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ABSTRACT
We use machine learning to classify galaxies according to their H I content, based on both
their optical photometry and environmental properties. The data used for our analyses are
the outputs in the range z = 0–1 from MUFASA cosmological hydrodynamic simulation. In
our previous paper, where we predicted the galaxy H I content using the same input features,
H I-rich galaxies were only selected for the training. In order for the predictions on real
observation data to be more accurate, the classifiers built in this study will first establish if a
galaxy is H I rich (log(MH I/M∗) > −2) before estimating its neutral hydrogen content using
the regressors developed in the first paper. We resort to various machine-learning algorithms
and assess their performance with some metrics such as accuracy, f1, AUC PR, precision,
specificity, and log loss. The performance of the classifiers, as opposed to that of the regressors
in previous paper, gets better with increasing redshift and reaches their peak performance
around z = 1 then starts to decline at even higher z. Random forest method, the most robust
among the classifiers when considering only the mock data for both training and test in this
study, reaches an accuracy above 98.6 per cent at z = 0 and above 99.0 per cent at z = 1, which
translates to an AUC PR above 99.93 per cent at low redshift and above 99.98 per cent at higher
one. We test our algorithms, trained with simulation data, on classification of the galaxies in
RESOLVE, ALFALFA, and GASS surveys. Interestingly, SVM algorithm, the best classifier
for the tests, achieves a precision, the relevant metric for the tests, above 87.60 per cent and
a specificity above 71.4 per cent with all the tests, indicating that the classifier is capable of
learning from the simulated data to classify H I-rich/H I-poor galaxies from the real observation
data. With the advent of large H I 21 cm surveys such as the SKA, this set of classifiers, together
with the regressors developed in the first paper, will be part of a pipeline, a very useful tool,
which is aimed at predicting H I content of galaxies.
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1 IN T RO D U C T I O N

Much effort has been put into understanding the role of neutral
hydrogen in galaxy formation and evolution. In the canonical
picture based on the Hubble Sequence, the spiral galaxies are
rich in cold gas and star forming, whereas the ellipticals are red
and quiescent. However, an increasing number of observational
evidence shows that these correlations are not always true. Local
early-type galaxies from the ATLAS3d survey were shown to contain
significant cold gaseous components (Davis et al. 2011). They found
that the relative angles between the gaseous and stellar planes
show a bimodal distribution, but found no plausible explanation

� E-mail: andrianomena@gmail.com

for such difference. This indicates that the gas distribution of a
galaxy does not necessarily follow that of the stellar component.
Therefore, direct inference of the gas content of galaxy based on
its optical content is inaccurate. Elliptical galaxies are observed to
form stars in cool core massive clusters (Donahue et al. 2011) that is
suggestive of the presence of cold gas in those objects. The amount
of gas components in massive ellipticals is crucial to understanding
the evolution and growth of galaxies at the massive end, but the
presence of kinematic abnormalities in their gas content as well as
the uncertain effects of the active galactic nuclei feedback can affect
the surface density of the gas content to pull the galaxies below the
H I detection limit, especially at higher redshifts.

Spiral galaxies are gas rich, but the limitations of observing
the neutral gas at intermediate redshift prevent a robust study of
the evolution of their gas content. Low-redshift (z � 0.4) H I can
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be observed with the 21cm emission line to provide the neutral
hydrogen mass distribution of nearby galaxies. For instance, the
Arecibo Legacy Fast ALFA (ALFALFA; Haynes et al. 2018)
observed ∼ 30 000 galaxy H I fluxes. The highest redshift galaxy
(z = 0.376) detected in 21 cm emission was observed with the
COSMOS H I Large Extragalactic Survey (Fernández et al. 2016).
At any substantially higher redshift, the H I content of galaxies is
inferred from damped Lyman alpha systems (DLAs) in the spectra
of background quasars, but it is difficult to measure the H I mass
from DLAs, and the relationship between galaxies and DLAs is
not completely clear. The upcoming blind surveys such as Looking
At the Distant Universe with the MeerKAT Array (LADUMA) on
MeerKAT and eventually follow-up surveys on the SKA (Square
Kilometre Array) aim to measure the H I content of galaxies at
intermediate redshifts, to z ∼ 1 and beyond.

The gas content of satellite galaxies are substantially impacted
by environmental effects. Observationally, only 25 per cent of α.40
(ALFALFA 40 per cent; Haynes et al. 2011) galaxies were found
to be in groups or clusters (Hess & Wilcots 2013), which is
lower than for the overall galaxy population. They found that
in contrast to increasing optical sources towards to the centre
of groups or clusters, the number of H I sources decreases. This
is also supported from theoretical views. Using hydrodynamical
simulation, Rafieferantsoa et al. (2015) showed that the fraction of
H I deficient galaxies increases towards higher halo masses. This is
related to the star formation quenching time-scale decrease towards
higher halo mass: from >3 Gyr for Mhalo < 1012 M� to <1 Gyr
for Mhalo > 1013 M� (Rafieferantsoa, Davé & Naab 2019). Recent
observational work by Foltz et al. (2018) agrees with this prediction,
but in contrast Fossati et al. (2017) argue for no relationship
between galaxy quenching time-scales and halo mass. Simulations
also suggest that the presence of H I is strongly correlated with
star formation, even if the star formation is physically occurring
in molecular gas (Davé et al. 2017). Therefore, the H I content
appears to have a complex relationship with respect to stellar mass,
star formation rate, morphology, and environment. This makes it
challenging to predict what the H I content of any given galaxy will
be without accounting for the full range of its properties.

In order to better design and interpret upcoming H I surveys,
it is useful to be able to estimate the expected H I content of
galaxies that will be observed based on their already-measured
multiwavelength properties. To do so, here we develop and em-
ploy galaxy classification tools using machine learning. Galaxy
classification is a very useful approach as it can provide insights
into the physical processes by which galaxies evolve over cosmic
time. There exist different and complementary ways to classify
galaxies depending on the availability of the data, for instance
morphological classification or spectral classification. The Hubble
Sequence focuses on morphological classification, while spectral
classification via absorption and emission lines provides more
information about the chemical composition and stellar populations
of galaxies (Morgan & Mayall 1957). Zaritsky, Zabludoff & Willick
(1995) developed a χ2-fitting approach to identify the best linear
combination of template spectra that matches the observed spectrum
in order to classify galaxies spectroscopically with low signal-to-
noise ratio (S/N), and found good correlations of ≥ 80 per cent be-
tween spectra and morphology from Hubble classification. Slonim
et al. (2001) presented a novel information bottleneck (IB) ap-
proach, improving on the then-standard geometrical and statistical
approaches, to classify galaxy spectra using 2dF Galaxy Survey
(Colless, Morganti & Couch 1998; Folkes et al. 1999). In a seminal
work, Fukugita et al. (2007) conducted morphological classification

of galaxies which was achieved by simple visual inspection where
volunteers catalogued thousands of objects from Sloan Digital Sky
Survey Data Release 3 (SDSS DR3; York et al. 2000) in order
to obtain the rate of interacting galaxies. The need for automated
classification arose with the increasing amount of available survey
data, and it was demonstrated by Naim et al. (1995) and Lahav
et al. (1996) that accuracy achieved by a trained artificial neural
network in classifying galaxies is comparable to that of a human
expert. In a morphological classification of high-redshift galaxies
that Huertas-Company et al. (2008) conducted using SVMs, they
argued that at z > 1 early-type galaxies were underestimated in
the classifications using sample from COSMOS Hubble Space
Telescope (HST)/Advanced Camera for Surveys (ACS) (Koekemoer
et al. 2007) owing to the effects of morphological k-correction.
In galaxy morphological classification, tree-based algorithms have
also proved to be relatively robust classifier compared to other
machine-learning algorithms, as reported by Gauci, Adami & Abela
(2010). Hence, there is a long history of using sophisticated galaxy
classification methods in astronomy, but so far this has not been
extensively applied to studying H I.

In our previous work in Rafieferantsoa, Andrianomena & Davé
(2018) (RAD18 hereafter), we investigated the possibility of es-
timating the H I content of galaxies using a variety of machine-
learning algorithms. Considering both the optical and environmental
properties of the galaxies as input features, the algorithms were
trained using large subsets of data from MUFASA simulation and
tested on different subsets. They found that the performance of
all regressors – assessed by using root mean squared error (RMSE)
and Pearson’s correlation coefficient (r) as metrics – degraded at
higher redshift. Despite the tendency of all learners to underpredict
the high H I richness and overpredict the low one, random forest
(RF) method – followed tightly by deep neural network (DNN)
– exhibited an overall best performance; achieving an RMSE ∼0.25
(corresponding to r ∼ 0.9) at z = 0. They then applied the regressors
to real data from two different surveys, REsolved Spectroscopy Of
Local VolumE (RESOLVE Stark et al. 2016) and ALFALFA. To
this end, they trained the algorithms with an output from MUFASA

at z = 0 and used them to predict the H I content of galaxies
from real observations. Their results proved that the learners which
they built can be potentially used for H I study with the upcoming
large H I surveys like the SKA. Prior to this work, related study
by Teimoorinia, Ellison & Patton (2017) also investigated the
estimation of H I content of galaxies based on the SDSS and
ALFALFA data using 15 derived galaxy parameters.

However, in RAD18 we only considered H I-rich galaxies
(log(MH I/M∗) ≥ −2), hence the machine-learning methods were
trained to predict the gas content of H I-rich galaxies only. Therefore,
at this stage, those algorithms on their own cannot be deployed in
real world application where not all galaxies will be H I rich. Models
generally predict that galaxies are bimodal in their H I content,
particularly since satellite galaxies lose their H I quite rapidly, after
a delay period, once they enter another halo (Rafieferantsoa et al.
2019). To extend our work to be more generally applicable, we
therefore need a way to classify galaxies as H I-rich or H I-poor
based on available photometric data.

In this follow-up paper, we address this issue by building a set
of learners that filter out the H I-poor galaxies in real survey, such
that the regressors built in RAD18 only predict galaxy gas content
known to be above a certain threshold. Together with the classifiers,
the regressors will form a pipeline which will be used to estimate
H I gas of galaxies in real observation. The approach is to use the
same set of input features as in RAD18 for the classification. This
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Figure 1. Percentage of H I-rich galaxies in our sample as a function of
redshift bin for four different values of H I-richness threshold considered.
In total, including all bins up to z = 1, there are about 64 per cent positive
sample when considering a threshold = −2.

paper thus extends our approach to be more generally applicable to
any galaxy survey that contains the requisite input features, which
are chosen to be typically observationally accessible in present and
upcoming multiwavelength surveys.

We present our machine-learning setup for our analyses in
Section 2 and list all the algorithms we consider in Section 3. The
results are shown in Section 4 and we demonstrate how the methods
can be applied to data from real surveys in Section 5. We finally
conclude in Section 6.

2 SETUPS

It is first noted that we make use of the same outputs (z = 0–1)
from MUFASA simulation to build our classifiers. Considering the
Planck cosmological parameters �m = 0.3, �� = 0.7, �b = 0.048,
H0 = 68 km s−1 Mpc−1, σ 8 = 0.82, and ns = 0.97 (Planck et al.
2016), each snapshot results from simulating a comoving box of
50h−1Mpc with a resolution of N = 5123 for each species (dark
matter and gas). For the training, the features {u, g, r, i, z, U, V,
J, H, Ks, �3, vgal} are considered whereas our target – as in the
case of a binary classification – is one of the two classes; 0 to
denote H I-depleted galaxies (log(MH I/M∗) < vthresh) and 1 for H I-
rich galaxies (log(MH I/M∗) ≥ vthresh). To split the galaxies into two
classes, one simply needs to run through all galaxies in the data and
assign 0 or 1 to it if its gas content is below or above the threshold
value vthresh. In our case, we adopt vthresh = −2, i.e. the H I content
is 2 orders of magnitude fewer than the stellar content. In Fig. 1,
we show the variation of the positive class in a sample as a function
of redshift. The trend can be attributed to the higher cosmological
gas accretion at higher redshift, resulting in most of them to be
H I rich (Davé et al. 2017). However while evolving to present, they
go through different mechanisms that can deplete/decrease their
H I content, hence the number of H I-rich galaxies is expected to be
relatively smaller at lower redshift.

As in RAD18, we adopt different setups both in terms of features
and type of training which we present again in Table 1 for reference.
For ‘z-training’, a classifier is built at each redshift bin, whereas for
‘f-training’ we make use of all data available in the range z = 0–0.5.

In contrast with the f-training in RAD18, we do not go to higher z

to train the learner. In all cases 80 per cent of the data are used for
training and the remaining are used for testing.

3 A L G O R I T H M S

We used a rather wide variety of machine-learning algorithms
in RAD18 to see which one captures best the features from the
data in order to make good predictions. Having gained a better
understanding about how the methods dealt with information from
the data, we consider most of them for this classification problem.
It is worth reiterating that as opposed to regression task where the
label is a numerical variable, the label for a classification task is a
class – represented by integers mainly.1

k-nearest neighbour – classification: the principle remains the
same as in regression but instead of averaging the targets of k-
closest neighbours to make prediction, the predicted class ynew of
a new instance xnew is simply the majority of the classes of k-
neighbours of xnew.

Random forest and Gradient boosting – classification: decision
tree is still the base estimator of both RF and GRAD (gradient
boosting). In contrast with its regressor counterpart, the decision
tree classifier splits the training set at a split point si using a feature
i. The splitting is done in such a way as to minimize the objective
function

F = nR1

n
GR1 + nR2

n
GR2 , (1)

where nR1 is the number of examples in region R1 and nR2 the
number of examples in R2. The total number of instances n before
the split is simply n = nR1 + nR2 . The Gini impurity2 G of each
region is given by

G = 1 −
k∑

i=1

p2
i , (2)

where pi is the probability of an instance to belong to a class i in the
region. This can be computed by the ratio between the number of
instances belonging to a class i and the number of all instances in the
region. The splitting can be done recursively on the resulting nodes
depending on the required size of the tree. The RF method predicts
the class of a new instance xnew by aggregating the predictions of
all its decision trees. The expression of the GRAD classifier is quite
similar to equation (6) in RAD18.

Deep neural network – classification: in contrast with the DNN
regressor, the activation function of the output layer is a sigmoid
function3

σ (x) = 1

1 + e−x
, (3)

which computes the probability pi that an instance belongs to class i.
In this case specifically, if p ≥ 0.5, ynew is 1 (positive class) whereas
for p < 0.5 ynew is 0 (negative class). The objective function, known
as log loss, is defined as

F = − 1

N

N∑
i=1

yi log(pi) + (1 − yi)log(1 − pi). (4)

The weights and biases are updated via backpropagation as usual.
The cost function in equation (4) can be generalized for multiclass

1Categorical variable.
2Also called Gini index.
3Also named logit.
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Table 1. List of all the setups that are considered in the analysis. For easy reference, each setup has been given a name.

Name Surveys Features Target Description

fSMg SDSS u, g, r, i, z, vgal, �3 log(MH I/M∗) Redshift information not required
fSClr SDSS colour indices, vgal, �3 log(MH I/M∗) Redshift information not required
fSCmb SDSS colour indices, u, g, r, i, z, vgal, �3 log(MH I/M∗) Redshift information not required
fAMg SDSS+Johnson + 2MASS H, J, Ks, U, V, u, g, r, i, z, vgal, �3 log(MH I/M∗) Redshift information not required
fAClr SDSS+Johnson + 2MASS colour indices, vgal, �3 log(MH I/M∗) Redshift information not required
zSMg SDSS u, g, r, i, z, vgal, �3 log(MH I/M∗) Prediction at a given redshift bin
zSClr SDSS colour indices, vgal, �3 log(MH I/M∗) Prediction at a given redshift bin
zSCmb SDSS colour indices, u, g, r, i, z, vgal, �3 log(MH I/M∗) Prediction at a given redshift bin
zAMg SDSS+Johnson + 2MASS H, J, Ks, U, V, u, r, r, i, z, vgal, �3 log(MH I/M∗) Prediction at a given redshift bin
zAClr SDSS+Johnson + 2MASS colour indices, vgal, �3 log(MH I/M∗) Prediction at a given redshift bin

case by using what is called cross entropy defined as

F = − 1

N

N∑
i=1

K∑
k=1

yi
k log

(
pi

k

)
, (5)

where K is number of classes.

4 G ALAXY CLASSIFICATION

The objective in this work is to be able to establish whether a galaxy
is H I rich or H I poor by exploiting both its optical and environmental
data. To do so, we build various classifiers (see Section 3) and
compare their performance qualitatively. But first, we introduce
some useful terminology in machine learning. TP and TN are
true positive – number of instances that are correctly predicted
by the classifier to belong to 1 – and true negative – number of
instances that are correctly predicted by the classifier to belong to 0
– respectively. FN or false negative denotes the number of instances
that belong to 1 but are classified as 0 and FP or false positive
indicates the number of instances that belong to 0 but are predicted
as 1. A confusion matrix, in such binary classification is a 2 × 2
(n × n in multiclass case) matrix that summarizes the predictions of
a classifier on a test set. The quality of such matrix will be quantified
by the following metrics.

Accuracy: in binary classification,4 it measures the ratio of the
correct predictions on a test sample, i.e.

accuracy = TP + TN

FN + FP + TP + TN
, (6)

Precision: it indicates how well the algorithm minimizes the
number of instances incorrectly identified as a positive class (FP)
and is given by

precision = TP

TP + FP
. (7)

A good precision (high value close to one) translates to low FP.
Recall: also called sensitivity, it characterizes the ability of the

method to minimize the number of instances wrongly identified as
a negative class (FN). It is given by

recall = TP

TP + FN
. (8)

It is worth noting that, provided a classifier, if FP increases then FN
decreases and vice versa. In other words, an increase in precision
implies a decrease in recall – the so called precision-recall trade-off.
In our case, since we are mainly interested in identifying H I-rich

4And even in mutliclass case.

galaxies whose gas content is to be predicted by our regressors built
in RAD18, we require our classifier to have good precision, as having
a learner with a lower FP (hence higher it FN) – lower number of
H I-poor galaxies predicted to belong to class of H I-rich galaxies –
is in our case more preferable than a learner with a lower FN, hence
higher FP.

F1 score: this metric which combines precision and recall is their
harmonic mean, given by

F1 = TP

TP + FN+FP
2

. (9)

High F1 score simply means that both precision and recall are also
high, which is the ideal case.

Log loss: this quantity, given by equation (4), is also used as a
metric. The lower its value, the better the classifier is.

Receiving operating characteristic – area under the curve (ROC
AUC): it is also possible to plot recall against FP rate which is given
by 1 − specificity where

specificity = TN

TN + FP
.

As can be seen from equations (7) and (8), FP follows the increase
of recall as a consequence of the precision-recall trade-off. Another
measure of the performance of a classifier is then to compute the
area under the curve (recall versus FP rate). A perfect learner would
have ROC AUC = 1.

Area under the curve – precision recall (AUC-PR): positive
predictive value (precision) versus true positive rate (recall) curve
to assess a classifier performance in the case of imbalanced
sample.

A binary classifier uses a threshold parameter such that a
new instance will be classified as positive or negative if the
predicted probability is above or below the threshold respectively.
A precision-recall (alternatively recall-FP rate) pair corresponds
to a single value of a threshold parameter of a classifier and the
idea behind the ROC curve is to find the best pair values precision-
recall (alternatively recall-FP rate) in order to mitigate the trade-
off between them, i.e. finding a threshold parameter value of the
classifier such that both precision and recall are high. The results
are now presented in the following.

4.1 Dependence on redshift

Table 1 lists the various setups that we feed to our machine-learning
algorithms. The name specifies whether it uses f-training or z-
training, whether we use SDSS data only (S) or all data including
near-IR (A), and whether we use magnitudes (Mg) or colors (Clr) or
combine them (Cmb). In all cases, we use environment as measured
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Figure 2. Accuracy and f1 are shown on the two columns from the left and right, respectively. Good performance means high values of both accuracy and f1.
The dots, colour coded by the training models we use, represent the performance (accuracy and f1) of each classifier trained on all the data available between
z = 0–0.5, ‘f-training’. In the same way, the lines denote the value of the two metrics of each learner as a function of redshift ‘z-training’. Each row shows
different results for different setups. The accuracy values are shown on the left y-axes and the f1 values on the right y-axes. The results presented here are
obtained from using 20 per cent of a sample at each bin for z-training and 20 per cent of the whole data set for f-training. The error bars are obtained from
running training/testing 10× by fixing a different number of the random state when splitting the data set into train and test sets.

by the third nearest neighbour (�3), as well as the galaxy peculiar
velocity (vgal).

In Fig. 2, we show the results corresponding to each classifier
selected in our investigation, considering only two metrics here,
accuracy and f1, for illustration purpose. The first column shows
the accuracy achieved by each method with different input features
for ‘f-training’, the second column is the resulting accuracy for ‘z-
training’, the third column presents the f1 score for ‘f-training’ and
finally the fourth one is the f1 score for ‘z-training’.

Most classifiers attain accuracy and f1 scores exceeding 0.9,
which indicates that it is robustly possible to classify galaxies into
H I rich versus H I poor based on observable properties, at least in
the idealized case of training and testing on simulated data alone.
Still, there are clear differences among the classifiers. RF (green)
clearly exhibits the best performance whereas GRAD (purple) is
relatively the weakest. For instance, RF (‘z-training’) accuracy and
f1 both reach ∼0.98 at z = 0 and ∼0.99 at z = 1, with similar values
when combining data from z = 0 to 0.5 (‘f-training’). kNN (k-
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Figure 3. Four metrics as a function of z of both RF and kNN methods for zSCmb setup. Top left: log loss, top right: AUC PR, bottom left: accuracy, and
bottom right: f1.

nearest neighbour) shows values ∼0.95, while DNN’s performance
is consistently poorer.

The dependencies of both accuracy and f1 on redshift follow
similar trend; they both increase as we go to higher z. This
anticorrelates with the regressor built in RAD18 since the latter has a
decreasing performance at higher z. This looks somehow promising
since the incline and decline of the classifier and regressor with
increasing z respectively add up to an even performance of their
combination up to z = 1. At z > 1, the performance of the classifier
also degrades. That limitation is the reason we only show the results
up to z ∼ 1. In other words, most of the H I-poor galaxies can be
filtered out by the classifier such that the regressor will only estimate
the gas content of the H I-rich galaxies.

As expected, the value of the accuracy and that of f1 when
training the learners with all the data available between z = 0–0.5
is approximately the average of accuracy’s and that of f1’s within
that z-bin. As already mentioned in RAD18 the main idea behind
the ‘f-training’ is to anticipate the fact that in real observations,
retrieving redshift information is not an easy task. Therefore we
make an attempt at also building a classifier without relying on
redshift information. The high values of both accuracy and f1 ∼0.9
for all learners with any setup except fSMg demonstrate that it is
indeed possible to build a relatively good classifier without taking
into account redshift information.

4.2 Dependence on input features

We now look in more detail at how the classification is affected
by the selected input features, i.e. comparing the rows in Fig. 2.
In realistic scenarios, it is not always possible to have all the
features available. This leads us to investigate different scenarios by
considering different combinations of features. The best classifier
(RF) does appear to be insensitive to the choice of input features
with values of accuracy and f1 ≥0.98 at all redshift bins, which is
good news. However, for the learner with the worst performance
(GRAD), it does not seem to be the case as its performance measures
fluctuate with respect to the setup considered and are at their lowest
values with zSMg setup (at z = 0, f1 and accuracy are both ∼0.87;
z = 1, f1 ∼0.91, and accuracy ∼ 0.88) for ‘z-training’ and accuracy
∼ 0.857 and f1 ∼0.877 for ‘f-training’ fSMg.

In Fig. 3, we show other metrics of the RF, namely AUC PR and
log loss, as function of redshift for zSCmb. As expected, the better
performance at higher redshift bin corresponds to a lower log loss.
An AUC PR ≥0.99 at all redshifts corroborates the fact that RF is
our best classifier for this ideal scenario where classifiers are both
trained and tested with mock data.

It is noted that the effects of the class imbalance – potential issue
owing to a big difference between the number of instances of each
class in the training set which might cause a classifier to fail to label
new instances in the test set properly – has been accounted for by
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Figure 4. Left-hand panel: accuracy as function of z, and right-hand panel:
f1 as a function of z. Blue is for BIN, orange for LOW, and green for MULTI.
The results are all related to RF algorithm.

using IMBLEARN (Chawla et al. 2002) which is an oversampling
method. No noticeable difference has been found between the
two cases – with and without compensation – by comparing their
resulting metrics.

4.3 Effects of setting up the classes

In our main analyses, the H I galaxies are split into two distinct
classes according to whether their H I gas masses are above or
below a threshold of 0.01 times their stellar masses. The threshold
value is broadly in accordance with observational H I fraction limits.
However, other classifications are possible. Here, we explore the
impact of changing the classification metric.

We consider three new classification schemes.

(i) The Galex Arecibo SDSS Survey (GASS; Catinella et al.
2013) set a threshold limit of log (MHI) = 8.7 for galaxies with M∗ <

1010.5 M� and log (MHI/M∗) = −1.8 otherwise. However, in order to
be consistent with the threshold value of gas fraction used in RAD18
to denote H I-depleted galaxies, we set it to be log (MHI/M∗) = −2.
We call this type of splitting BIN.

(ii) Another potential classification may be on whether a galaxy
has higher H I mass than stellar mass. In this case, the classes are

given by
{

log(MH I/M∗) < 0 → 0; log(MH I/M∗) ≥ 0 → 1
}

. We

name this type of splitting LOW.
(iii) Finally, we attempt splitting into three classes, as

follows:
{

log(MH I/M∗) < −2 → 0; −2 ≤ log(MH I/M∗) < 0 →
1; log(MH I/M∗) ≥ 0 → 2

}
, which we call MULTI.

In Fig. 4, we compare the results corresponding to the RF method
when considering three types of splitting, namely BIN (blue), LOW
(orange), and MULTI (green). For brevity we only consider RF,
since it is our best classifier, and z-training since the f-training
values are expected to be similar.

Overall, both accuracy and f1 are ≥0.80 for all three types of
splitting at all z bins and it is quite clear that the algorithm performs
best with our main type of splitting H I poor/H I rich, namely BIN. It
is also interesting to see that the accuracy decreases with increasing
redshift for both LOW and MULTI, whereas f1 increases as we go at
higher redshift for LOW. Based on accuracy, the method performs
similarly for LOW and MULTI splittings, but the difference in
performance of the algorithm is striking when considering f1 as a
metric. This indicates that the classifier performance does depend
on the classes chosen, but for our purposes of separating H I-rich and

H I-poor galaxies, it performs very well even with minor changes to
the scheme.5

It is worth noting that in this idealized case and in the light of the
results in RAD18 we did not include SVM (support vector machine)
method. However, as will be shown later, we include it for the
different tests on real observation data.

5 A PPLI CATI ON TO O BSERVATI ONA L DATA

The lack of available data is one of the drawbacks of using machine
learning when solving a problem, be it regression or classification.
To mitigate that issue, in the context of H I study, we aim at building
classifiers trained with mock data from simulation and using them
to identify H I-rich galaxies in real surveys.

As already demonstrated in RAD18 the regressors that they built
were able to learn from the mock data in order to predict the
H I content of the galaxies from both RESOLVE and ALFALFA.
Our approach here is to redo the same exercise but for a classification
task, i.e. training some classifiers with MUFASA data and utilizing
them to identify H I rich galaxies from the same surveys, RESOLVE
and ALFALFA. In this study, we also consider another survey,
GASS, in which both H I-poor and H I-rich galaxies are better
represented for our tests. For the description of the first two surveys,
we refer the interested reader to RAD18, and will now give a brief
description of GASS.

5.1 GALEX Arecibo SDSS Survey data

GASS was aimed at investigating H I properties of a selected sample
of galaxies (∼ 1000) with available optical properties. The last
data release (DR3, Catinella et al. 2013), which we use in our
analyses, was built upon the first two DRs (Catinella et al. 2010,
2012). Within a relatively large volume survey of 200 Mpc already
probed by SDSS primary spectroscopy survey, the GALEX Medium
Imaging Survey and ALFALFA, galaxies have stellar masses of
10 < log(M∗/M�) < 11.5 that encompasses the transition mass.
The targets have H I richness above the detection limit of 0.015 for
10.5 < log(M∗/M�) and a fix H I mass of 108.7M� for lower stellar
masses. The targets are designed to fall within 0.025 < z < 0.05.

Using the Arecibo radio telescope, Catinella et al. (2013)
compiled a sample which has a fairly good representation6 in
which 62 per cent are referred to as detections and the remaining
38 per cent as non-detections. The latter represent galaxies in which
a relatively small gas mass fraction was observed hence required a
longer integration time (but not more than 3 h), whereas the former
was found to have relatively large amount of gas mass fraction.
For our analyses, we retrieved all the optical properties of each
galaxy in the sample from SDSS data base using their SDSS-
ID. In order to have a more balanced test sample, we then split
the sample into two classes: H I-poor galaxies (class 0) are those
with log(MH I/M∗) < −1.55 and the remaining are H I-rich galaxies
(class 1). With this type of splitting, we have 56.8 per cent of the
sample H I rich and the remaining H I poor. Our choice of adopting
a higher H I detection limit is solely based on our aim to have a more
balanced classes in both training and testing sets, and not on any
scientific ground. Catinella et al. (2013) chose to use a threshold of
about −1.8 which is lower than what we use here. For the upcoming
LADUMA survey, this value could be the same or different.

5Slight change to the gas fraction limit.
6GASS representative sample as they call it.
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Table 2. Summary of the results when using the simulation trained methods
to classify H I galaxies in the three different test tests.

Accuracy f1 ROC AUC Precision Specificity

TEST 1

RF 0.974 0.987 0.633 0.979 0.0
GRAD 0.962 0.980 0.788 0.979 0.0
kNN 0.897 0.945 0.742 0.987 0.428
DNN 0.979 0.989 0.589 0.980 0.0
SVM 0.734 0.844 0.721 0.991 0.714

TEST 2

RF 0.774 0.870 0.829 0.991 0.666
GRAD 0.597 0.741 0.822 0.998 0.952
kNN 0.710 0.827 0.738 0.990 0.666
DNN 0.834 0.909 0.747 0.983 0.286
SVM 0.742 0.849 0.781 0.993 0.761

TEST 3

RF 0.948 0.973 0.953 1.0 1.0
GRAD 0.881 0.937 0.970 1.0 1.0
kNN 0.882 0.937 0.900 1.0 1.0
DNN 0.854 0.921 0.435 1.0 0.0
SVM 0.848 0.917 0.893 1.0 1.0

TEST 4

RF 0.642 0.659 0.685 0.717 0.683
GRAD 0.624 0.631 0.682 0.713 0.700
kNN 0.550 0.348 0.618 0.985 0.995
DNN 0.732 0.761 0.666 0.767 0.418
SVM 0.717 0.702 0.809 0.876 0.891

5.2 Testing the built classifiers

We consider four different tests according to both the survey and
input features

(i) TEST 1: RESOLVE DATA, colour indices from all the
band magnitudes available; SDSS (u,g,r,i,z), Two Micron All-Sky
Survey or 2MASS (J,H,K), Galaxy Evolution Explorer or GALEX
(NUV), and UKIRT Infrared Deep Sky Survey or UKIDSS (Y,H,K).

(ii) TEST 2: RESOLVE DATA, colour indices from only
SDSS (u,g,r,i,z) photometric data.

(iii) TEST 3: ALFALFA, colour indices from only SDSS
(u,g,r,i,z) photometric data.

(iv) TEST 4: GASS data, colour indices from only SDSS
(u,g,r,i,z) photometric data.

In all cases we split the simulated data for training and the
considered test set into two categories, H I poor (class 0) and H I rich
(class 1). Our results are summarized in Table 2 and shown in Fig. 5.

5.3 TEST 1

The training set is composed of the data of snapshot at z = 0 from
MUFASA, since the galaxies to be classified in RESOLVE survey
are all at present epoch. We make use of all the photometric data
available in RESOLVE, i.e. {u, g, r, i, z, J, H, Ks, NUV}. We consider
five metrics – accuracy, f1, ROC AUC, precision, and specificity.
The results of the classification from the learners selected in this
work are presented in Table 2 and similarly shown in Fig. 5.

DNN has the highest accuracy amongst the algorithms followed
by RF. This is reminiscent to the results found in the regression
problem in RAD18. Despite the weaker performance of DNN
compared to RF when testing on the simulated data (see Fig. 2),

Figure 5. Summary of the results when using the simulation trained
methods to classify the H I content of galaxies from three different test
sets from observational data. The y-axes are in exponential scale to prevent
for data point cluttering.

testing on observational data really show the power of the algorithm.
Nonetheless, all algorithms agree within < 10 per cent. Based on
the f1 score and precision the methods are all comparable as well.
Interestingly, DNN’s ROC AUC = 0.589 is the worst among all the
methods, just above that of a classifier with a random guess.

Judging by the values of the precision which are ≥0.95 for all
methods, they satisfy what we require; classifiers that minimize the
number of H I-poor galaxies incorrectly classified as H I rich (FP)
or in other words with high precision. However, a specificity equal
to zero implies that all the negative class instances in the data are
incorrectly classified (FP), bearing in mind that only 2 per cent
of this test sample are H I-poor galaxies. Along with its high
precision, SVM exhibits the highest specificity = 0.714, indicating
its robustness, hence the best choice among the algorithms for
this test.

We finally note that although ∼ 98 per cent for the RESOLVE
galaxies are H I-rich, MUFASA sample contains a balanced proportion
of ∼ 52 per cent positive class making the training robust against
class imbalance effect. The most important thing is the training part
which is achieved using a well-balanced sample (50/50 poor-rich),
therefore the algorithms are not biased toward any class. In Test 4,
we will consider a testing set that is more balanced (albeit smaller),
which allows us to test our algorithm more fully.

5.4 TEST 2

For this second test, we still use the RESOLVE data but consider
colour indices formed out of SDSS photometric data only,
i.e. {u, g, r, i, z}. In contrast with TEST 1, the results in
Table 2 (Fig. 5) suggest that, with the selected inputs features,
the methods are capable of better identifying the gas-poor galaxies
with specificity all above 0.5, except for DNN with 0.286. In
terms of Accuracy and f1 scores, DNN is remarkably better and
GRAD noticeably worse compared to RF and kNN. Based on
ROC AUC, RF, and kNN score the best and worst, respectively.
Based on the value of its precision = 0.998, it is tempting to say
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that GRAD is the best method for this test, however the results
suggest that SVM generalizes better than GRAD, as indicated by
its f1 score and accuracy. It is quite surprising to notice that with
the same data (training/test), decreasing the number of selected
features provide better information to the algorithms such that
they get better at classifying the instances properly i.e. precision
(TEST 2) > precision (TEST 1); specificity (TEST 2) > specificity
(TEST 1).

5.5 TEST 3

In this test, we use ALFALFA data and only consider SDSS
photometric data for the input features as in TEST 2. Overall, all the
methods perform much better as suggested by the high values of the
metrics considered (see Table 2). We note that the training set is the
same as the one used for RESOLVE, hence class imbalance is not an
issue that requires to be alleviated during training. The precision and
specificity which are both equal to 1 clearly imply that FP is zero,
hence class 0 instances, despite their relatively low number, are all
correctly classified. This applies to all classifiers with the exception
of DNN which has a specificity = 0. The results for this test then
suggest that our classifiers are capable of recognizing H I-rich and
H I-poor galaxies to a very good precision. The f1 scores (all >0.9)
of all the learners show that their recall’s are optimized, which
also means that FN (H I-rich galaxies that incorrectly classified
as H I poor) is minimized. The relatively higher average precision
(ROC AUC) of all classifiers (> 0.9) can indeed be used as an
indicator that on average both FP and FN are minimized, this is not
the case for DNN. All the trained non-neural network algorithms
appear to meet our requirements but for the sake of comparison, RF
method seems to be the best in this test, with the highest accuracy
and f1 values despite its ROC AUC is only second best. Conversly
with the RESOLVE data, the DNN is definitely not favoured in
properly classifying H I-poor and H I-rich galaxies when tests are
done with blind survey data such as ALFALFA.

5.6 TEST 4

We use GASS data (Catinella et al. 2013) for this test, considering
SDSS photometric data as input features. Unlike the other samples
used for testing so far, all classes (0, 1) are well represented in this
data set, with 56 per cent of this test set are H I rich. Although kNN
exhibits the highest precision and specificity, it does not generalize
well, given its relatively low values of both accuracy and f1. Results
suggest that our best classifier for this test is SVM which has a
relatively high precision (second best after kNN) and its tendency
to generalize well as justified by its overall scores. The confusion
matrix shown in Fig. 6 and the precision-recall curve for SVM
(blue line) in Fig. 7 come to corroborate the fact that SVM
method is capable of generalizing well. A classifier with random
guess is shown with the diagonal dashed line for reference. The
further from the diagonal the classifier is, the better its quality.
The average precision is 0.858 (represented by the red dashed
line). It is obtained by averaging the different precision values
from the different thresholds.. In general, the other classifiers (RF,
GRAD, and DNN) are also capable of learning the features from
the mock data in order to classify the real data, except the neural
network model which poorly classifies the H I-poor galaxies (i.e.
low specifity values), as can be noticed in all the tests conducted. To
further illustrate, we show in Fig. 8 the distributions of probabilities
of GASS instances to be gas rich (blue line) or gas poor (orange
line) as predicted from the SVM-trained model. Both distributions

Figure 6 2 x 2 confusion matrix for a binary classification from SVM in
TEST 4. Positive class is HI rich and Negative class is HI poor.

Figure 7. Precision-recall curve obtained from SVM in Test 4. The dashed
red line denotes the average precision (0.858), whereas the dotted line
indicates performance of a classifier with random guess.

are dominated by high values (∼1), indicative of a better classifier,
although we still notice considerable fractions of low probabilities.
Provided that the two classes are well represented in GASS data
set, which makes this latter a better test set compared to the others,
we present the set of hyperparameters used for each algorithm in
Table. 3. It is noted that for each of the non-neural network based
methods, we only show the hyperparameters that are different from
the default values given in SCIKIT-LEARN (Pedregosa et al. 2011).

6 D I SCUSSI ON AND C ONCLUSI ON

We have demonstrated in this work that it is possible to classify
H I galaxies based on their gas content using both their photometric
and environmental data. We have built various algorithms by
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Figure 8. Distribution of probabilities for detecting H I-rich (blue) and H I-
poor (orange) galaxies from the SVM classifier on the fSCmb setup of the
GASS data.

Table 3. Summary of the hyperparameters used for each type of classifier
in TEST 4.

Hyperparameters

RF Number of base estimators = 100
GRAD Number of base estimators = 50
kNN Number of neighbours = 3
DNN 3†, 100	, relu♣, adam♠, Yes�, 32�, 5‡

SVM Kernel = radial basis function, C = 100, γ = 0.3

Notes: † Number of layers.
	 Number of nodes per layer.
♣ Activation function.
♠ Optimizer.
� Batch normalization.
� Batch size.
‡ Number of epochs.

training them using large subset of the mock data (80 per cent)
from MUFASA simulation. While being sensitive to:

(i) the inputs features,
(ii) type of training (f-training or z-training),
(iii) type of class splitting.

the test results, using smaller subset of MUFASA mock data
(different from the subset on which they have been trained), look
very promising. For instance, both Accuracy and f1 score >0.9.

We have shown the good performance of the built classifiers when
being tested on real observation data – RESOLVE, ALFALFA, and
GASS surveys – after training them on the mock data from MUFASA

. Our findings can be summarized as follows:

(i) On using MUFASA to both train and test the learners,
RF shows the best performance amongst the learners with an
Accuracy of 99.00 per cent ROC AUC above 99.96 per cent, f1

score 99.4 per cent at z = 1. Other classifiers like k-NN and DNN
also perform similarly well in general, however GRAD method
shows poor performance when considering zSMg and fSMg setups.

(ii) For z- training, Accuracy and f1 score increase from present
to higher redshift. The increase is steeper at z < 0.5 and flattens out

at higher redshift. This indeed compensates the fact that regressors
built in RAD18 perform best at low redshift and more poorly with
increasing z.

(iii) The performances of the classifiers appear to be insensitive
to the selected input features for the training except with the
case of GRAD method which struggles to properly classify the
galaxies in the test set when only considering SDSS magnitudes
and environmental information as input features (zSMg and fSMg).

(iv) The results are affected by the definition of the class of
galaxies(BIN, LOW, and MULTI). BIN, which is the type of
splitting behind the motivation for this work, corresponds to better
results compared to the other two types of splittings.

(v) Comparing the results corresponding to four different tests
using real observational data from RESOLVE, ALFALFA, and
GASS surveys, with the exception of DNN as suggested by its
low value of ROC AUC and zero specificity, the classifiers perform
best on TEST 3 in which the test set is ALFALFA data and the
input features considered are colour indices formed out of
SDSS magnitudes only. All learners correctly classified the H I-
poor galaxies with a specificity = 1.0 and their precision is also
maximized (precision = 1.0), which is what we really aim for. For
TEST 3, it is quite clear that most of the errors (if not all) come
from FN, i.e. H I-rich galaxies misclassified as H I poor, although
this quantity is already minimized given the rather high f1 score of
all the learners. By comparing TEST 1 and 2, it is clear that using
colour indices from SDSS data only is the optimal option to
better identify the H I-poor galaxies given the higher precision in
TEST 2. DNN has the highest Accuracy and f1 for TEST 1 and TEST
2, indicative of being robust in classifying the H I-rich galaxies.
However, DNN fails to achieve a resonable classification of the H I-
poor galaxies as shown by the low values of Specificity (<0.3) for
all tests. The relatively poor performance of DNN7 quantified by the
slightly lower values of Accuracy and f1 for TEST 3 compared to
TEST 1 and TEST 2 might be due to the nature of the test samples.
We speculate that the neural network is able to achieve higher perfor-
mance in a cleaner set of data such as from the RESOLVE survey but
underperform in a sample from blind survey data such as ALFALFA.
This does not mean the learner itself is not performing well, it only
means that the data to test on are prone to higher systematic errors.

(vi) In TEST 4, we use a test sample from GASS, which unlike
the other samples used in the first three tests, has a fairly good
representation of the two classes (i.e. H I rich–H I poor). This makes
it a good data set for assessing how well the classifiers are able
to apply the learned features from the mock data. Based on the
most important performance metric in this study, k-NN is the best
classifier for TEST 4 with a precision = 0.985. It also classifies the
H I-poor galaxies properly as demonstrated by its high specificity
(0.995). However, even though our purpose is to build a classifier
that has a very good precision which translates to its ability to
correctly classify H I-rich galaxies, in all kinds of machine-learning
tasks, the algorithm that can minimize the generalization errors
well is the more preferable. In this case specifically, as the results
suggest, SVM proves to be able to generalize well as shown by its
average precision of 0.858, accuracy (0.717), f1 score (0.702), ROC
AUC (0.809), and both precision and specificity are the second best.

(vii) Overall in terms of performance, based on the scores in
all tests on real data, we find that SVM is the best classifier as
it demonstrates quite well its generalization ability, learning from
simulated data in order to classify real data.

7Compared to other classifiers in this test.

MNRAS 492, 5743–5753 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/5743/5715915 by U
niversity of the W

estern C
ape user on 11 February 2021



H I in galaxies 5753

With the advent of large H I surveys like LADUMA and MIGH-
TEE, we have presented the possibility of properly classifying
galaxies according to their gas content, using machine learning. The
robustness of our methods lie in the fact that the trained algorithms
can learn from mock data in order to classify galaxies in real surveys,
which is indeed a strong asset in the sense that in reality the lack of
enough data to train the methods turns out to be an issue that requires
to be mitigated. Together with the regressors built in RAD18, the
classifiers in this work will form a useful pipeline to create mock H I

surveys for assisting with survey design, and eventually, will enable
more detailed tests of the input model by comparing observed H I

to that predicted from the regressor on a case-by-case basis.
We only analysed the performance of single models in both this

work and RAD18. However, the use of more complex models using
ensemble or stacking techniques are increasingly favoured in the
literatures. We will explore such methods in future work despite
their level of complexity as well as their interpretability.

AC K N OW L E D G E M E N T S

SA acknowledges financial support from the South African Radio
Astronomy Observatory (SARAO). MR and RD acknowledge
support from the South African Research Chairs Initiative and the
South African National Research Foundation. Support for MR was
also provided by the SKA post-graduate bursary program. The MU-
FASA simulations were run on the Pumbaa astrophysics computing
cluster hosted at the University of the Western Cape, which was
generously funded by UWC’s Office of the Deputy Vice Chan-
cellor. Additional computing resources are obtained from the Max
Planck Computing and Data Facility (http://www.mpcdf.mpg.de)
and South African Radio Astronomy Observatory (SARAO).

RE FERENCES

Catinella B. et al., 2010, MNRAS, 403, 683
Catinella B. et al., 2012, A&A, 544, A65
Catinella B. et al., 2013, MNRAS, 436, 34

Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P., 2002, J. Artif.
Intell. Res., 16, 321

Colless M., Morganti R., Couch W., 1998, in Morganti R., Couch W. J., eds,
ESO/Australia Workshop. Springer, Berlin

Davis T. A. et al., 2011, MNRAS, 417, 882
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