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ABSTRACT
The VLT Survey Telescope (VST) Optical Imaging of the CDFS and ES1 Fields Survey, in
synergy with the SUDARE survey, is a deep optical ugri imaging of the CDFS and ES1 fields
using the VST. The observations for the CDFS field comprise about 4.38 deg2 down to r ∼
26 mag. The total on-sky time spans over 4 yr in this field, distributed over four adjacent sub-
fields. In this paper, we use the multiepoch r-band imaging data to measure the variability of
the detected objects and search for transients. We perform careful astrometric and photometric
calibrations and point spread function modelling. A new method, referring to as differential
running-average photometry, is proposed to measure the light curves of the detected objects.
With the method, the difference of PSFs between different epochs can be reduced, and the
background fluctuations are also suppressed. Detailed uncertainty analysis and detrending
corrections on the light curves are performed. We visually inspect the light curves to select
variable objects, and present some objects with interesting light curves. Further investigation
of these objects in combination with multiband data will be presented in our forthcoming
paper.

Key words: methods: data analysis – methods: observational – techniques: image process-
ing – techniques: photometric – catalogues – surveys.

1 IN T RO D U C T I O N

Time-domain astronomy opens a new window to study the proper-
ties of astronomical objects. Properly timed observations allow to
obtain their light curves that represent the flux variations as a func-
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tion of time. The shapes of light curves contain physical information
of different types of objects, such as the pulsating stars, active
galactic nuclei (AGNs), supernovae (SNe), tidal disruption events,
and so forth (Covone et al. 2000; Strubbe & Quataert 2009; Wang &
Han 2012; Catelan & Smith 2015; Lawrence 2016). In addition to
providing clues on the nature and origin of these variable objects,
they can also be used as tools for astrophysical applications. For
example, the period–luminosity relations of Cepheids and RR Lyrae
stars are crucial anchors in distance measurements (Benedict et al.
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2007; Rich et al. 2018). The characteristic light-curve behaviors of
Type Ia SNe make them standardizable candles to measure distance
on cosmological scales, and thus to probe the expansion history of
the Universe (Riess et al. 1998; Perlmutter et al. 1999; Abbott et al.
2019). The brightness drop of stars caused by their transiting planets
leads to abundant discoveries of exoplanet candidates (Stassun
et al. 2018; Thompson et al. 2018). Given the importance, many
surveys have been dedicated to time-domain observations, e.g. the
Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS; Kaiser 2004), the Catalina Real-Time Surveys (Drake
et al. 2009), the Palomar Transient Factory (PTF/iPTF; Law et al.
2009), the High Cadence Transient Survey (HiTS; Förster et al.
2016; Martı́nez-Palomera et al. 2018), the SkyMapper Transient
Survey (Scalzo et al. 2017), and the Zwicky Transient Facility (ZTF;
Graham et al. 2019). The upcoming facilities, such as the Large
Synoptic Survey Telescope (LSST; Ivezić et al. 2019), will also
conduct time-domain observations with about a half-sky coverage
to faint magnitudes.

To identify the variable objects and measure their light curvers,
different methods have been applied, including the difference
imaging analysis (Alard & Lupton 1998; Oelkers et al. 2015;
Zackay, Ofek & Gal-Yam 2016), and point spread function (PSF)
homogenization (Sánchez et al. 2017), etc. The forward modelling
of the entire image (galaxy + transient) in a non-parametric
manner (Fabbro 2001; Astier et al. 2006) has also been applied
to obtain high-precision light curves for known transients without
involving explicit image subtractions. Since its first application
to microlensing surveys (Alard & Lupton 1998), the difference
imaging (or image subtraction) method has been widely used in
many surveys, such as PTF/iPTF, HiTS, and ZTF. To perform image
subtraction, a reference image should be first built that can either be
the image with the best seeing or the coadded image from multiple
exposures. A newly observed image is then subtracted from the
reference one after PSF homogenization, so that the flux variations
of the objects therein can be detected from the residual image.
The implementation of the image subtraction method is relatively
easy and fast. This makes it particularly well suited to search for
transients in wide sky surveys. In practice, however, this method
suffers from several limitations. First, the PSF varies spatially
over the entire image. For telescopes with a large field of view,
the PSF variations are generally significant from the centre to the
edge in the focal plane. Therefore, accurately modelling the PSF
and performing homogenization between the reference and new
image are challenging. Secondly, the variable background noise
between different exposures makes the observed depths different.
The subtraction between the reference and new image will further
magnify the background noise. The two facts can lead to large
uncertainties of the measured variability or even spurious detections
(Zackay et al. 2016).

In this paper, we propose a new method, referring to as differential
running-average photometry (drap), to measure the variability of
objects and apply it to the SUDARE–VOICE r-band imaging data
by taking the advantage of the long time baseline and high image
quality of the survey. This method can moderately mitigate the
difference of PSFs between different exposures, and suppress the
background fluctuations, making it applicable to data with relatively
long time accumulations and a large enough number of exposures.
The paper is organized as follows. In Section 2, we describe
the SUDARE–VOICE observations and detailed data reduction
methods. The methodology for light-curve extraction is presented
in Section 3. We shows some typical results in Section 4. Finally,
summaries are given in Section 5. In Appendix A, we explain the

PSF variations in drap. All magnitudes quoted in this paper are in
the AB system.

2 TH E S U DA R E – VO I C E S U RV E Y

The VLT Survey Telescope Optical Imaging of the CDFS and
ES1 Fields (VOICE) survey1 (PIs: Giovanni Covone & Mattia
Vaccari; Vaccari et al. 2016), in synergy with the SUDARE survey
(Cappellaro et al. 2015; Botticella et al. 2017), was proposed to
cover about 8 deg2 evenly split between the CDFS (Giacconi et al.
2001; Tozzi et al. 2001) and the ES1 (Oliver et al. 2000; Rowan-
Robinson et al. 2004; Vaccari et al. 2005) fields in four optical ugri
bands using VLT Survey Telescope (VST)/OmegaCam camera. The
project also includes additional coverage of the COSMOS field (PI:
Giuliano Pignata) with a smaller sky coverage but extended to longer
baseline of 3 yr (De Cicco et al. 2015, 2019). The VST, located at
Cerro Paranal, Chile, is a 2.6-m modified Ritchey-Chretien alt-az
telescope designed for wide-field optical imaging. The equipped
OmegaCAM (Kuijken 2011) is a mosaic of 8 × 4 CCD chips, each
with 4 k × 2 k pixels. It covers 1 deg × 1 deg field of view with a
pixel scale of 0.214 arcsec.

The SUDARE–VOICE survey aims at providing deep optical
images in the targeted fields to enable various astrophysical studies
in conjunction with other existing data covering different wave-
lengths (Vaccari et al. 2010; Vaccari 2015, 2016b). The imaging
observations of the CDFS field have been completed. The entire field
was divided into four tiles (CDFS1–4), with each about 1 deg2. Over
100 exposures, spanning almost 2 yr, with a single exposure time of
360 s, were obtained for each tile (Falocco et al. 2015). Observations
were performed in dithering mode, made of at least five consecutive
exposures in one night (or one epoch), to cover the detector
gaps. The images were pre-processed (including instrumental effect
removal, flat-fielding, CCD gain harmonization, and illumination
correction, etc.) with the VST-Tube pipeline (Grado et al. 2012).
With the multiepoch imaging data, many astrophysical topics have
been investigated, such as the studies of the SN explosion rate
(Cappellaro et al. 2015; Botticella et al. 2017), the variability-based
selections of AGNs (Falocco et al. 2015; Poulain et al. 2020), as
well as the weak gravitational lensing shear measurements and
cosmological analyses (Fu et al. 2018; Liu et al. 2018).

The r-band observations were taken with a cadence (i.e. the time
interval between two consecutive epochs) of about 3–4 d, avoiding
the 10 d around the full moon. The g- and i-band observations were
taken every 7 d, and the u-band observations did not have a specific
cadence. Because of their best cadence and image quality, we focus
on the analyses of r-band data in this study. In total, there are 35,
25, 34, and 30 epochs for CDFS1-4 fields. The average 5σ limiting
magnitude of individual epochs is about 24.3 mag for point source
within 1.0 arcsec aperture radius. In the rest of this section, we will
give detailed description on the image processing procedures.

2.1 Image reduction

As mentioned above, the r-band single exposure images have
been pre-processed by the VST-Tube pipeline (Grado et al. 2012).
For accurate variability analyses, we start with the images after
removing the instrumental effects by the VST-Tube pipeline, and
continue to perform additional calibrations using our customized

1http://www.mattiavaccari.net/voice/
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SUDARE–VOICE variability and transient search 3827

routines, including cosmic ray removal, background subtraction,
and astrometric and photometric calibrations.

2.1.1 Cosmic ray removal and background subtraction

Careful removal of the cosmic rays is crucial because any residuals
on the detected astronomical objects may lead to spurious variabil-
ities. We use a modified Python code2 that implements the L.A.
Cosmic algorithm to detect and remove cosmic rays. The algorithm
is based on a variant of Laplacian edge detection (van Dokkum
2001). It is capable of detecting and rejecting cosmic rays with
arbitrary shape by convolving a 2D Laplacian kernel that is sensitive
to variations on small scales. By applying this algorithm, however,
we find that the peak values of some unsaturated bright point objects
(typically, about ∼10–20 such point objects on each CCD chip) can
be misclassified as cosmic rays, especially those observed under
good seeing conditions. Our analysis shows that their peak values
are systematically larger than half of the saturation level of the
CCD chips. To overcome the problem, we slightly modify the code
to include additional information from a flag map. To create the flag
map, we first run SExtractor (version 2.19.5; Bertin & Arnouts
1996) on each exposure for object detection, and then assign the
isophotal pixels of the point objects with peak values larger than half
of the saturation level to zero. Other pixels in the flag map are set to
be 1. With this map, the bright point objects will not be considered
for cosmic ray detections. We determine the best parameters by
visual inspection of the mask images, and remove the cosmic rays
through iterating the algorithm three times. Residual cosmic rays,
including those potentially superposing on the bright point objects,
will be further rejected in our following reduction procedures.

We run SExtractor to subtract the background for each CCD
chip separately. To construct the background map, SExtractor
estimates the local background in each mesh of a grid (64 × 64
pixels) that covers the entire CCD chip. In the presence of bright
or saturated stars, however, the local background will be overes-
timated, hence leading to an underestimate of the fluxes of real
objects. Therefore, we perform the background subtraction in two
steps. We first create a preliminary background-subtracted image
with SExtractor and detect the objects using a low detection
threshold (i.e. DETECT THRESH = 1.5). Then, these objects are
masked from the original image. To reduce the effect of the residual
light, which is below the detection threshold, the mask region of
each object is slightly enlarged. Using the same method as described
in Liu et al. (2017), for a specific object-masked region, the
median value a and variance σ 2 are calculated through its adjacent
pixels (at least 900 unmasked pixels). The masked pixels are then
filled with random numbers sampled by the Gaussian distribution
N(a, σ 2). Compared to the conventional interpolation method, this
procedure preserves the local statistical properties and eliminates
many artificial effects. Secondly, we re-run SExtractor on the
object-masked image to construct the background map and subtract
it from the original image. Our analyses show that this method can
produce better local background estimate.

2.1.2 Astrometric and photometric calibrations

We use SCAMP (version 2.2.6; Bertin 2006) for astrometric and
photometric calibrations. The calibrations are performed on every
epoch individually. For astrometric calibration, the Gaia DR1

2http://www.astro.yale.edu/dokkum/lacosmic/

catalogue (Gaia Collaboration 2016) is used as reference. The final
rms offsets of the astrometry are less than 0.06 arcsec along both
right ascension and declination axes.

Homogeneous photometric calibration between different epochs
is essential for accurate variability measurements. Taking into
account potential zero-point variations between different CCD chips
and different exposures for a given epoch, we first run SCAMP to
perform relative (internal) photometric calibration between different
exposures so that the mean of the relative flux scaling parameter
(FLXSCALE) is close to 1.0. Then, we run SWarp (version 2.38.0;
Bertin 2010) with median mode to stack the individual exposures,
and create a single-epoch image as well as the corresponding inverse
variance weight map. The median stacking can further reject the
residual cosmic rays. We run SExtractor to detect the bright
objects in these single-epoch images and match the corresponding
catalogues individually with the Gaia DR1 star catalogue to gen-
erate the star samples for all epochs. The magnitudes of the stars
are then restricted to be in the range of 17.5–21.5 mag. Quantitative
comparison of the instrumental magnitudes of the common stars
between any two different epochs shows that the median of the
magnitude difference varies. For a few epochs, the difference can be
even larger than 0.1 mag. This can be attributed to either the impact
of different airmass or the non-photometric conditions. In this work,
we do not distinguish these different effects and simply regard them
as zero-point variations. To eliminate such difference, we set the
epoch with the best seeing in CDFS1 sub-field as reference, and
scale the fluxes of other single-epoch images to the reference. The
flux scaling factors are derived by comparing the instrumental fluxes
of stars between the reference and other images. The partial overlap
between the four sub-fields enables us to homogenize the zero-
points of all the single-epoch images to the reference. We find
that the minimum overlap region between two adjacent sub-fields
is about 110 arcmin2, resulting in ∼150 common stars with good
quality. According to the procedures, the final dispersion of the
photometric calibration between different epochs is smaller than
0.02 mag.

2.1.3 Image coaddition and photometry

To assess the quality of each single-epoch image, we calculate the
full width at half-maximum (FWHM) and the elongation of stars,
and the background fluctuation σ bkg. We First exclude the epochs
with median elongation larger than 0.1. The large elongation most
probably results from the tracking instability of the telescope during
the observation. The epochs with FWHM > 1.2 arcsec and σ bkg

> 15.0 analog-to-digital units (ADUs) are also rejected from the
following analyses in order to reduce the object blending effect and
positional uncertainty, as well as to optimize the signal-to-noise
ratio (SNR) of objects. The excluded epochs have either large seeing
or shallow limiting magnitude. Finally, we have 27, 21, 24, and 26
epochs for the CDFS1-4 sub-fields, respectively. Since the four sub-
fields partially overlap with each other, the overlapping sky regions
can have a larger number of observed epochs than the other regions.
The very central sky region, covering about 1.7 × 6.2 arcmin2 by
the four sub-fields, has almost 98 observed epochs.

We then stack all the remaining single-epoch images using
median combination method to create the final mosaic image
(hereafter det image). Again, the median coaddition enables us a
further removal of residual cosmic rays, satellite tracks, and other
image defects remaining in the single-epoch image. In total, The
det image covers 4.38 deg2, and it is used for objects detections
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Figure 1. The r-band magnitude distributions with error bars estimated
from the Poisson statistics. The grey points represent the distribution of the
det image, while the other four colour-encoded distributions are the results
by averaging the individual catalogues of all epochs for the sub-fields.

and selections (see Section 3). The initial absolute photometric
calibration was calculated by comparing the observed magnitudes
of standard stars with photometric reference magnitudes. This was
performed by the SUDARE–VOICE team based on the observation
on 2012 July 30. In this work, we directly compare the instrumental
magnitudes of stars in the det image with the calibrated magnitudes
to determine the final zero-point and apply it to the individual
epochs. The derived 5σ limiting magnitude of the det image is
about 26.3 mag for point source within 1.0 arcsec aperture radius.

Saturated stars and their surrounding haloes can systematically
affect the photometry on the nearby objects. We therefore visually
identify all these regions and mask them from the det image. The
area of such mask regions accounts for about 7 per cent of the
original image.

We run SExtractor on the det image for object detection and
photometry. The detection threshold is set to be 2.0σ above the
background, and at least three connected pixels are required for a
detection. For photometry of the blended objects, we set the number
of deblending threshold to be DEBLEND NTHRESH = 32 and the
low contrast parameter to be DEBLEND MINCONT = 0.002. In
total, 381 937 objects are detected. The same configuration is also
applied for the photometry on individual epochs. Fig. 1 shows the
r-band magnitude (MAG AUTO) distributions of objects detected in
the det image and the average of individual epochs for the four
sub-fields. We can see that the peak of the magnitude distribution
from the det image is about 24.5 mag, which is close to the limiting
magnitude of single-epoch images.

2.2 PSF modelling

For every epoch, we construct the spatially varied PSF model using
PSFEx software (version 3.17.4; Bertin 2013). Because each single-
epoch image covers about 1.0 × 1.0 deg2 and results from stacking
single exposures, the spatial variations of the PSF over the entire
image are significant (Fu et al. 2018). To accurately model the PSF
variations with polynomial interpolation and reduce the impact of
discontinuities at the CCD edges due to the stack of individual
exposures, we first split the image into 4 × 2 sub-images of uniform
size. Basically, each sub-image covers the area of about 2 × 2

Figure 2. A typical example of PSF model constructed by PSFEx. The first
four columns are star stamps selected for PSF modelling, while the last four
columns show the corresponding residuals by subtracting the PSF models.
The size of each stamp is 12.2 × 12.2 arcsec2 with pixel scale of 0.2 arcsec.

CCD chips. The PSF model is then constructed for each sub-image
individually.

To obtain a clean star sample for PSF modelling, we generate
the object catalogue for each sub-image and then match it with
the Gaia DR1 catalogue. Only unsaturated stars with SNR larger
than 50 and SExtractor parameter FLAGS = 0 are selected.
To reduce the non-linearity effect, stars with peak counts larger than
half of the saturated values are also rejected. These criteria result
in over 100 isolated and unsaturated stars for each sub-image as
PSFEx input. We fix the image size of the PSF model (PSF SIZE)
to be 31 × 31 pixels. To extract the principal components of
the PSF model from principal component analyses, the basic
vector parameter BASIS TYPE is set to be PIXEL. A third-order
polynomial function is applied to model the spatial variations.
Finally, the PSF model at a given image position can be calculated by
a linear combination of 10 pixel basis vector images. Fig. 2 displays
a typical example to illustrate the accuracy of the PSF construction.
Statistically comparing the stars with the corresponding PSF models
shows that our implementation can yield near-zero model residuals.
However, there still exist systematic biases in the very central
region of the bright stars, as shown in Fig. 2, which probably
bias the photometry of the measured light curves. Therefore, we
further perform the detrending correction on the light curves in the
following section.

3 VARI ABI LI TY MEASUREMENTS

In this section, we first describe the criteria to select objects for
variability measurements. Then, we introduce the drap method to
extract the light curves for the selected objects, and present detailed
error analyses on the results. It is noted that current time-domain
surveys mainly focus on point-like objects (e.g. stars and quasars)
or special extended objects (e.g. AGNs and SNe with observable
hosts). In our studies here using drap, we do not make priori-type
selections. Thus, the objects we analyse consist of both point-like
and extended objects.

3.1 Source selection

The catalogue extracted from the det image is used for initial object
selection. As shown in Fig. 1, most objects in the catalogue are very
faint and below the limiting depth of the individual epochs. Thus,
in our analyses, we conservatively select objects with SNR larger
than 20.0 in the catalogue, roughly corresponding to SNR ∼ 3.8
in a single epoch. This criterion rejects about 44.3 per cent of the
objects. We further exclude objects with r-band magnitude brighter
than 16.0 mag that are basically saturated stars. Objects with bad
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SUDARE–VOICE variability and transient search 3829

Figure 3. Histograms of the observed cadence and number of epochs for
objects in the clean sample. The red line in the right figure represents the
distribution of the epoch number for objects observed in at least two sub-
fields.

photometry flagged by SExtractor are also rejected, but the
blended pairs are allowed since they could be transient events (e.g
supernova and its host galaxy). In addition, objects with the total
number of observed epochs less than 10 are removed. The selection
criteria are summarized as follows:

(i) r ≥ 16.0 mag and SNR ≥ 20.0
(ii) FLAGS<= 3 (blending allowed)
(iii) nepoch ≥ 10

Finally, 210 530 objects are selected for variability measure-
ments, of which the faintest object reaches to r ∼ 24.9 mag. We refer
to these objects as the clean sample. Fig. 3 shows the histograms of
the observational cadence and the number of epochs for objects in
the sample. The peak cadence is about 3 d, and the fraction of objects
that are observed in at least two sub-fields is about 7.0 per cent.

For every object in the clean sample, we cut the stamps from
all single-epoch images with a uniform size of 65 × 65 pixels,
corresponding to 13 × 13 arcsec2. This size of stamp is about
11 times larger than the FWHM of the worst PSF (see Section 2.1.3).
If the object is located at the edge (i.e. the distance between the
centre of the object and the edge of the image is less than 32 pixels)
or inside a mask region in a certain epoch, that stamp is rejected.
The PSF of an object is determined using the model constructed in
Section 2.2 and is normalized so that the sum of its pixel values is
equal to 1.

3.2 Differential running-average photometry

In this sub-section, we introduce the detailed mathematics on the
drap method. For each object, the extracted stamps span many
different photometric epochs. The background noise, the seeing
conditions, and the size and shape of the PSFs can vary between
different epochs. For a given stamp i, the two-dimensional surface
brightness distribution of an object and the corresponding PSF
profile are denoted as Si and Pi, respectively. Then, stacking all
the stamps by weighted average method, we obtain a master stamp

S0 =
n∑
i

wiSi/
∑

i

wi, (1)

where wi is the weight map of the stamp i and n is the total number of
stamps. During the stack, the σ -clipping method is applied to reject
pixels with values (e.g. residual cosmic rays) larger than five times
of the standard deviation. The outlier pixel values are replaced by
the median of the surrounding 5 × 5 unmasked pixels. The same
method is also used to stack the individual PSFs to yield the master
PSF image, denoted as P0. Similarly, excluding the jth stamp, then

Figure 4. Top panel: comparison of the FWHM of PSF of each single epoch
and the running-average result. Different colours, with the same notation as
in Fig. 1, corresponds to different sub-fields in SUDARE–VOICE survey.
Bottom panel: comparison of the background fluctuation of each epoch and
the running-average result.

we can generate the stacked stamp S̃j and corresponding PSF P̃j .
We can expect that the flux difference between the two stacked
stamps S0 and S̃j results from the variability of the object in the jth
stamp. In addition, in Appendix A, we show that the two PSFs P0

and P̃j are almost identical if n is much larger than the difference of
the pixel values between Pj and P0. The same conclusion also holds
for the background fluctuations between the two stamps.

To illustrate the advantage of drap, for simplicity, assuming the
PSF of each of our observational images is constant and follows
the Gaussian profile with FWHM Fepoch fixed to the observational
value of the corresponding epoch, we calculate the FWHM F̃ of the
running-average PSF for each epoch following the same procedure
to obtain P̃j . As shown in the top panel of Fig. 4, while the PSF
varies significantly for the individual epochs, the running-average
PSF keeps very stable with maximum change of only 3.4 per cent for
CDFS2 sub-field. Similarly, the bottom panel of Fig. 4 compares the
background fluctuation σ epoch of each epoch and the corresponding
running-average value σ̃ , which is also very close to constant with
maximum change of 6.1 per cent for CDFS4 sub-field. The stable
PSF and the background from drap make it very suitable for
variability studies.

To measure the fluxes in the stacked stamps and precisely
calculate the variability, we further perform PSF homogenization
between the two stacked stamps, although they are already rather
stable. Different algorithms have been developed to construct the ho-
mogenization kernel, such as the deconvolution solution in Fourier
space (Phillips & Davis 1995), regularization representation with a
set of basis functions (Alard & Lupton 1998; Bramich 2008) and so
forth. As discussed in Zackay et al. (2016), because of the effects
of noise and other implementation issues, some homogenization
operations can potentially lead to artefacts in the difference images.
Here, we homogenize the PSFs between the two stamps S0 and
S̃j using the cross-convolution method proposed by Gal-Yam et al.
(2008). As noted there, this method can degrade both PSFs so that
it may limit the detection of faint variable sources. However, since
no deconvolution or regularization process is applied, it can be
more numerically stable and leave less artefacts. In this case, the
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difference between the two stacked stamps is derived as

Dj = S0 ⊗ P̃j − S̃j ⊗ P0, (2)

where ⊗ represents the convolution operation.
We use aperture photometry to measure the residual flux, de-

noting as FDj
, in the difference image Dj. For the variability

measurements, we fix the aperture radius for all objects to be
1.5 arcsec, which is about 1.26 times of the worst FWHM. With
the convolution operation in the above equation, it is non-trivial
to obtain the analytical expression between FDj

and the true flux
variation δFj in the jth stamp. However, as mentioned above, in case
of large n, we have P0 ≈ P̃j . This approximation holds for all the
current and future time-domain surveys that usually have hundreds
of exposures on the same sky region (e.g. LSST; Ivezić et al. 2019).
In that case, the flux variation δFj in the jth stamp relative to the
flux in the master stamp can be simply derived as

δFj = s × FDj
, (3)

where s represents the flux scaling factor that satisfies

Ns =
∑
p,q

∑
i �=j

wi/wj , (4)

where N is the total number of pixels within the photometric
aperture, and p and q are the pixel indices referring to the column
and row of the weight map. The summation is performed within
the photometric region. When the weights are identical, s reduces
to s = n − 1. The corresponding flux error σδFj

is expressed as

σδFj
= s × σFDj

= s ×
√

FDj
/g + Nσ 2

bkg, (5)

where g is the gain in the difference image and σ bkg is the rms
of the background, which can be derived by n2σ 2

bkg = σ 2
j + σ̃ 2

j

where σ j and σ̃j are the background fluctuations for Sj and S̃j ,
respectively.

We generate a series of simulated image stamps of a star to
validate the method. The light curve of the star is assumed to
be sinusoidal, following m(t) = Asin (t) + m0 where m(t) is the
magnitude at time t, A is the amplitude, and m0 is a constant
magnitude. In the simulation, we fix m0 = 20.0 mag and A
= 0.4 mag. We generate in total 27 stamps that is the same as
the number of epochs in CDFS1 sub-field. The simulated PSFs
follow Gaussian profile with FWHMs fixed to the observational
values of individual epochs in the CDFS1 sub-field. Meanwhile,
the background fluctuation values are also from the CDFS1 sub-
field. The black curve in the top panel of Fig. 5 shows the light
curve of the star. The black circles represent the input magnitudes
in the simulation, while the magenta squares with error bars are
the measured values by the drap method described above. The
difference between the input and measured magnitudes is shown
in the bottom panel of Fig. 5. We see that the difference is
consistent with zero with σ�mag ∼ 0.01, meaning that the drap
method can accurately recover the true light curve of the simulated
star.

3.3 Uncertainty analyses

Since the image stacking and PSF convolution procedures can intro-
duce correlated noise in the difference image Dj, equation (5) may
underestimate the uncertainty of the measured FDj

. Without noise
correlation, the background noise of a given image is determined
by σ 2 = σ 2

0 N , where σ 0 is the standard deviation of background
noise and N is the pixel number in the photometric aperture. In the

Figure 5. Comparison of the simulated light curve of a star and the
measured result by the drap method. The light curve of the star is assumed
to be sinusoidal, following m(t) = Asin (t) + m0 where m(t) is the magnitude
at time t, A is the amplitude, and m0 is a constant magnitude. In the
simulation, we fix m0 = 20.0 mag and A = 0.4 mag. Top panel: the black
line is the light curve of the star. The black circles and the magenta squares
with error bars represent the input magnitudes in the simulation and the
measured values by the drap method. Bottom panel: the magenta squares
with error bars represent the difference between the input and measured
magnitudes. The thin dashed lines indicate the 1.0σ dispersion of the
magnitude difference.

presence of noise correlation, however, the background noise should
be estimated by σ 2 = σ 2

0 N2β , where β is a free parameter within
[0.5, 1.0]. In the case of pure background noise dominated, β = 0.5,
while if the adjacent pixels are completely correlated, β = 1.0 (Liu
et al. 2017; Martı́nez-Palomera et al. 2018). Therefore, to take the
noise correlation into account, the uncertainty of the measured FDj

can be generalized as

σFDj
=

√
FDj

/g + N2βσ 2
bkg. (6)

We estimate the noise correlation as follows. For a given epoch,
we obtain the corresponding running-average image Ĩ . For simplic-
ity, the PSF of the image Ĩ is assumed to be Gaussian and spatially
invariant. The size of the PSF is fixed to the value shown in Fig. 4.
Meanwhile, we can obtain the master image I and Gaussian PSF
by average-stacking all the single-epoch images. Then, following
equation (2) we can generate the difference image DI for this
epoch. To eliminate the potential impact of objects on estimating
the noise, the positions in the difference image where objects are
distinctly detected in the image I are masked. We then select a set
of about 2000 random positions on the object-masked difference
image. These positions are selected to be non-overlapping with the
mask regions within radius of 20 pixels. The fluxes are measured
for each position using different apertures. For a given aperture,
a Gaussian function is used to fit the histogram of the measured
fluxes to derive the dispersion. Generally, larger apertures give
larger Gaussian dispersion. Then, we use the power-law equation
described above to fit the relation between Gaussian dispersion and
aperture size as displayed in Fig. 6 for an example. The derived
β parameter, with value basically ranging from 0.6 to 0.8, is then
applied to equation (6) to revise the uncertainty.

3.4 Detrending

Although the PSFs between different stamps in the drap approach
is rather stable, and we further perform PSF homogenization in
the variability measurements, we still need a detrending procedure
for calibration. Systematic biases on the measured light curves
can be introduced, for instance, by a not so accurate modelling
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SUDARE–VOICE variability and transient search 3831

Figure 6. Gaussian dispersion as a function of aperture size defined as
√

N .
The black circles are measured from the difference image DI. A power-law
curve with free parameter β (the solid line) is used to fit the data points. For
illustration, the bottom and top dashed curves represent two limiting cases:
no pixel correlation and complete correlation in adjacent pixels.

of the positional variation of the PSF by a polynomial function,
or by errors in the photometric calibrations of different epochs.
Therefore, it is necessary to correct for these biases. Non-variable
objects with constant fluxes as a function of time are ideal for such
correction because any deviation of the measured flux at a given
epoch from the expected value can be attributed to the systematic
effects.

As with the PSF modelling, the detrending correction is per-
formed, using the PSF stars as described in Section 2.2, on individual
sub-images for a given epoch. The drap method is applied to
measure the magnitudes of these stars. To eliminate the impact
of variables, a star is rejected if the standard deviation of the
magnitudes at all epochs larger than the 3σ limit of the standard
deviation of the whole sample as illustrated in Fig. 12 (see Section 4
for more details). For each remaining star, we calculate the flux
ratio sj for the jth epoch relative to the flux measured on the
master stamp S0. Evidently, without the existence of systematic
biases, the relative flux ratios of stars in a given sub-image should
be equal to 1. However, it is found that the relative flux ratios
can be systematically as large as 5 per cents for some epochs
(corresponding to the magnitude bias of about 0.06 mag). We
apply a second-order polynomial on each sub-image to model the
systematic biases, and the detrending equation is written as

sj (x, y) = p0 + p1x + p2y + p3x
2 + p4xy + p5y

2, (7)

where pi (i = 1, 2, ..., 5) are the free parameters, and x and y are
the pixel coordinates of stars in the sub-image. The least-squares
fitting method is used to derive the best-fitting parameters. The
top panel of Fig. 7 compares the light curves of a star before
and after detrending correction. The shadow regions correspond
to the standard deviations of the two light curves. After applying
the detrending correction, the scatter of the light curve is decreased
and well within the photometric accuracy. The similar result is also
displayed for a bright non-AGN galaxy in the bottom panel. We
perform tests using higher order polynomial detrending. The results
show no significant improvements comparing to the second-order
modelling.

Besides detrending, we also use median smoothing method to
further reject the outliers due to bad photometry for a given light

Figure 7. Top panel: Comparison between the light curves of a star before
(the red line) and after (the black line) detrending correction. The shadow
regions correspond to the 1.0σ intervals around the mean magnitudes of the
two light curves. The inset shows the stacked image stamp of the star. Bottom
panel: Comparison between the light curves of a bright galaxy before (the
red line) and after (the black line) detrending correction.

curve. The window size is set to be five consecutive data points.
Then, we subtract the smoothed light curve from the raw light
curve. The residuals are expected to follow a Gaussian distribution
with zero mean. In the presence of outliers, however, the standard
deviation of the residuals derived by the usual method can be
overestimated. Thus, instead, we calculate the median absolute
deviation σ mad

3 that is less sensitive to outliers (Bramich 2008)
and is equal to the standard deviation for a Gaussian distribution.
If the residual magnitude of a certain epoch is larger than 5σ mad,
it is marked as an outlier. We note that this procedure may also
potentially reject real variability, especially those explosive events
with the time-scale less than the cadence of our observations.
However, they are beyond the reach using our data. The outlier
removal method adopted here is therefore suitable for our analyses
focusing on relatively long time-scale variables, such as AGN and
SNe.

3.5 Comparison with difference imaging method

Cappellaro et al. (2015) and Botticella et al. (2017) studied the SN
explosion rates using the same data set but only in the CDFS1-2 sub-
fields. The SN candidates were detected by the difference imaging
method hotpants,4 which is an implementation of the algorithm
described in Alard & Lupton (1998). The PSF-fit photometry was
then performed in the difference images to extract the light curves
of these candidates. In this sub-section, we compare the light curves
measured by the difference imaging method and drap.

3The median absolute deviation is defined in this work as σmad = 1.483 ×
median|x − median(x)|, where x is the data series.
4https://github.com/acbecker/hotpants
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Figure 8. Top left-hand panel: Comparison between the light curves
measured by the difference imaging method and drap. The flux is in
unit of analog-to-digital units (ADUs). The black dots (the orange squares)
represent the light curve measured by drap with (without) detrending
correction. The red diamonds are the light curve measured by the difference
imaging method hotpants. Arbitrary offsets are applied to the two light
curves of drap for clarity. The dashed grey lines represent the intermediate
light curve (see text for detail). Bottom left-hand panel: Residuals after
subtracting the intermediate light curve. Right-hand panel: Comparison
between the standard deviations of the light curve residuals of the two
methods. The black dots represent the comparison to drap with detrending
correction, while the orange squares without detrending correction.

Through matching the SN sample with our clean sample, totally
116 common objects are acquired. The top left-hand panel of Fig. 8
compares the light curves of one SN candidate measured by the
two methods. As expected, visual inspection shows that the light
curves of all these common objects exhibit the same peak structures.
To further check the photometric accuracy, for each object we
average the detrended light curve of drap and the corresponding
one measured by the difference imaging method, and then derive an
intermediate light curve by applying the median smoothing method
to the average. The dashed grey curves in the top left-hand panel
of Fig. 8 shows the obtained intermediate light curve for this SN
candidate, with the offsets between different lines the same as those
for the data points. We subtract the intermediate light curve from
the original light curves, as shown in the bottom left-hand panel
of Fig. 8. The standard deviations (σ diff and σ drap) of the residuals
are calculated to quantify the photometric accuracy. The right-hand
panel of Fig. 8 compares the results for all the 116 common objects.
The dashed grey line corresponds to the one-to-one relation. It can
be seen that the standard deviations measured by the difference
imaging method are systematically larger than those of drap.
Several reasons can be responsible for the results. First, to perform
image difference, the reference and new images used by Cappellaro
et al. (2015) are both from single-epoch observations that suffer
from larger background and Poisson noises compared to drap.
The differencing operation enlarges the noise level in the difference
image, and hence leads to significant photometric uncertainty in the
measured fluxes. Secondly, inaccurate modelling of the spatially
varied PSF kernels in the difference imaging algorithm cannot only
lead to false positives in the difference image (Sánchez et al. 2019),
but also affect the flux measurements of those real transients. In-
stead, the drap method can reduce the difference of PSFs between
different epochs. In short, the reduced sensitivity to PSF variations
and the reduced noise in drap comparing to those of hotpants
leads to better light-curve determinations with less dispersions of
the data points around the resulting intermediate light curve.

4 R ESULTS

The CDFS field has also been targeted by a number of photometric
surveys, such as the GALEX ultraviolet survey (Martin et al. 2005),

the Dark Energy Survey (DES; Dark Energy Survey Collaboration
2016), the deep Hyper Suprime-Cam survey (HSC; Ni et al. 2019),
the Pan-STARRS1 optical survey, the VIDEO near-infrared survey
(Jarvis et al. 2013), the Spitzer SERVS and SWIRE mid/far-infrared
surveys (Lonsdale et al. 2003; Mauduit et al. 2012), the HerMES
submilimeter survey (Oliver et al. 2012), and the ATLAS radio
survey (Norris et al. 2006; Franzen et al. 2015), producing a wealth
of imaging data with large wavelength coverage. Spectroscopic
observations in the field includes the 2dF Galaxy Redshift Survey
(Colless et al. 2001), the 6dF Galaxy Survey (Jones et al. 2004,
2009), VVDS ‘Deep’ survey (Le Fèvre et al. 2005, 2013), the
VANDELS survey (Pentericci et al. 2018), the VUDS survey (Tasca
et al. 2017), and the ongoing DEVILS survey (Davies et al. 2018).
The central region of the field was also observed by a series of
deep Chandra and XMM–Netwon X-ray surveys (Comastri et al.
2011; Xue et al. 2016; Luo et al. 2017), and the CANDELS survey
(Grogin et al. 2011; Koekemoer et al. 2011). A number of time-
domain surveys and data, such as the Catalina real-time transient
survey (Drake et al. 2009), the SkyMapper transient survey (Scalzo
et al. 2017), the Gaia variable star catalogue (Holl et al. 2018),
the Pan-STARRS1 variable source catalogue (Hernitschek et al.
2016), the DES Supernova Program (Brout et al. 2019), and the
SUDARE–VOICE variability-selected AGN sample (Falocco et al.
2015; Poulain et al. 2020), etc. are also publicly available in this
field.

The multiband surveys and samples offer crucial data sets to
study the physical properties of the variables and the host galaxies
of transients. Because of the small sky coverage of the SUDARE–
VOICE survey and limited number of objects in the clean sample,
it is possible for us to visually inspect all the light curves. Quanti-
tatively, we First calculate the average magnitude and the standard
deviation σ of each light curve. One object is identified as variable
if at least three sequential epochs deviate from the 3σ region of the
average magnitude. In total, we select 207 objects with significant
variations. It is found that almost 80 per cent of them display AGN-
like light curves with aperiodic magnitude variations. Besides, we
identify 44 transients, each of which shows significant single peak
and dramatic magnitude change in the light curve. To demonstrate
the effectiveness of the drap method, we show some examples in
this section. More detailed analyses of the objects in combination
with other multiband data will be presented in our follow-up
work.

We match the clean sample with the Million Quasars (MILLI-
QUAS) catalogue (v6.1;5 Flesch 2015) using a radius of 1.0 arcsec,
obtaining 366 AGNs in total. Fig. 9 shows the light curves of
three confirmed AGNs6 with different brightness and redshifts (top
panel) and three AGN candidates (bottom panel) selected by our
visual inspection. The AGN (ID #187389 in the clean sample)
in the middle of top panel has observations in total 76 epochs
spanning about 3 yr. The AGN candidate (ID #198895) in the
right of bottom panel, with SNR of 46.0 in the mosaic image,
presents significant magnitude variations that is as large as about
1.2 mag. Meanwhile, we also show the light curves of the 44
transients in Fig. 10. The orange triangles represent the magnitudes
below the 5σ detection limit of point source. Fig. 11 shows the
corresponding image stamps generated by average stacking all the

5http://www.quasars.org/milliquas.htm
6The three AGNs are labelled as Descrip = Q in the Million MILLI-
QUAS) catalogue, meaning that they are type-I broad-line core-dominated
quasars.
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Figure 9. Light curves of AGNs and AGN candidates. Top panel shows three confirmed AGNs from the Million Quasar Catalogue at different redshifts (from
left to right the redshift is z = 1.025, 2.164, 3.872). The grey dashed line in each figure represents the magnitude measured in S0, while the number is the ID
in the clean sample. The bottom panel gives three AGN candidates that are not spectroscopically confirmed by any current survey.

available epochs, as well as the difference images of these transients
at their peak brightness. It can be seen that most of the transients
show relatively complete light curves from the starting of the event
to fading. A large fraction of them are expected to be SNe. To
confirm that, we match these transients with the supernova sample
detected in the CDFS1-2 sub-fields that used the same data set
(Cappellaro et al. 2015). For the 22 transients identified in the
two sub-fields, only six transients (ID#197293, #286996, #291254,
#297290, #308697, and #367376) are not classified as supernova
by Cappellaro et al. (2015), of which the transient #197293 only
detected during the observation of CDFS4 sub-field. Among the 44
transients, the one #158324 shows the largest magnitude variation of
about 3.0 mag, although we missed the observation of its peak. For
this transient, we do detect its host galaxy in the HSC deep image
(the observation was taken between 2015 January and 2017 March
after the explosion) with r-band magnitude of 25.34 mag, which is
very faint but still consistent with our measurement as shown in the
light curve. However, there are no near-infrared detections in the
VIDEO JKs bands (the limiting magnitudes for the two bands are
23.98 and 22.79 mag, respectively). Since there is no spectroscopic
observation during the explosion and it now has disappeared in the
sky, it will be challenging to classify this transient and investigate
its properties into much detail.

Fig. 12 shows the standard deviation σ and average magnitude
of each light curve in the entire clean sample. The orange squares
show the AGNs from the MILLIQUAS Catalogue (Flesch 2015),
and the magenta stars represent the 44 transients identified by visual
inspection. The running median of the individual σ i and its standard
deviation σ[σi ] are calculated in a given magnitude bin with width of
0.5 mag. The dashed cyan line represents the 3.0σ[σi ] threshold. It
can be seen that one transient is below the threshold because only the
transients with large magnitude variations tend to be selected by our
visual inspection. For the AGN sample, however, we find that most
of them fainter than 22.0 mag are below the threshold, meaning that
the intrinsic dispersions of their light curves are comparable to the
overall measured uncertainties. Further investigation indicates that
most of them (72.4 per cent) are X-ray detected AGNs (Wang et al.
2016). While the X-ray detected AGNs with magnitude brighter
than 22.0 mag only account for 21.5 per cent. This result indicates
that a fraction of AGNs could be missed out by only variability
selected method, as discussed in previous works of the SUDARE–
VOICE collaboration (De Cicco et al. 2015; Falocco et al. 2015; De
Cicco et al. 2019; Poulain et al. 2020).

5 SU M M A RY

In this work, we use the SUDARE–VOICE r-band imaging data to
extract the light curves of the detected objects in CDFS field. The
total on-sky time for this field spans over 4 yr, distributed over four
adjacent sub-fields CDFS1-4. The multiepoch r-band observations
were taken with a cadence of about 3–4 d, avoiding the 10 d around
the full moon. Besides, this field has also been covered by many
multiband surveys, such as the GALEX survey, the DES, the deep
HSC survey, the Pan-STARRS1 survey, the VIDEO survey, and
other infrared/radio surveys. The abundant data sets provide crucial
information for studying the properties of the astronomical objects
in this sky region.

To measure the light curves, careful image reduction are per-
formed. We first stack the individual exposures for a given epoch
to increase the SNR of the objects. The accuracy of the astrometric
calibration reaches to 0.06 arcsec along both right ascension and
declination axes. Then, we photometrically calibrate the zero-
points between different epochs so that the final accuracy of the
photometric calibration is better than 0.02 mag. These calibrated
epochs are combined, after rejecting several epochs with poor
observational conditions, for object detections. Finally, 210 530
objects with high SNR and photometric quality are selected for
light-curve extractions. In addition, unbiased photometry between
different epochs requires accurate PSF modelling. Taking into
account the significant spatial variations of the PSF, we split each
epoch into 4 × 2 sub-images with uniform size, and construct the
PSF model for each sub-image individually of which the spatial
variation is described by polynomial interpolation.

For each object, the image stamps of all available epochs and
corresponding PSF models are extracted. We introduce a new
method, namely drap, to measure the light curves of these objects.
The mathematics of this method is quite straightforward. It can
moderately average out the difference of PSFs between different
epochs, and suppress the background fluctuations. We estimate the
photometric uncertainty of the light curves by taking the noise
correlation into consideration, and perform detrending correction
to eliminate the systematic biases due to the inaccurate image
reduction and PSF modelling. We visually inspect the light curves
to select variable objects. As expected, most of the variable objects
are AGNs with aperiodic and long-term magnitude variations. We
identify 44 transients with significant magnitude variations. For
the 22 transients in CDFS1-2 fields, 16 of them are classified as

MNRAS 493, 3825–3837 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/3/3825/5762785 by W
estern C

ape U
niversity user on 10 February 2021



3834 D. Liu et al.

Figure 10. Light curves of the transients identified by visual inspection. The orange triangles are measures below the 5σ limiting magnitude. The labels are
the same as in Fig. 9.
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SUDARE–VOICE variability and transient search 3835

Figure 11. Top four panels: The r-band image stamps of the transients and their host galaxies. These stamps are generated by average stacking all the epochs.
The size of each stamp is 65 × 65 pixels, corresponding to 13 × 13 arcsec2. The attached number represents the ID in the clean sample. Bottom four panels:
The corresponding difference images of the transients at their peak brightness.

Figure 12. The standard deviation as a function of average magnitude for
the entire sample (the black crosses). The orange squares show the AGNs
from the Million Quasar Catalogue, and the magenta stars represent the
transients identified by visual inspection. The dashed cyan line is the 3.0σ[σi ]

threshold of the standard deviation.

supernova by Cappellaro et al. (2015), meaning that most of the
transients we identified are SNe. We will perform further studies on
these objects in combination with multiband data in the follow-up
work.
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APPENDI X A : MI NI MI ZI NG THE PSF
VA R I AT I O N S B Y AV E R AG E STAC K I N G

We stack the individual PSFs to derive the master PSF P0 by

P0 =
n∑
i

Pi/n, (A1)

where Pi is the PSF of the ith stamp and n is the total number of
stamps. Similarly, excluding the PSF Pj of the jth stamp, then we can
generate the stacked PSF P̃j . It is noted that both the individual and
stacked PSFs have been normalized so that the sum of all the pixels
is equal to 1. Since the stacking is performed pixel by pixel, for
simplicity but without loss of generality, we can instead analyse the
behaviour of the stacked PSFs in an arbitrary pixel position (x, y),
where x and y represent the pixel indices of the two-dimensional
PSF matrix. For a specified pixel position (p, q), the intensities of
the master PSF P0 and P̃j can be calculated, respectively, by

Ppq

0 =
n∑
i

Ppq

i /n and P̃pq

j =
n∑

i �=j

Ppq

i /(n − 1), (A2)

where Ppq

i is the intensity of the ith PSF at position (p, q). Through
simple mathematical transformation, we can find that Ppq

0 and P̃pq

j
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satisfies

nPpq

0 = (n − 1)P̃pq

j + Ppq

j , (A3)

namely,

Ppq

0 − P̃pq

j = Ppq

j − Ppq

0

n − 1
. (A4)

It proves that the two PSFs P0 and P̃j are almost identical if n is much
larger than the difference of the pixel values between Pj and P0. For

the VOICE data, the mean difference of the central values between
the normalized Pj and P0 is 0.03, meaning that |Ppq

0 − P̃pq

j | � 10−3

when n 	 20.
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