can be applied to the power
spectrum and using the Legendre polynomials from equation (6),
we expand the anisotropic power spectrum (equation 5) giving the
formulae for the monopole (P0), quadrupole (P2), and hexadecapole
(P4) as:

P0(k) = 1

2
T

2
H I

[∫ 1

−1
d μ

b2
H I

(
1 + βμ2

)2
PM(k)L0 B̃2

beam

1 + (kμσv/H0)2

+
∫ 1

−1
d μPSN L0 B̃2

beam

]
, (9)

P2(k) = 5

2
T

2
H I

[∫ 1

−1
d μ

b2
H I

(
1 + βμ2

)2
PM(k)L2 B̃2

beam

1 + (kμσv/H0)2

+
∫ 1

−1
d μPSN L2 B̃2

beam

]
, (10)

P4(k) = 9

2
T

2
H I

[∫ 1

−1
d μ

b2
H I

(
1 + βμ2

)2
PM(k)L4 B̃2

beam

1 + (kμσv/H0)2

+
∫ 1

−1
d μPSN L4 B̃2

beam

]
. (11)

Note that in the model, the shot noise term PSN from equation (2)
is also damped with the telescope beam and is weighted by the
H I content of each galaxy (T H I ∝ �H I). We discuss the shot noise
further in Section 3, along with our method for treatment of the
instrumental noise PN in our simulations.

2.1.1 Clustering wedges

An alternative method for compressing the variation of the power
spectrum with respect to the LoS is to measure the power spec-
trum (or correlation function) in a wedge-shaped region (Kazin,
Sánchez & Blanton 2012; Grieb et al. 2017; Sánchez et al. 2017;
Hand et al. 2017), for example to break degeneracies (Jennings et al.
2016). The power spectrum wedge in the region μ1 ≤ μ ≤ μ2 is
given by

P wedge(k) = 1

μ2 − μ1

∫ μ2

μ1

d μPH I(k, μ) . (12)

Using these clustering wedges as a means for avoiding foreground
contaminated regions present in 21-cm interferometer observations
of the Epoch of Reionization has been investigated in Raut et al.
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Figure 1. This plot demonstrates how μ, the directional cosine of modes,
changes depending on the contributions from modes parallel and perpendic-

ular to the LoS. This is calculated from μ = cos θ = k‖/k = k‖/
√

k2
‖ + k2

⊥.

(2018). We will build on this concept and analyse our simulations
in different clustering wedges with the aim of understanding how
foregrounds are having an impact.

2.2 Modelling signal loss from 21-cm foregrounds

Since we expect foregrounds to have relatively smooth fluctuations
along the LoS, a conventional, blind foreground clean will always
remove cosmological power spectrum modes at small k� below some
kFG

‖ cut-off, since these are the ones that will be indistinguishable
from the foregrounds (Wolz et al. 2014; Shaw et al. 2015; Alonso
et al. 2017). In Fig. 1, we show how values of μ depend on
the contributions from k� and k⊥, which are the modes parallel
and perpendicular to the LoS respectively. Based on the above
discussion, we can claim that foregrounds mostly affect low-μ
modes, where k � kFG

‖ . Therefore, we can emulate the effect of
their removal by limiting the μ parameter space we integrate over
in equations (9)–(11) such that each multipole is given by

P̂	(k) = (2	 + 1)
∫ μ=1

μ=μFG

d μPH I(k, μ)L	(μ)B̃2
beam . (13)

Note we use the notation P̂	 to emphasize that this is not the same as
the conventional power spectrum multipoles but signifies our model
power spectra where for foreground affected cases, P̂	 excludes the
power from all modes with μ < μFG, with

μFG = kFG
‖ /k (14)

and kFG
‖ is the parallel wave-vector cut-off below which the

foreground removal effects are expected to be more severe. If no
foregrounds are present or in the idealized case where they are
assumed to be perfectly cleaned without any signal loss, we have
μFG = 0 and recover the standard multipole expansion equation.

We demonstrate the results from this approach in Fig. 2. The
theoretical multipoles P̂	(k) are produced from an underlying non-
linear matter power spectrum generated using NBODYKIT1 (Hand
et al. 2018) with ASTROPY2 (Robitaille et al. 2013; Price-Whelan

1https://nbodykit.readthedocs.io
2www.astropy.org

et al. 2018), the CLASS Boltzmann solver (Lesgourgues 2011;
Blas, Lesgourgues & Tram 2011), and the HALOFIT prescription
(Takahashi et al. 2012). For these models we use a PLANCK15
cosmology (Planck Collaboration et al. 2016), with �M = 0.307,
and Hubble parameter h = 0.678. These results are computed at
z = 0.8, assume a σv = 400 km s−1 velocity dispersion and for the
foreground effected cases (red lines), we use kFG

‖ = 0.02 h Mpc−1

consistent with previous work (Shaw et al. 2015). For the H I

parameters, we use bH I = 1 and T H I = 0.127 mK. We discuss these
parameters in more detail in Section 3 when we introduce the
simulated data and also tune their values to maximize agreement
with the simulated data in Section 4.

The results from this toy model in Fig. 2 reveal some interesting
features, which we also see in our simulation results (discussed in
Section 4). While we expect that foreground cleaning damps power,
when considering the different power spectrum multipoles the
quadrupole (P2) result shows that the measured large-scale power
weighted as a function of μ with foreground removal is actually
enhanced. The hexadecapole (P4) also shows some interesting
features with the model predicting a change of sign for large parts of
the signal. The monopole (P0) result is as expected, with foreground
removal damping power, especially at large scales (small k).

These results can be understood by analysing how the expanded
multipoles (equations 9–11) vary as a function of μ. For this
demonstration, we will ignore the FoG factor. In Fig. 3, we have
plotted the function (2	 + 1)/2 (1 + βμ2)2L	(μ) for varying μ for
each multipole 	 = 0, 2, and 4. This function is integrated over μ and
therefore its behaviour can explain some of the results we are seeing
in Fig. 2, since a foreground clean should have a similar effect to
removing contributions to the multipoles from low-μ regions (e.g. μ
< 0.25 shown as the pink-shaded region). Doing this removes a lot of
the negative contribution in the quadrupole which is why we see an
enhanced signal. Similarly, this also removes positive contributions
to the monopole, hence why we see an overall damping here and
the hexadecapole has enough positive contributions removed for its
negative contributions to dominate.

2.3 Increasing beam

It is interesting to look at how the toy model forecasts presented
in Fig. 2 change when the size of the telescope beam is increased.
For the results in Fig. 2 we used a beam of θFWHM = 0.44 deg. This
corresponds to the size of a Green Bank Telescope (GBT)-like beam
(Wolz et al. 2017). Effective beam sizes are expected to be smaller
than this for interferometers such as HIRAX (Newburgh et al. 2016)
and CHIME (Bandura et al. 2014), which can achieve a much
better resolution than single-dish experiments. However, beam sizes
larger than θFWHM = 0.44 deg are expected on instruments such as
SKA-MID (Bacon et al. 2020) or its pathfinder MeerKAT (Santos
et al. 2017), which plan to operate in single-dish mode for intensity
mapping surveys.

Fig. 4 demonstrates the same model as Fig. 2 but with a
larger beam of θFWHM = 2 deg, and we can immediately see some
differences. Unsurprisingly, we see that the enhanced damping from
the larger beam affects more mid-range values of k. That is because
a larger beam effectively smooths out larger perpendicular modes,
thus affecting smaller k⊥. The difference between the foreground
free and foreground contaminated cases is less intuitive. It appears
that increasing the beam renders the difference between foreground
free maps and foreground cleaned maps to be minimal when
compared with the smaller beam of Fig. 2. There are still noticeable
effects, but they are restricted to the small-k region.
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Figure 2. Theoretical power spectrum multipoles including removal of low-μ contributions to emulate a foreground clean as defined by equation (13). The
foreground subtracted cases are shown as thin red lines. These use a μFG cut-off defined by μFG = kFG

‖ /k with kFG
‖ = 0.02 hMpc−1. We also show the input

(true), foreground-free H I signal for comparison (thick black lines) with μFG = 0. We have also employed a θFWHM = 0.44 deg beam effect, which causes
damping as outlined by equation (7).

Figure 3. Expanded multipole functions as a function of μ for each 	 = 0,
2, and 4 (neglecting the FoG contribution). These functions are integrated
over to form the multipoles in equations (9)–(11). The pink-central-shaded
region has |μ| < 0.25 where large radial modes will dominate. Since this
plot is for demonstrative purposes, we have used a dummy value of β = 1.

To understand this, we can again analyse the contribution to
the multipoles from the function (2	 + 1)/2 (1 + βμ2)2L	(μ) as a
function of μ as done in Fig. 3. However, this time we show how
damping from the beam (see equation 7) modulated by the beam size
θFWHM, affects these functions. These results are shown in Fig. 5 for
a range of beam sizes. Since the beam damping term is dependent
on k, we have chosen a fixed mid-range value (k = 0.15 hMpc−1)
to demonstrate these effects.3

Fig. 5 shows that a larger beam damps contributions across all
μ-values, but it has more of an effect at low-|μ|. It is the modes
with low-|μ| which are most affected by foregrounds and this is
why we see apparent mitigation of foreground effects for intensity

3As one would expect, we find that larger values of k are affected more by
the beam since the beam smooths small perpendicular scales, thus affecting
large k⊥ modes. Choosing a very small k-value for the results in Fig. 5 would
show little difference between each different θFWHM case.

maps with large beams. It is simply because the beam is damping
foreground contaminated modes anyway, rendering the foreground
removal effects less dominant. For lower values of k, it is more
likely that there will be smaller k⊥ values which are less affected
by the beam. Fig. 1 shows that high values of μ exist mostly at
these low-k⊥ values where there is much less beam damping and
this allows foreground effects to dominate. This is why we still see
some foreground effects at low-k in Fig. 4.

3 SI MULATI ONS

This section explains how we generate our data for the simulated
intensity maps along with the method for adding foregrounds and
removing them with a FASTICA reconstruction process. This data
will be used to measure the expanded power spectrum multipoles
with the results compared to the model outlined in Section 2 and
the forecasts presented therein.

For this work, we choose to work with flat skies in Cartesian
coordinates as opposed to curved-sky light-cone data. This avoids
curved-sky complications such as wide-angle effects or more
complex survey window functions (Blake et al. 2018). The flat-
sky choice means our maps can be constructed into Cartesian
data cubes with dimensions [Nx , Ny , Nz]. The total number of
voxels (volume pixels) in the data cube is therefore given by
Nvox = Nx × Ny × Nz. The data cube has comoving physical
dimensions Lx, Ly, and Lz, and therefore each voxel has a volume
defined by Vvox = Lx × Ly × Lz/Nvox. The radial centre of this
data cube lies at a comoving distance χ (z), where z is the redshift
of our simulated data. Note the distinction between the Cartesian
coordinate z and the italicized z that denotes redshift.

3.1 Cosmological signal

Onto this grid we then bin galaxies which are drawn from a
pre-simulated galaxy catalogue. Here we use the MULTIDARK-
GALAXIES data (Knebe et al. 2018) and the catalogue produced from
the SAGE (Croton et al. 2016) semi-analytical model application.
These galaxies were produced from the dark matter cosmological
simulation MULTIDARK-PLANCK (Klypin et al. 2016), which follows
the evolution of 38403 particles in a cubical volume of 1 h−1Gpc3
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420 S. Cunnington et al.

Figure 4. Same plot as Fig. 2 but with an increased beam size of θFWHM = 2 deg. We see more damping here at high-k in comparison with Fig. 2 as expected
from equation (7). The larger beam also lessens the effects from foregrounds in the quadrupole and hexadecapole in comparison to the smaller beam case of
Fig. 2.

Figure 5. Effect of a varying beam size on the multipoles. Similarly to Fig. 3, this shows the expanded multipole functions as a function of μ for each 	 = 0, 2,
and 4, also including the effect of increasing the beam θFWHM. Dotted lines represent negative values. These results are for a fixed value of k = 0.15 hMpc−1.

with mass resolution of 1.51 × 109h−1 M
 per dark matter particle.
The cosmology adopted for this simulation is based on PLANCK15
cosmological parameters (Planck Collaboration et al. 2016), with
�M = 0.307, �b = 0.048, �� = 0.693, σ 8 = 0.823, ns = 0.96,
and Hubble parameter h = 0.678. The catalogues are split into 126
snapshots between redshifts z = 17 and 0. In this work, we want to
utilize the lower redshift data in the post-re-ionization Universe. In
particular, we use two snapshots at z = 0.82 and 2.03. We obtained
this publicly available data from the Skies and Universes web page.4

From a redshift snapshot of this simulation we extract each of
the galaxy coordinates (x, y, z) in Mpc h−1 that define the galaxy’s
position r . To simulate RSD, we assume the LoS is along the z-
dimension and use the plane-parallel approximation to displace the
galaxy positions to a new coordinate zRSD given by

zRSD = z + 1 + z

H (z)
h v

p
‖ , (15)

where v
p
‖ is the galaxy’s peculiar velocity along the LoS (z-

dimension) which is given as an output of the simulation in units of
km s−1. We experimented with trimming the box along the radial

4www.skiesanduniverses.org

dimension to avoid underdense boundary regions where galaxies
have been pushed off the grid by their redefined position from
equation (15). To do this we performed a 200 Mpc h−1 cut at either
end so the radial box depth becomes Lz = 600 Mpc h−1, however
we found that this made no discernible difference to results for
the foreground free measurements. However, we found that the
depth of the box does affect the results of the foreground clean
with a larger Lz, and therefore larger frequency range, providing
a less biased foreground clean. With this in mind, we kept the
angular box dimensions at Lx = Ly = 1000 Mpc h−1, but restrict
the radial depth of the box to Lz = 762 Mpc h−1, which is equivalent
to a redshift width of �z = 0.4 at z = 0.8 (this is approximately
representative of the latest GBT measurements, Switzer et al. 2013;
Wolz et al. 2017). The resolution is defined by the number of voxels
where we use Nx = Ny = Nz = 225.

Each galaxy has an associated cold gas mass Mcgm, and from
this, we can infer a H I mass MH I = Mcgm(1 − fmol) where the
molecular fraction is given by (Blitz & Rosolowsky 2006)

fmol = Rmol

(Rmol + 1)
, (16)

and we use Rmol ≡ MH2/MH I = 0.4 (Zoldan et al. 2017). It is this
H I mass that we bin into each voxel to generate a data cube of H I
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Multipole expansion for H I intensity mapping experiments 421

masses MH I(r, z), which should trace the underlying matter density
generated by the catalogue’s N-body simulation for the snapshot
redshift z. These H I masses are converted into an H I brightness
temperature for a frequency width of δ ν subtending a solid angle
δ � given by

TH I(r, z) = 3hPc
2A12

32πmhkBν21

1

[(1 + z)χ (z)]2

MH I(r, z)

δ ν δ �
, (17)

where hP is the Planck constant, A12 the Einstein coefficient that
quantifies the rate of spontaneous photon emission by the hydrogen
atom, mh is the mass of the hydrogen atom, kB is Boltzmann’s
constant, ν21 the rest frequency of the 21-cm emission, and χ (z)
is the comoving distance out to redshift z (we will assume a flat
universe). We refer the reader to Cunnington et al. (2019a) for a
more detailed discussion on equation (17).

In order to simulate this signal, we require a value for the
frequency width δ ν. To convert the Cartesian coordinates of the
simulation box into observable frequency channels we use the
comoving distance to the snapshot redshift χ (z), which we assume
is the distance to the centre of the box, and the radial box length Lz.
We then define a comoving distance to each radial bin boundary:

Li
z = L0

z + iLz/Nz (18)

where i = 0, 1, 2, . . . , Nz are the bin boundary indices and the
distance to the minimum bin boundary is L0

z = χ (z) − Lz/2. These
can be converted into redshifts zi which are in turn converted into
frequencies ν i = ν21/(1 + zi).

In radio intensity mapping the observable signals detected by a
telescope are brightness temperature fluctuations to a background
mean T H I, hence the observable signal is given by

δ TH I(r, z) = TH I(r, z) − TH I(z) . (19)

The mean H I temperature can be related to the H I density abundance
�H I by (Battye et al. 2013)

TH I(z) = 180�H I(z)h
(1 + z)2

H (z)/H0
mK . (20)

Constraining the H I abundance is challenging. Whilst its value
is well constrained at very low redshifts (z ∼ 0) by targeted H I

galaxy surveys, the constraints at mid- and high redshifts are few
and not very competitive (see Crighton et al. 2015 for a summary
of available measurements in the range 0 < z < 5). In principle,
H I intensity mapping with MeerKAT and the SKA should be able
to provide much better constraints across a very wide range of
redshifts for both the H I abundance and the H I bias (Pourtsidou
et al. 2017; Bacon et al. 2020; Weltman et al. 2018). For example,
Masui et al. (2013) and Switzer et al. (2013) used GBT H I intensity
mapping measurements at z = 0.8 (in auto and cross-correlation
with WiggleZ galaxies) to measure

�H IbH Ir = [4.3 ± 1.1] × 10−4 . (21)

Since our simulation has a finite mass resolution, it will not suffi-
ciently sample the lowest mass haloes (� 1010 h−1M
), which will
contain H I and therefore contribute to the intensity map. In order
to ensure our simulated intensity maps have realistic amplitudes,
we rescale each TH I(r, z) so that it matches a model T H I(z) as
per equation (20). For this model, we use the �H I constraint from
equation (21) setting the cross-correlation coefficient to r = 1 and
model the H I bias with the power law (Bacon et al. 2020)

bH I(z) = 0.67 + 0.18z + 0.05z2 . (22)

Table 1. Parameter values for foreground C	 (see equation 24) with ampli-
tude A given in mK2. Pivot values used are 	ref = 1000 and νref = 130 MHz
as per Santos, Cooray & Knox (2005).

Foreground A β α ξ

Galactic synchrotron 700 2.4 2.80 4.0
Point sources 57 1.1 2.07 1.0
Galactic free–free 0.088 3.0 2.15 35
Extragalactic free–free 0.014 1.0 2.10 35

Note that the choice of bias here is to ensure sensible values are
obtained for the model T H I. The degeneracy between �H I and
bH I is a further challenge for H I intensity mapping but using RSD
provides a way to break it (Masui et al. 2013; Pourtsidou et al.
2017). In terms of power spectrum multipoles, this would require
measuring both the monopole P0 and quadrupole P2, and modelling
them accurately including foreground and instrumental effects – this
is the main goal of this work.

To emulate the effects of the radio telescope beam, the observable
over-temperature signal (equation 19) is convolved with a symmet-
ric, 2D Gaussian function with a full width at half-maximum of
θFWHM acting only in the directions perpendicular to the LoS. The
beam size can be determined by the dimensions of the radio receiver
and the redshift which is being probed. We then have

θFWHM = 1.22 λ21

Dmax
(1 + z) , (23)

where, for single-dish intensity mapping, the maximum baseline of
the radio telescope Dmax is simply the dish diameter. To avoid fore-
ground cleaning problems associated with a frequency-dependent
beam (Switzer et al. 2013; Cunnington et al. 2019b), we convolve
all our maps to a constant θFWHM which we will explicitly state for
each result.

3.2 Simulating foreground contamination

In order to simulate the effects of a foreground clean on our mock
data we add simulated maps of known 21-cm foregrounds on
to our H I cosmological signal. The first foreground we simulate
is galactic synchrotron caused by electrons in the Milky Way
being accelerated by the Galaxy’s magnetic field. This is the most
dominant foreground and can be several orders of magnitude larger
than the H I cosmological signal in the galactic plane. Extragalactic
point sources (e.g. active galactic nuclei) also contaminate the
maps. Furthermore, free–free emission can originate both within
our Galaxy and beyond causing an isotropic, extragalactic contam-
ination.

For generating realistic foregrounds, we use the Global Sky
Model (GSM, de Oliveira-Costa et al. 2008; Zheng et al. 2017) that
extrapolates real data sets to provide full-sky diffuse galactic radio
emission maps. Furthermore, to ensure we include contamination
from all relevant foreground sources, we also use a power spectrum
that is constructed to model each of the foregrounds as outlined in
Santos et al. (2005). For an observation between frequency ν1 and
ν2, a foreground’s angular power spectrum is modelled by

C	 (ν1, ν2) = A

(
	ref

	

)β (
ν2

ref

ν1 ν2

)α

exp

(
− log2 (ν1/ν2)

2 ξ 2

)
, (24)

where the values for the parameters (A, β, α, ξ ) are stated in Table 1
for each foreground we simulate.

We match the frequencies of each bin to that of the H I intensity
map data by calculating a distance to each bin boundary as defined
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422 S. Cunnington et al.

Figure 6. Measured angular power spectra for each component of the
observed signal at ν = 780 MHz (z ∼ 0.8) with a dish diameter of 100 m.
Foregrounds are shown as solid coloured lines. The H I cosmological signal
produced using the MULTIDARK simulation for a z = 0.82 snapshot is the
black dashed line. The grey dotted line shows the contributions from the
instrumental noise (see Section 3.3).

by equation (18) and then converting this into an observed redshift
and frequency. We then generate a map in each frequency bin
for each foreground. For the power spectrum realization, we use
four different random seeds (one for each type of foreground we
simulate), which we keep the same throughout each frequency
bin. This ensures each foreground type has a spectral smoothness
through frequency that we utilize in the foreground clean. The
outputs from this and the GSM produce full-sky HEALPIX5 (Górski
et al. 2005; Zonca et al. 2019) maps but we convert them into flat-
sky Cartesian maps in order to add to our H I data. To do this, we
define an angular coordinate for each pixel on the flat-sky map,
which we match to a pixel in the HEALPIX map with the closest
angular coordinate. While this approach is an approximation and
may affect some angular coherence in the foreground maps, it will
have no impact on the foreground as a contaminant to our data.
We chose to match the centre of the flat-sky maps to the centre
(right-ascension = declination = 0 deg) of the HEALPIX map. This
means our foreground data is coming directly from the centre of
the galactic plane. In reality, it is likely that this region will be
avoided, since this is where foregrounds are expected to be strongest.
However, in order to maximize foreground amplitudes and ensure
as robust a test as possible, it is from these regions we chose to cut
a patch, equal to the size of our H I data coverage.

The different foreground types are added and the frequency slices
are stacked to form the foreground data cube with the same [Nx, Ny,
Nz] structure, which we then add on to our δTH I data cube. These
foregrounds dominate over the cosmological signal by many orders
of magnitude as we show in Fig. 6. These are the measured power
spectra for each foreground and the simulated cosmological signal
(black dashed line) with all signals at an observed frequency of ν =
780 MHz (z ∼ 0.8), with a dish diameter of Dmax = 100 m.

In order to recover the useful cosmological signal we therefore
require a foreground removal process. For this we use Fast In-
dependent Component Analysis (FASTICA, Hyvärinen 1999). This
is a blind foreground removal method where we assume that a

5https://healpix.sourceforge.io/

raw observed signal, such as that outlined in equation (19), can be
generalized into a linear equation where the elements making up the
signal are statistically independent. Therefore for each LoS, sorted
into Nz redshift bins and assuming m independent components are
present, FASTICA assumes the observed signal can be written as

x = As + ε =
NIC=m∑

i=1

ai si + ε , (25)

where s are the m independent components, A is the mixing matrix
determining the amplitudes of the independent components, and ε

is the residual (containing H I signal and noise). The number of
independent components m is an input and we find that too low a
value causes higher foreground residuals but a very high value starts
to damage the signal at low-k (Alonso et al. 2015). For this work, we
use m = 4 for all our FASTICA foreground cleans, finding this to be
sufficient and a commonly used value in previous work (Chapman
et al. 2012; Wolz et al. 2014). The residual ε should therefore contain
the cosmological information we require and it is this residual that
we will refer to as our cleaned data. We will make comparisons
between this cleaned case and the idealized case where maps are
completely free of foregrounds. FASTICA is capable of removing the
simulated foregrounds across a wide range of scales but, as one
might predict, at low-k there is some discrepancy – that is because
the foregrounds are smooth in frequency and thus largely exist in
the small k� modes. This makes cosmological signal in this region
of k-space hard to disentangle from the foregrounds and thus some
signal is lost due to the foreground cleaning. For a more detailed
discussion on foregrounds and their subtraction using FASTICA for
H I intensity mapping we refer the reader to Wolz et al. (2014),
Alonso et al. (2015), and Cunnington et al. (2019b).

3.3 Instrumental noise

Along with foregrounds, we also need to take into account the
instrumental (thermal) noise from the radio telescope. In order
to add this instrumental noise to our data cubes we simulate
uncorrelated Gaussian fluctuations. These are added after the beam
is applied, which means that the final noise fluctuations remain
uncorrelated. While this would not be true in a realistic situation,
we opt for this simpler approach for our purposes since we also
assume a perfectly Gaussian beam of known size. Hence, we add
on to the observable maps a Gaussian random field with a spread
given by

σnoise = Tsys

√
4π fsky

�beam Ndish tobs δ ν
. (26)

Here Tsys is the total system temperature, which is the sum of the sky
and receiver noise (Santos et al. 2015); �beam � 1.133θ2

FWHM is the
solid angle for the intensity mapping beam; and fsky is the fraction of
sky covered by the survey, which for a box with perpendicular size of
1000 × 1000 Mpc2 h−2 at z = 0.82 is approximately 29 × 29 deg2

and therefore fsky ∼ 0.02. In order to achieve realistic levels of noise
that slightly dominate over the H I signal, as is expected in near
future intensity mapping experiments, we use one dish (Ndish = 1),
set Tsys = 10 K and assign a total observation time tobs = 200 h.
The instrumental noise power spectrum using these specifications
is shown in Fig. 6 as the grey dotted line.

A technique used in the GBT intensity mapping observations
(Switzer et al. 2013; Masui et al. 2013; Wolz et al. 2017) is to
create data subsets by observing the same patch of sky (field) at
different times, such that the instrumental noise is independent in
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Multipole expansion for H I intensity mapping experiments 423

each subset map. These subsets can then be cross-correlated to
suppress the noise and give the H I autocorrelation signal (while the
subsets autocorrelation can be used as a proxy for the noise itself).
We emulate this approach by simulating two independent noise
maps using equation (26) and create two observable H I intensity
map subsets with the same underlying cosmological signal but
independent instrumental noise. These are then cross-correlated to
produce our H I-autocorrelation result.

As discussed in Section 2, there is also the contribution of shot
noise. Fortunately for H I intensity mapping this value is expected
to be fairly subdominant (Spinelli et al. 2020). Using the above
formalism we will aim to replicate an observational experiment
and include shot noise in our modelling in line with equations
(9)–(11), using an external result from a simulation. For this, we
use results from Villaescusa-Navarro et al. (2018) and adopt their

values of PSN = T
2
H I124 mK2 Mpc3 h−3 for our z ∼ 0.8 results and

PSN = T
2
H I65 mK2 Mpc3 h−3 for z ∼ 2.

There are other forms of noise associated with H I intensity
mapping such as correlated 1/f noise (Bigot-Sazy et al. 2015)
and radio frequency interference noise of which Global Navigation
Satellite Services have been identified as a potentially big problem
(Harper & Dickinson 2018). In this work, we assume these issues
are controllable or mitigated.

4 R ESULTS

Here, we present the results from our simulation measurements,
which demonstrate the foreground and instrumental effects on the
H I intensity mapping power spectrum multipoles. For all plots
demonstrating the effect of foreground contamination we use a
consistent convention where black dashed lines and black cross data
points represent the foreground free case. Whereas red dotted lines
and red circle data points represent the foreground contaminated
case. Foreground contaminated case refers to 21-cm foregrounds
being added to the simulation and then cleaned using a FASTICA

reconstruction as outlined in Section 3.2. Where applicable we
include error bars, which for the power spectrum multipoles are
given by (Feldman, Kaiser & Peacock 1994; Seo et al. 2010; Battye
et al. 2013; Grieb et al. 2016; Blake 2019):

σP	
(k) = (2	 + 1)√

Nmodes

√∫ 1

0
d μ (P (k, μ) + PN)2L2

	 , (27)

where Nmodes is the number of unique modes in the bin and the
noise power spectrum can be written as PN = σ 2

noiseVvox. We have
assumed a Gaussian diagonal covariance and we refer the reader to
B19 for a more comprehensive discussion of errors in this context.
We also tested using a jackknifing process for the error bars and
found good agreement between the two approaches. We include
both options for generating error bars in the accompanying PYTHON

toolkit.
Unless otherwise stated we use the MULTIDARK simulation for

our H I data, which are used to generate intensity maps using
the methods outlined in Section 3.1. We mostly chose to run our
results at a redshift of z = 0.82, which is representative of the
redshifts that current and forthcoming single-dish intensity mapping
experiments are targeting, for example the GBT intensity mapping
survey (Switzer et al. 2013). We assume a dish size of 100 m, which
is chosen to give a relatively small beam size Rbeam = 3.9 Mpc h−1

(from equation 23). This is to allow the effects from the foregrounds
on the simulated data to be more evident. We initially run our results
without instrumental noise, again as this demonstrates the effect of

foregrounds with more clarity. We then investigate the effects of
adding in realistic noise as introduced in Section 3.3 and show
results with a larger beam.

4.1 Demonstrating the observational effects

The clustering wedges, as introduced in Section 2.1.1 and defined
by equation (12), have been used as a means for avoiding foreground
contaminated regions in past work (Raut et al. 2018). Building upon
this idea, it is interesting to look at results from our simulations in
different clustering wedges and focus mainly on how foregrounds
are having an impact.

Fig. 7 shows the effect a foreground clean has on different power
spectrum wedges. As shown, we choose four different wedge bins
spanning the full range of angles to the LoS. This demonstrates why
the idea of a μ cut-off can be useful in the context of foreground
contamination. Since μ is the directional cosine of the modes and
therefore k� = kμ, a wedge with only low-μ included (as in the top
left plot of Fig. 7) means only small k� modes are included and these
are the ones most affected by the foregrounds. The extreme case
of the lowest μ wedge clearly demonstrates the effect foregrounds
have on the power spectrum, with power being drastically damped
for low-k modes. The results in Fig. 7 also show that the impact
of foregrounds becomes less severe as we move towards higher μ

regions, as expected.
In the last wedge (bottom right) where the largest μ-values are

displayed we can see little effect from foregrounds. This wedge also
demonstrates the effect of the telescope beam, which is also heavily
dependent on the wedge used. To emphasize the effects from the
beam, we use a slightly larger beam than the default 100 m dish at
z = 0.8 and instead use a beam with Rbeam = 6 Mpc h−1 for these
clustering wedges. In comparison with the other wedges, the power
in the high-μ wedge is larger at high-k. That is because the high-
k⊥ modes damped by the beam have been excluded in this wedge.
Referring back to Fig. 1 we can see that μ > 0.75 represents mostly
small-k⊥ modes, which are unaffected by the beam (since it damps
smaller perpendicular scales, i.e. large-k⊥). However, for the other
wedges, the modes can be composed of higher k⊥ contributions that
the beam effectively damps.

The clustering wedges nicely demonstrate the anisotropic nature
of the foreground removal and beam effects, however they do
not completely disentangle the contributions from parallel (k�)
and perpendicular (k⊥) modes. To make this clearer, in Fig. 8
we split these contributions explicitly, that is we study P(k⊥, k�).
The left-hand panel of Fig. 8 shows the difference between an
intensity map with and without a beam. We can see that the biggest
differences (darker regions) occur for the highest k⊥ modes and this
demonstrates, as expected, how the damping from the telescope
beam is k⊥-dependent.

The right-hand side panel shows a comparison between fore-
ground free intensity maps and ones that have been contaminated
with foregrounds and then cleaned with FASTICA. Again, as ex-
pected, this shows that the effects from foregrounds are largely a
function of k� with the smallest parallel modes being most affected.
However, the plot reveals that there is also a k⊥ dependence and in
fact, comparison with Fig. 1 reveals that the effect of foreground
removal has some strong μ-dependence. It is visible by eye how
the most affected regions from foregrounds correspond to the area
in μ-space where μ � 0.2. This interesting result suggests that if,
for example, we aim to construct an estimator that avoids the most
contaminated modes, then just parametrizing this using k� only,
may not be the most optimal approach (at least in the context of this
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424 S. Cunnington et al.

Figure 7. Power spectrum Pwedge(k). The different wedges are calculated following equation (12). For each wedge, we show the differences between the
case without foregrounds (black cross points) and where foregrounds are added then removed with FASTICA (red circle points). Produced with the MULTIDARK

simulation at z = 0.82 with a Rbeam = 6 Mpc h−1 beam size.

Figure 8. The impact of observational effects on the power spectrum decomposed into parallel (k�) and perpendicular (k⊥) modes. Left-hand panel demonstrates
the impact of a Rbeam = 3.9 Mpc h−1 telescope beam by showing the ratio of the power spectrum for foreground-free MULTIDARK intensity maps both with
and without smoothing to emulate the beam. Right-hand panel shows the difference between foreground free and foreground cleaned intensity maps. Both
results are at z = 0.82 and in the foreground comparison we smoothed the maps to emulate the beam for both PNoFG and PSubFG cases for consistency and use
NIC = 4 for the FASTICA foreground removal. For the foreground case (right-hand panel), to avoid saturation, that is to avoid the smallest k� modes showing a
difference �1, we have limited the maximum value of PNoFG/PSubFG to 1.5.
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Multipole expansion for H I intensity mapping experiments 425

Figure 9. Same as right-hand panel of Fig. 8, but here we only show
the PNoFG/PSubFG = 1.3 contours for different numbers of independent
components (NIC) chosen for the FASTICA foreground removal. The coloured
regions mark where the ratio of the foreground free and subtracted fore-
grounds is greater than 1.3, that is the most foreground affected regions.

simulation and with this particular foreground cleaning method). It
is plausible that the angular structure that we see in Fig. 8 is a result
of the the angular structure in the foregrounds. We find slightly less
angular structure in these power spectrum residuals if we remove
the galactic synchrotron map from the simulations. This map is the
only one extrapolated from real data and has higher intensity closer
to the galactic plane. The other foregrounds are simulated from
Gaussian realizations (as discussed in Section 3.2) and therefore
have less angular structure. Further investigation of these results is
beyond the scope of this paper and is left for future work.

We also demonstrate in Fig. 9, that when the number of in-
dependent components (NIC) chosen in the FASTICA foreground
reconstruction is increased, then the loss of modes from foregrounds
does become more consistent and better approximated by a low-k�
cut. It is plausible that the number of independent components
we consistently use throughout this work (NIC = 4) will not be
sufficient for real data, which will likely require higher NIC, as
explored in Wolz et al. (2017) using the GBT observations. This will
especially be true when dealing with more stubborn foregrounds
from polarization leakage, which we have not simulated in this
work. This will probably need a much more aggressive foreground
removal approach and setting NIC � 10 might be required, at the
cost of damping more H I cosmological signal.

In Fig. 9, we demonstrate the effect of increasing the number of
independent components. This shows that using a higher number
of independent components NIC � 10, which is more likely when
dealing with real data, the foreground contaminated modes become
more easily defined as a simple low-k� region. This means construct-
ing an estimator that utilizes a foreground avoidance method might
be an easier task and only requires some definition of a kFG

‖ cut-off
below which data are excluded. Confirming this claim would be an
interesting investigation but would need the inclusion of simulated
polarization leakage. We leave this investigation for a follow-up
study and stick to using the default NIC = 4 for the rest of this work.

4.2 Null-RSD test

Since an H I intensity mapping quadrupole (and hexadecapole)
detection would correspond to a detection of RSD in the radio
wavelength, it is very important to understand and model the

anisotropic effects of foreground removal and the instrumental
beam. As our toy model showed, what might appear as a detection
could just be systematics interacting with the Legendre polynomials
to create a false enhanced signal. To investigate this in more detail
we have used the MULTIDARK simulation as done in the previous
examples in this section, but instead removed RSD; this is simply
done by not displacing the galaxy positions along the LoS, that is by
not including the peculiar velocities contribution in equation (15).
This should result in a null quadrupole and hexadecapole. However,
we find that in the presence of the telescope beam and foreground
contamination, a false signal appears.

Fig. 10 shows both the quadrupole (left-hand plot) and the
hexadecapole (right-hand plot) for this null RSD test. In each case
we show the measurement with no beam and no foregrounds (blue
square data points) and as expected we get a null signal. However,
when we smooth the intensity maps to emulate the effect of the
telescope beam we begin to see some non-zero signal mostly in the
higher k range (black cross data points). To emphasize the effects
from the beam, we use Rbeam = 10 Mpc h−1 for the beam size.
We then also introduce effects from the foregrounds by adding on
simulated foregrounds maps and cleaning them with FASTICA (red
circle data points). As shown, introducing foregrounds creates a
non-zero signal this time mostly in the lower k range.

We also show the P̂2 and P̂4 (equation 13) model predictions
for these cases as the black dashed line (no foregrounds) and
red dotted line (with foregrounds), which in this case has been
calculated in the same way as outlined in Section 2 but with the
Kaiser and FoG factors excluded. Interestingly, for the quadrupole
in the foreground subtracted case, we achieve better agreement
with the data for low-k if we use a constant μFG cut rather than the
μFG = kFG

‖ /k varying parameter from equation (14). The results in
Fig. 10 therefore use a μFG = 0.22 cut for P̂2 with k < 0.08 h Mpc−1

but stick with using the equation (14) cut with a best-fitting value
of kFG

‖ = 0.015 h Mpc−1 for the rest of the k-values, and for all P̂4.
This result is further confirmation that the effects from foreground
removal are not purely k� dependent in the context of this non-
aggressive (NIC = 4) FASTICA clean, as we also saw in the right-hand
panel of Fig. 8.

To test the agreement with the model, we calculate the reduced χ2

statistic, which is χ2/d.o.f. = 1.29 when we just consider the effects
from the beam. This rises to χ2/d.o.f. = 1.76 when the beam and
foreground effects are included. This latter χ2 result suggests that
the data are unlikely to be drawn from the model, however, in this
test we have not included instrumental noise that would increase the
errors and thus improve the reduced χ2 statistic. Furthermore, under
the effects of both the beam and foregrounds the quadrupole data
only has an average ∼ 5 per cent deviation from the model, which
reveals a decent agreement. Results are worse for the hexadecapole
where signal-to-noise ratio is expected to be lower, but the general
trends predicted by the model are still followed.

We emphasize that the data have also been integrated across
the full range of μ and thus our model assumes the foreground
affected P(k, μ) is zero in the μ < μFG regions and unaffected
otherwise. This model is an idealized description of the foreground
clean and is likely the reason for the slightly high χ2 statistic.
However, if aiming to optimize agreement to a model, for example
for parameter estimation (as we begin to investigate in Section 4.5
and aim to follow-up in further work), then also limiting the range
of μ when evaluating the multipoles for the data, would achieve a
more consistent comparison with the model and safeguard against
P(k, μ) not being exactly zero for all μ < μFG.
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Figure 10. Quadrupole (P2) and hexadecapole (P4) for autocorrelations of H I intensity maps, produced using MULTIDARK simulations with no RSD at z =
0.82 with a Rbeam = 10 Mpc h−1 beam size. The results should be P2 = P4 = 0 due to the exclusion of RSD from the simulation that the foreground and
beam-free results show (blue square points). Introducing a beam (black cross points) and then also introducing foreground contamination (red circle points)
creates a non-zero signal in both multipoles. However, this can be modelled as demonstrated by the agreement with the predictions shown by the dashed and
dotted lines, which represent the P̂	 model (equation 13) but without Kaiser and FoG factors.

The results from Fig. 10 largely confirm our understanding for
the source of these signals, which is due to the anisotropic nature of
the beam and foreground removal effects weighted by the Legendre
polynomials in the multipole expansion. The combined effect from
the telescope beam and foreground contamination results in a non-
zero signal. This means that when working with real H I intensity
mapping data, we need to be very confident in our modelling and
control of the foreground removal and beam effects on the different
multipoles, especially when we aim to measure RSD.

4.3 Foreground effects on the multipoles

To demonstrate and explain the impact that foregrounds have on
the amplitude and shape of each of the multipoles, it is useful
to perform a first test without any instrumental noise for clarity.
Furthermore, with our choice of large 100 m dish, the beam should
be sufficiently small at z = 0.82 that the effects of foregrounds
should be clear as demonstrated in Section 2.3. Fig. 11 represents
this first measurement of the three multipoles (P0, P2, and P4) for
the MULTIDARK-SAGE simulated maps with RSD effects applied.
For each power spectra we show the foreground free maps (black
cross data points) along with maps with foregrounds added and then
cleaned with FASTICA (red circle data points). We show our fiducial
P̂	 as introduced in Section 2, which attempts to model the effects
of foregrounds by limiting the μ range integrated over by assuming
all modes with μ < μFG are lost (red dotted lines). The foreground
free case (black dashed lines) assumes μFG = 0.

For these results, we used a bias of bH I = 1.15 and σv =
250 h−1 km s−1 to achieve the best agreement with the fiducial
model, which is approximately consistent with predictions of the
bias at this redshift (Villaescusa-Navarro et al. 2018; Spinelli et al.
2020). In general the agreement with this fiducial model is good,
especially in the monopole as shown by the residuals in the bottom
panel, which average ∼ 3 per cent deviation from the model. In the
monopole, we see a damping from foregrounds that gets more severe
for lower k as predicted. We see higher errors in the quadrupole as

would be expected since signal-to-noise ratio is expected to be worse
than higher the multipole. We perhaps see some slight discrepancies
in the quadrupole as well where the model appears to overestimate
the power in the mid-range of the k-values. The overall effect from
foregrounds is still consistent with what is predicted in that we see
an enhanced quadrupole when foregrounds are subtracted. Within
the high scatter, the hexadecapole results also appear to agree with
the trend predicted by the model, albeit less conclusively due to the
lower signal-to-noise ratio as demonstrated by the large error bars
and residual percentages in the bottom panel.

The inclusion of the fiducial model is mainly to demonstrate that
the overall anisotropic observational effects can be approximated.
A more robust fit to the data will have to include a full fitting
analysis and exploration of different (e.g. perturbative) models. But
it is encouraging that a decent agreement can still be obtained with
this fiducial model. The difference in model agreement between the
foreground and foreground free cases appears minimal, which is
encouraging. Similarly to the results in Fig. 10, for the quadrupole
in the foreground subtracted case, we achieve better agreement with
the data for low-k if we use a constant μFG = 0.16 cut for P̂2 with
k < 0.08 h Mpc−1 but stick with using the equation (14) cut with
a best-fitting value of kFG

‖ = 0.015 h Mpc−1 for the rest of the k-
values, and for all P̂0 and P̂4.

As discussed in Section 4.2, for the foreground affected case, the
model is assuming P(k, μ) is exactly zero for all μ < μFG, which is
probably an unrealistic assumption. If the priority was to optimize
agreement to a model, then the multipoles from the data could
be measured in the same restricted μ range to be consistent with
the model. This would safeguard against the imperfect assumption
that all modes are lost with μ < μFG because we would be
excluding them. However, this then becomes less demonstrative
and we could for example set quite a high cut in μFG, achieve
good model agreement, but not learn as much on the extent of the
impact from the foreground clean. In this work, our priority is to
demonstrate the effect of foregrounds and we therefore chose to
evaluate the multipoles for the simulated data by integrating over
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Multipole expansion for H I intensity mapping experiments 427

Figure 11. Power spectrum multipoles using the simulated MULTIDARK intensity maps at redshift of z = 0.82 with a Rbeam = 3.9 Mpc h−1 beam size but no
instrumental noise. Bottom panels show the percentage residual difference between the simulated data and the model P̂	 (predicted by equation 13) with μFG =
0 for the no FG cases (black dashed) and μFG = kFG

‖ /k (equation 14) for the sub-FG cases (red dotted).

the full range of μ and then attempt to match a model to these
results.

Fig. 12 shows the same test but in the presence of instrumental
noise. As demonstrated by Fig. 6, we include instrumental noise that
dominates over the H I signal across most scales. We test the method
outlined in Section 3.3, which cross-correlates different subsets of
H I intensity maps, each with independent instrumental noise. As
shown in Fig. 12, despite these high levels of instrumental noise,
each multipole is still measured to be in general agreement with the
model predictions. There are some obvious differences with respect
to the results of Fig. 11. First, the errors are noticeably larger and
the residual percentage differences between model and data have
increased. This is unsurprising in the presence of the instrumental
noise, which dominates over the H I signal, especially at high-k. In
this more realistic test, we achieve a reduced χ2 statistic of χ2/d.o.f.
∼ 1 for all multipoles in both foreground and foreground free
cases.

4.4 Higher redshift and larger beam

As discussed, the results in Figs 11 and 12 show some discrepancy
between the model (dashed and dotted lines) and simulation. The
phenomenological fiducial model we use is demonstrative and not a
full fit to the data; therefore, some differences are expected. Whilst
in our model we use an HALOFIT power spectrum and an FoG factor
as approximate non-linear treatments, it is still possible that the
discrepancies between the model and simulation could potentially
be enhanced at lower redshift where non-linear effects are higher
and a more precise treatment is needed. Similar disagreements at
low redshift have been demonstrated in, for example Villaescusa-
Navarro et al. (2018) and if these non-linearities are not being

modelled effectively, we may find better agreement at higher
redshift.

With this in mind, we ran the simulations at a higher redshift
of z = 2.03 to see if the fiducial model shows better agreement.
Fig. 13 shows results from the MULTIDARK simulated maps at z =
2.03 and initially shows a better agreement between model and data.
However, because this is at a higher redshift, the beam size increases
to Rbeam = 12 Mpc h−1 and this is largely why the agreement
improves. We tested a smaller beam case and found no significant
improvement in comparison to Figs 11 and 12, suggesting that better
modelling prescriptions should be explored when attempting a full
analysis for cosmological parameter estimation, especially when
we allow for good angular resolution.

For the larger beam results in Fig. 13, we find there is slight
improvement in the percentage residuals in the bottom panel, in
comparison with Fig. 12. Whilst we have included instrumental
noise in this higher redshift test, the increased beam size means
the simulated instrumental noise will be lower (as modelled by
equation 26 keeping the rest of the parameters constant) and this is
why we see smaller error bars and better residuals for this higher
redshift example.

Fig. 13 is an interesting test using a larger beam and shows that
the effects from the foregrounds are much less dominant in this case.
This was predicted by our model (see Fig. 4) and the cause can be
summarized as a beam damping of the foreground contaminated
modes. We have already discussed this in detail in Section 2.3. The
distinction between the foreground free (black cross points) and
subtracted foreground (red circle points) simulations is therefore
less obvious and is only really observed at the smallest k. This is an
interesting result since it means intensity mapping experiments with
larger beams and realistic levels of noise can be less concerned about
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428 S. Cunnington et al.

Figure 12. Same plot as Fig. 11, but with dominant instrumental noise included in the simulations. An increase in error bar size and residual percentage errors
(bottom panel) is evident from the noise introduction.

Figure 13. Higher redshift (z = 2.03) multipole results where a larger beam of Rbeam = 12 Mpc h−1 is used. Instrumental noise is lower and foreground
effects are mitigated both due to the larger beam size.
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Multipole expansion for H I intensity mapping experiments 429

foreground contamination when probing anisotropic clustering.
However, this assumes that all other systematics are under control
and further work using more realistic simulations and pathfinder
data is needed. There is also still some disagreement for the
largest modes especially for the monopole, thus motivating further
understanding of these effects. Furthermore, the quadrupole is still
showing evidence of enhancement in the foreground contaminated
case and in the hexadecapole, some foreground effects are still
evident.

In order to achieve the best agreement for Fig. 13 we found that we
needed to use slightly different model parameters for the foreground
results. This is expected since at this redshift, the frequency range
is lower and therefore the foreground signal will be different
compared with the lower redshift results. For the model we use
kFG

‖ = 0.019 h Mpc−1 and μFG = 0.13 for the constant quadrupole
cut for modes with k < 0.08 h Mpc−1. Along with these parameters,
we also use a bias of bH I = 1.95 and find that we achieve a better
result if we do not include an FoG factor, that is we set σ v = 0.

4.5 Parameter estimation test

To understand the effects of foreground removal on biasing pa-
rameter estimation with the H I power spectrum, we will perform
a Bayesian MCMC analysis at redshifts z = 0.8 and 2, using H I

intensity mapping simulation data and our model. For simplicity,
we will consider the real space power spectrum (i.e. the monopole
without the RSD contribution), to focus on showing the effect
of foreground removal on constraining the amplitude parameter
�H IbH I.

For this test, in order to allow us to input known parameters
that we then attempt to recover, and in order to quickly produce
a few realizations of the signal, we simulate intensity maps using
lognormal mock catalogues of objects, generated using NBODYKIT6

(Hand et al. 2018). This method is routinely used for the production
of mock galaxy catalogues and is described in Coles & Jones (1991).
For each redshift studied, we obtain 10 different realizations of the
H I signal and average over them.

The mock catalogue of objects is generated as follows: first,
we specify the central redshift (z = 0.8 or 2), box size, number
density of objects, and bias of the objects in the simulation. We
choose a bias of 1 for simplicity and a box size corresponding
to a fairly large sky area of 40 × 40 deg2 with redshift bin of
�z = 0.4. At z = 0.8, this box has comoving distance dimensions
Lx = Ly = 1357 Mpc h−1 andLz = 762 Mpc h−1, and at z = 2, we
have Lx = Ly = 2514 Mpc h−1 and Lz = 400 Mpc h−1. Both data
cubes have voxel dimensions given by Nx = Ny = Nz = 512.
Using the PLANCK15 fiducial cosmology (Planck Collaboration et al.
2016), we define an input linear power spectrum that is used to
generate a Gaussian overdensity field in Fourier space, which is
then transformed back into configuration space. Next, a lognormal
transformation is performed on the overdensity field, which is
then Poisson sampled and evolved in time using the Zel’dovich
approximation (Zeldovich 1970). We now have a position for
each sampled object, which is converted to a mesh using a mass-
assignment function (see Jing 2005). We use the cloud-in-cell
interpolation with p = 2.

To provide this lognormal simulation with the observational
effects one would expect with an intensity mapping experiment we
first multiply the overdensity field by T H I, given by equation (20).

6https://nbodykit.readthedocs.io

We use a fiducial value of �H I = 4.3 × 10−4 for both redshifts,
consistent with Masui et al. (2013) constraints – and as already
stated we set bH I = 1. We then convolve this H I temperature
fluctuation field with a telescope beam. For both redshifts, we
use a beam of size Rbeam = 14.41 Mpc h−1, which represents a
θFWHM = 1 deg beam at z = 0.8, similar to the beam size of the
MeerKAT and SKA-MID dishes.

Finally, we can simulate the effects of foreground removal by
adding and subtracting them as described in Section 3.2. The
final result is a data cube with an H I temperature fluctuation field
including beam and foreground removal effects, where we know
the fiducial T H I and bH I. We can then use this simulated map to
measure the power spectrum and constrain the amplitude �H IbH I,
keeping everything else fixed. Since the number density of objects
is specified at the start of the simulation, it is straightforward to
remove the contribution of shot noise from the calculated power
spectrum.

To model the uncertainties on power spectrum measurements
from our simulation, we consider a MeerKAT-like intensity map-
ping experiment in single-dish mode with a total observation time
of 1 week for z = 0.8 and 10 weeks for z = 2. The different choices
are because we want to have similar error bars for both cases. The
noise power spectrum (PN) due to instrumental (thermal) noise is
obtained as in Pourtsidou et al. (2016), and the uncertainty on the
power spectrum is then calculated using equation (27).

Given this set of simulated H I intensity mapping data, and the
uncertainties, we wish to test whether the input (fiducial) values
of T H IbH I (equivalently, �H IbH I) are recovered using a simple
H I power spectrum model, and how foreground subtraction may
bias these results. We calculate P0(k) following the formalism in
Section 2. Without RSD (and without foreground subtraction), this
is given by

P0(k) = 1

2
T

2
H Ib

2
H IPM(k)

∫ 1

−1
d μ B̃2

beam(k, μ) . (28)

We use the above equation in the log-likelihood of our MCMC
analysis, varying the parameter T H IbH I, and using a flat positivity
prior.7 Note that T H I is dependent on �H I, so by convention, the
parameter we are interested in measuring is �H IbH I. Our fiducial
value for this parameter is �H IbH I = 4.3 × 10−4.

The MCMC analysis is performed using the publicly available
PYTHON package EMCEE8 (Foreman-Mackey et al. 2013), with 200
walkers and 500 samples. For each redshift and beam size, we
perform four separate analyses; one in the foreground free case and
three in the foreground subtracted case. First, we consider the case
of no foregrounds. For z = 0.8, from the survey volume we have
kmin = 0.006 h Mpc−1 and use bins of width �k = 0.012 h Mpc−1.
For z = 2, we have kmin = 0.005 h Mpc−1 and �k = 0.01 h Mpc−1.
For both redshifts, we impose kmax = 0.3 h Mpc−1. We consider
the ‘full’ k-range to be from the survey volume-limited kmin to the
imposed kmax = 0.3 h Mpc−1. When imposing k-range cut-offs in
subsequent analyses, we refer to the k-range as ‘restricted’. We now
add and remove foregrounds and perform three separate analyses.
First, we repeat the analysis in the full k-range as in the foreground
free case. Next, we restrict the k-range considered by imposing
a kmin value below which the foreground subtraction is damping

7Since this is just a one-parameter fit an MCMC is not necessary. However,
we opt for this approach as the accompanying code can be easily extended
to include more parameters.
8https://emcee.readthedocs.io
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Figure 14. Parameter estimation results for �H IbH I and the no RSD P0 model (equation 28) at z = 0.8 (left) and z = 2 (right). The solid blue line represents
the case of no foregrounds, dotted red line is the case with foregrounds added and then removed with FASTICA, and the dashed green line is the same but with
a restricted k range. The dashed–dotted purple line is the foreground removed case with a varying μFG cut. The black solid line is the fiducial (true) value of
�H IbH I.

our monopole signal (as explored earlier in the paper) and thus
significantly biasing our parameter estimation results. Finally, we
explore the performance of our foreground modelling described in
Section 2.2, using a kFG

‖ cut for each redshift. We again find that for
the monopole a varying μFG = kFG

‖ /k works better than a constant
μFG cut. We note that this is for demonstrative purposes only and
leave detailed exploration of foreground modelling including RSD
and jointly fitting the different multipoles for future work.

The results for each of these cases can be seen in Fig. 14. It is also
common practice in this type of analysis in optical galaxy surveys to
limit kmax in an attempt to exclude non-linear behaviour and obtain
less biased results (see e.g. Markovic, Bose & Pourtsidou 2019).
We tried this in our analysis but found no discernible difference in
the bias of our results. This is due to the reasonably large beam
utilized in our simulated data, which damps the signal and makes
non-linearities less significant. If one uses a much smaller beam
then this would not be the case anymore and a suitable kmax cut
should also be imposed.

In both redshifts studied, we find that in the case of no fore-
grounds, our model for the monopole recovers the input �H IbH I

within the 1σ confidence interval. When we add and subtract
foregrounds, we recover a distribution for �H IbH I that strongly dis-
agrees with the input, a very biased result in both redshifts. However
in both z = 0.8 and 2, we found that imposing kmin = 0.09 h Mpc−1

allows us to recover the input �H IbH I of our simulation within
1σ . Note that the width of the distribution (the error) becomes
larger when the k-range is restricted, as expected. We also find
that using our foreground modelling with a varying μFG cut allows
us to recover the input within 1σ for both redshifts, by choosing
kFG

‖ = 0.016 h Mpc−1 for z = 0.8 and kFG
‖ = 0.031 h Mpc−1 for z =

2. The peak of these distributions is closer to the fiducial value than
in the kmin cut case, and the distributions narrow as expected since
we have observed and quantified the model to work well in previous
sections. However, the validity of this particular model in the context
of real data and more complex foregrounds remains to be studied in
future work, while the kmin cut method is model-independent. We
obtain better results for the no foreground case at z = 2, which we
believe is due to non-linearities being less dominant at this higher
redshift. To quantify and summarize the results at each redshift, we
note the mean and 1σ error of each distribution in Table 2.

Table 2. Mean and 1σ error of �H IbH I/10−4 for each posterior distri-
bution obtained with MCMC. For reference, the fiducial (true) value is
�H IbH I/10−4 = 4.3.

�H IbH I/10−4 estimation
Analysis z = 0.8 z = 2

Full P0, no FG 4.21 ± 0.13 4.25 ± 0.11
Full P0, sub-FG 3.35 ± 0.14 2.60 ± 0.17
Restricted P0, sub-FG, kmin cut 3.98 ± 0.36 3.97 ± 0.34
Full P̂0, sub-FG, kFG

‖ model cut 4.18 ± 0.17 4.21 ± 0.20

The effects of foreground removal dominate below kmin =
0.09 h Mpc−1 for both redshifts, but the foreground cleaned case
at z = 2 gives a more biased result compared to z = 0.8. This
suggests that the scale at which foreground cleaning contamination
begins to bias our results is the same for both redshifts, but the
amplitude of this bias is larger at z = 2. This is also demonstrated
by the different kFG

‖ values found to best fit the data with the
foreground modelling. The kFG

‖ value for z = 2 is almost double that
of z = 0.8, indicating that more signal has been removed alongside
the foreground clean at this higher redshift. Recall that we use
beams with the same physical scale for both redshifts, so this
effect must be due to other differences between the simulations,
namely that we have different box sizes at each redshift. More
specifically, the �z = 0.4 box at z = 0.8 has a larger radial depth
(Lz = 762 Mpc h−1) compared to the �z = 0.4 box at z = 2 with
Lz = 400 Mpc h−1. This equates to a difference in frequency range
with �ν = 178 MHz at z = 0.8 and �ν = 63 MHz at z = 2. Probing
a wider frequency range makes it easier to identify and remove
the foregrounds with FASTICA, as more frequency information is
available.

We conclude that in the simple scenario considered, the effect of
subtracting foregrounds on parameter estimation is to bias the results
significantly. However, we show that by restricting k and effectively
discarding the large radial modes most affected by foreground
removal techniques, it is possible to retrieve the input �H IbH I,
albeit with larger errors. We also find that it is possible to retrieve
this fiducial amplitude parameter using our foreground modelling
with a varying μFG if a suitable kFG

‖ cut for the data is reasonably
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Multipole expansion for H I intensity mapping experiments 431

known, but leave a more detailed study of the accuracy of this model
for future work.

This result is interesting as it demonstrates the effect that
the FASTICA foreground removal has on biasing the P0(k) power
spectrum of the cosmological signal, resulting in biased parameter
estimation in the simple scenario we have considered. Similar
effects have been seen before in Wolz et al. (2014) using the angular
power spectrum C(	). Further work is needed in order to determine
the best way to deal with the effects of foreground subtraction
in order to get unbiased results. Including RSD is essential to
accurately model what is actually observed, and further parameters
(e.g. the growth of structure f) need to be varied as well – we plan to
do this in future work. This will allow further investigation into
the possibility of constraining H I and cosmological parameters
with intensity mapping surveys. More sophisticated theoretical
prescriptions might also be required to model the small scales,
especially if we consider interferometers like CHIME or HIRAX.

5 C O N C L U S I O N

In this paper, we have investigated the impact H I intensity mapping
observational effects (telescope beam, foreground removal, and
noise) have on anisotropic clustering, and in particular on the
H I power spectrum multipoles. We begun by modelling these
effects with a simple input fiducial power spectrum PH I(k, μ) from
which we constructed the first three non-zero multipoles (P0, P2,
and P4), which contain most of the cosmological information.
The effects from the telescope beam and foreground cleaning
were implemented into the model with the former as a damping
function (equation 7) and the latter as an exclusion of modes where
μ < kFG

‖ /k. This was motivated by the fact that foreground removal
is expected to affect the small k� modes. Our model is outlined in
equation (13). Using simulated intensity mapping data we tested
this model and found it can achieve good agreement with the test
data.

The simulated data methodology is described in Section 3,
where we used the MULTIDARK-SAGE galaxy data to construct the
cosmological H I signal, while in Section 4.5 we used lognormal
simulations. We also added simulated foregrounds and instrumental
noise and performed a FASTICA reconstruction to produce the
foreground cleaned data – this was then used for comparisons with
the foreground free H I data.

For clarity, we summarize our main conclusions below:

(i) Our model revealed that foreground removal affects each
multipole differently. For the monopole (P̂0), we find the foreground
clean simply damps the power with a more severe loss for lower
k modes, as expected. For the quadrupole (P̂2), we find the power
is artificially enhanced due to the interaction of the damped power
with the Legendre polynomials as explained in detail in Section 2.2
and demonstrated in Fig. 3. The hexadecapole (P̂4) also exhibits
foreground effects but their behaviour is strongly modulated by the
beam size. These findings were also supported by our simulated
data tests as shown in Fig. 11.

(ii) The impact the foreground removal has is modulated by the
size of the telescope beam. Fig. 4 shows that increasing the beam
renders a larger range of modes (at the small-k end) unaffected by
foreground cleaning. This was explained in Sections 2.3 and is due
to the beam damping foreground contaminated modes so that they
become a subdominant effect. Again these results were supported by
the simulated data measurements that we overlay on to the fiducial
model in a similar test shown in Fig. 13.

(iii) In Section 4.2, we performed a useful null test by removing
the simulated RSD from the data and measure the quadrupole and
hexadecapole. Since both of these multipoles should be zero in
the absence of RSD, this test reveals the anisotropic observational
effects more clearly. Broadly speaking, Fig. 10 shows that a
foreground clean creates an artificial signal at low-k, whilst the
beam creates an artificial signal in the higher k range. These effects
thus combine to create a full range of artificial signal across all k.
Understanding and modelling them properly is needed in order to
perform robust RSD measurements with H I intensity mapping data.

(iv) The right-hand panel of Fig. 8 highlighted the main contam-
inated regions from a foreground cleaning process separated into
parallel (k�) and perpendicular (k⊥) components. This revealed that
whilst it is largely the small-k� modes which are most affected, the
effect is also k⊥ dependent. The beam effect, on the other hand
(right-hand panel of Fig. 8), is just a function of k⊥. These results
suggest that foreground contamination could be parametrized using
the μ parameter, since the bottom right dark corner is well
approximated as a region with μ � 0.2.

(v) Consideration should be given to the above point when
constructing an estimator or using the foreground avoidance method
for parameter estimation, that is how is the region of foreground
contaminated modes best defined, as a kFG

‖ cut or a constant μFG

cut. We found that the multipole measurements agree well with our
simple fiducial model when using a μFG = kFG

‖ /k cut, where kFG
‖ =

0.015 h Mpc−1. However, for the quadrupole at k < 0.08 h Mpc−1,
the model seems to work better with a constant μFG = 0.16 cut.
These parameters were the ones that returned the lowest percentage
residuals in the multipoles (see bottom panels of Figs 11–13) and
the best reduced χ2 statistics.

(vi) It is likely that with real data, or with inclusion of more
stubborn simulated foregrounds such as polarization leakage, more
independent components will be needed in the FASTICA foreground
removal. In that case, the region of foreground contaminated modes
becomes larger, but simpler to define. As shown in Fig. 9, increasing
the number of independent components, NIC, makes the foreground
contaminated region more easily defined with a constant kFG

‖ cut.
(vii) Our results in Fig. 9 also suggest that arbitrarily going to

high levels of NIC does not necessarily cause results to converge.
(viii) Lastly we showed that using our model or a restricted k-

range we were able to recover the correct �H IbH I value within
1σ (see Fig. 14). Without accounting for the effects of foreground
removal, the results were very biased. This highlights the impor-
tance of understanding the extent of foreground contamination when
working with real data.

(ix) The accompanying PYTHON toolkit is available at https://gith
ub.com/IntensityTools/MultipoleExpansion, and includes maps and
the relevant data required to reproduce our results. We also include
a set of pedagogical JUPYTER notebooks.

Our simulations have omitted complications from polarization
leakage of foreground synchrotron radiation, which can disrupt the
frequency coherence of the foreground signal rendering them more
challenging to remove. Although there is little work on the effects
of polarization leakage on low-redshift intensity maps, the hope
is that a more aggressive foreground clean, coupled with precise
instrument calibration, should mitigate the effect of this. Whilst we
included realistic levels of instrumental noise, this was uncorrelated
(white) noise. We have ignored the effects of frequency correlated
(1/f) noise, with the assumption that they can be mitigated with
appropriate scanning strategy and calibration. Further treatment of
these effects would be worth pursuing.
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In future work, we plan to investigate a suite of different models
and perform fitting and cosmological parameter estimation analyses
using MCMC, extending previous works (Pourtsidou et al. 2017;
Bacon et al. 2020; Castorina & White 2019; Bernal et al. 2019). This
will also look into more detail of the optimal approach for dealing
with the foreground contaminated regions. Another aim would be
to include cross-correlations with simulated optical galaxy data.

Using the multipole expansion formalism with redshift space
models including observational effects is the standard way to
constrain cosmological parameters with data from large-scale struc-
ture surveys. Doing the same with H I intensity mapping data is
necessary to fully exploit the constraining power of large sky radio
cosmological surveys, and enable cross-correlation analyses across
a wide-redshift range. The results in this work demonstrate that,
whilst there are several challenges, these should be surmountable
with the correct understanding of the observational effects. We aim
to use the simulations, models, and numerical tools developed in
this paper to help analyse H I intensity mapping data from MeerKAT
very soon.
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