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ABSTRACT
The main science driver for the coming generation of cosmological surveys is understanding
dark energy that relies on testing general relativity on the largest scales. Once we move
beyond the simplest explanation for dark energy of a cosmological constant, the space of
possible theories becomes both vast and extremely hard to compute realistic observables. A
key discriminator of a cosmological constant, however, is that the growth of structure is scale
invariant on large scales. By carefully weighting observables derived from distributions of
galaxies and a dipole pattern in their apparent sizes, we construct a null test that vanishes for
any model of gravity or dark energy where the growth of structure is scale independent. It
relies only on very few assumptions about cosmology, and does not require any modelling
of the growth of structure. We show that with a survey like the Dark Energy Spectroscopic
Instrument (DESI) a scale dependence of the order of 10–20 per cent can be detected at 3σ

with the null test, which will drop by a factor of 2 for a survey like the Square Kilometre Array.
We also show that the null test is very insensitive to typical uncertainties in other cosmological
parameters including massive neutrinos and scale-dependent bias, making this a key null test
for dark energy.
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1 IN T RO D U C T I O N

The large-scale structure (LSS) of the Universe is highly sensitive
to the theory of gravity and provides therefore a powerful way of
testing for deviations from general relativity (GR). The standard way
to test for modifications of gravity is to measure LSS observables,
and confront these measurements with a theoretical modelling that
accounts for deviations from GR. This can be done in two comple-
mentary ways: the first one consists in calculating observables in
a specific model of modified gravity or dark energy, which usually
depends on some free parameters, and use observations to place
constraints on these parameters. This approach can be used to test
specific models, like for example f(R) gravity (Buchdahl 1970;
Starobinsky 1980). The second approach parametrizes deviations
from GR directly at the level of the observables. One well-known
example is the γ parametrization of the growth rate (Wang &
Steinhardt 1998; Linder 2005): f(z) = �m(z)γ , where γ is a free
parameter that takes the value γ � 0.55 in GR and can be directly
constrained with LSS observables. In the last decade, various
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frameworks have been developed, like the effective theory of dark
energy (Gubitosi, Piazza & Vernizzi 2013) and the parametrized
post-Friedmann approach (Baker, Ferreira & Skordis 2013), to
combine these two approaches. The goal of these frameworks is to
propose parametrizations of deviations from GR that can describe
large classes of theories, and whose parameters directly affect LSS
observables. These parametrizations provide therefore a consistent
way of testing deviations from GR. They suffer however from two
limitations. First, to be as general as possible, these parametrizations
contain various free functions of time that cannot all be constrained
by observations, and that can therefore not be reconstructed without
additional assumptions. Second, even if these parametrizations are
very general, they do not account for all possible deviations from a
� cold dark matter (�CDM) Universe. Hence, by using them, we
automatically restrict ourselves to some specific classes of theories.

In this context, it is important to take a complementary approach,
by constructing tests that do not rely on any modelling of the theory
of gravity, but that can be used to test one specific property, e.g.
the Eg statistics (Zhang et al. 2007; Ghosh & Durrer 2019). In
this Letter, we propose a null test to probe the scale independence
of the growth of structure in the linear regime. In �CDM, matter
density perturbations grow at the same rate inside the horizon. As
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Null test of the growth rate L35

a consequence, perturbations at different redshifts are related by
a scale-independent function: δ(z, k) = D1(z)/D1(z′)δ(z′, k), with
D1 the linear growth (Dodelson 2003). The continuity equation
implies then that the peculiar velocity is related to the density by the
growth rate f(z) = d ln D1/d ln a, with a the scale factor. The aim of
this Letter is to combine LSS observables to construct a null test,Nf ,
which exactly vanishes if and only if D1 and f are scale independent.
We will see that this null test does not require any modelling of
deviations from scale independence. As such it allows us to probe
in a model-independent way if structures grow at the same rate at
all scales, or if some scales are enhanced or suppressed. Modified
theories of gravity generically produce a growth rate that depends on
scale (De Felice, Kobayashi & Tsujikawa 2011). However, this scale
dependence does not affect modes that are well inside the sound
horizon of dark energy, in the regime where the extreme quasi-
static approximation is valid (Sawicki & Bellini 2015; Gleyzes
et al. 2016). A detection of Nf �= 0 would therefore rule out not
only �CDM but also all dark energy and modified gravity theories
with a growth that differs from �CDM but is scale independent.
Alternatively, a vanishing Nf would put stringent constraints on
scale-dependent theories.

To construct our null test we use LSS observables that are
sensitive to the growth rate f, and we combine them in such a way that
the result vanishes if f is scale independent. The growth rate is related
to the galaxy peculiar velocities, which are traditionally measured
from redshift-space distortions (RSD; Kaiser 1987; Hamilton 1998),
namely from the monopole, quadrupole, and hexadecapole of
galaxy clustering. Among these quantities the monopole is the only
one that is sensitive to density–density correlations, so we cannot
construct a null test by using only these observables. However, an
alternative way to measure peculiar velocities has been proposed
recently, by looking at their impact on the size of galaxies, i.e. by
measuring the cosmic convergence (Bonvin 2008; Bolejko et al.
2013; Bacon et al. 2014). In particular, Bonvin et al. (2017)
showed that peculiar velocities generate a dipolar modulation in the
number count–convergence correlation. This effect, called Doppler
magnification, has not been measured yet, but its signal-to-noise
ratio with a survey like the Dark Energy Spectroscopic Instrument
(DESI; Aghamousa et al. 2016) is expected to reach 37 (Bonvin
et al. 2017). Since this effect is sensitive to both the density–velocity
correlations and the velocity–velocity correlations, we can combine
it with the quadrupole and hexadecapole of RSD to construct our
null test.

2 ME T H O D O L O G Y

Redshift surveys map the distribution of galaxies in redshift space,
providing a measurement of the overdensity of galaxies �(z, n)
at redshift z and in direction n. The two main contributions to �

are given by the matter density fluctuations and RSD. In addition,
lensing surveys measure the size and luminosity of galaxies, from
which one can construct an estimator for the convergence (Schmidt
et al. 2012; Casaponsa et al. 2013). The two main contributions are
given by (Bonvin 2008)

κ(z, n) =
∫ r

0
dr ′ r − r ′

2rr ′ ��(
 + �) +
(

1

rH − 1

)
V · n, (1)

where 
 and � are the metric potentials, V is the peculiar velocity
of galaxies, r is the radial conformal distance, H is the Hubble
parameter in conformal time, and �� is the angular Laplacian. The
first term is the standard gravitational lensing, whereas the second
term is the so-called Doppler magnification. This contribution is due

to the fact that a galaxy with a peculiar velocity directed e.g. towards
the observer, will be further away in real space than a galaxy with no
peculiar velocity observed at the same redshift. As a consequence,
the first galaxy will appear demagnified with respect to the second
one, simply due to its larger distance. Note that in both � and
κ we neglect relativistic effects and magnification bias (Bonvin
2008; Yoo, Fitzpatrick & Zaldarriaga 2009; Bonvin & Durrer 2011;
Challinor & Lewis 2011; Jeong, Schmidt & Hirata 2012) as these
are subdominant in the regime we are interested in.

To construct the null test, we combine three different observables:
the quadrupole of 〈��〉, ξ̂�

2 (d, z), the hexadecapole of 〈��〉,
ξ̂�

4 (d, z), and the dipole of 〈�κ〉, ξ̂ κ
1 (d, z). Here, d is the separation

between galaxies, and z is the mean redshift of the bin in which the
multipoles are measured. The lensing contribution in κ is negligible
in the dipole for z ≤ 0.5 (Bonvin et al. 2017). The quadrupole,
hexadecapole, and dipole are therefore all given by combinations of
density–velocity correlations and velocity–velocity correlations. In
all generality, the evolution of density perturbations can be encoded
in a scale-dependent growth function D1(z, k) such that δ(z, k) =
D1(z, k)/D1(z′, k)δ(z′, k). Because of statistical isotropy, D1 cannot
depend on the direction of k. Using the continuity equation, which
is valid in any theory of gravity as long as there is no flow of
energy from matter to another component, we obtain for the velocity
potential at subhorizon scale V (z, k) = −H(z)f (z, k)δ(z, k)/k,
where the growth rate f is defined as f (z, k) = d ln D1(z,k)

d ln a
.

In the flat-sky approximation, the mean of the quadrupole,
hexadecapole, and dipole can be written as

ξ�
2 (d, z) = − 1

2π2

∫
dkk2

(
4

3
b(z)f (z, k) + 4

7
f 2(z, k)

)

×P (k, z)j2(kd),

ξ�
4 (d, z) = 1

2π2

∫
dkk2 8

35
f 2(z, k)P (k, z)j4(kd),

ξ κ
1 (d, z) = g(z)

1

2π2

∫
dkkH0

(
b(z)f (z, k) + 3

5
f 2(z, k)

)

×P (k, z)j1(kd), (2)

with j
 the spherical Bessel functions, b(z) the bias, P(k, z) the
matter power spectrum, and

g(z) = H(z)

H0

(
1 − 1

r(z)H(z)

)
. (3)

We now construct our null test as

N̂f (d, z) ≡ ξ̂�
2 (d, z)

μ̄2(d, z)
− ξ̂�

4 (d, z)

μ̄4(d, z)
+ 4

3ḡ(z)

ξ̂ κ
1 (d, z)

ν̄1(d, z)
, where (4)

μ
(d, z) = 1

2π2

∫
dkk2P (k, z)j
(kd), (5)

ν1(d, z) = 1

2π2

∫
dkkH0P (k, z)j1(kd), (6)

and we denote by a bar all quantities calculated in �CDM. Our
null test is therefore a combination of observables ξ̂�

2 , ξ̂�
4 , and ξ̂ κ

1

that are directly measured from the data, weighted by appropriate
coefficients calculated in �CDM. Note that to construct N̂f we do
not need any modelling of the growth of structure D1 and f.

Under which conditions does the mean of N̂f vanish? If the
growth rate is scale independent, then f(z) in equation (2) can be
taken out of the integrals. Moreover in this case the power spectrum
can be related to the one in �CDM by

P (k, z) =
(

D1(z)

D̄1(z)

)2

P̄ (k, z), (7)
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provided that the �CDM model has the same cosmological pa-
rameters as the actual Universe: �b, �m, ns, and h. The statistical
average of N̂f , Nf (d, z) = 〈N̂f (d, z)〉, becomes then

Nf (d, z) = 4f (z)

(
D1(z)

D̄1(z)

)2 (
b(z)

3
+ f (z)

5

) (
g(z)

ḡ(z)
− 1

)
. (8)

When f is scale independent, there are therefore two additional
conditions for Nf to vanish. First, g(z) must be the same as the
one calculated in �CDM. From equation (3) we see that g(z)
depends only on the evolution of the background, which is currently
constrained to follow �CDM up to a very good precision. We will
show below that varying g(z) within the 2σ region allowed by
Planck (Aghanim et al. 2018) generates a non-zero Nf . This value
is however negligible compared to the variance of the estimator,
which we calculate below. This means that a detection of Nf �= 0
cannot be due to our choice of ḡ(z) in equation (4), except if Planck
constraints on the background evolution are incorrect at more than
2σ .

The second condition for Nf to vanish is that equation (7) holds,
i.e. that the cosmological parameters used to calculate P̄ (k, z),
namely �b, �m, ns, and h,1 are the correct ones. We show below
that varying these parameters by 2σ around the fiducial Planck
cosmology modifies equation (7) and generates consequently a
non-zero Nf . However the value of Nf in this case is again much
smaller than the variance of the estimator. A detection of Nf �= 0
can therefore not be due to our choice of cosmological parameters to
calculate μ̄2, μ̄4, and ν̄1 in equation (4), except if Planck constraints
on the parameters �b, �m, ns, and h are incorrect at more than 2σ .

To summarize, the null test vanishes whenever the following hold.

(1) The growth rate of structure f is scale independent.
(2) The background evolution is close to �CDM at redshift z,

within Planck constraints.
(3) The cosmological parameters �b, �m, ns, and h are consistent

with Planck constraints.

From equation (8), we see that under these conditions Nf

effectively vanishes, for any form of the functions D1 and f. For
example, all Horndeski theories that are consistent with Planck
constraints (i.e. that have a �CDM-like background) and for which
the quasi-static approximation is valid (Gleyzes et al. 2016) have
Nf = 0, even if the growth of structure in these theories differs from
�CDM. The fact that in these theories D1 differs from D̄1 (used to
calculate the weights in equations 5 and 6) does not invalidate the
null test since it is factorized out in equation (8).

This illustrates that using a �CDM model to calculate the weights
is in no sense a restrictive assumption. It is just a convenient choice,
which leads to a vanishing Nf whenever relation (7) holds, i.e.
whenever the growth of structure is scale independent.2

3 R ESULTS

The sensitivity of the null test to the scale dependence of f is
determined by its covariance. Since N̂f is a sum of multipoles,

1Note that the uncertainty in the amplitude of primordial fluctuations, As,
has no impact on Nf , since it only rescales the power spectrum by a scale-
independent factor.
2Note that instead of calculating the weights μ2, μ4, and ν1 with a �CDM
power spectrum, we could measure the monopole of the power spectrum
P0(k, z) and calculate the weights with it. We have however tested that the
uncertainty in the measurement of P0(k, z) degrades the precision of the null
test and that it is therefore more efficient to use P̄ (k, z).

Figure 1. Variance for a survey like DESI, plotted as a function of separation
at z = 0.15. We show the contributions from the quadrupole (blue dotted),
hexadecapole (yellow solid), dipole (red dot–dashed), dipole–quadrupole
(green short-dashed), quadrupole–hexadecapole (purple middle-dashed),
and dipole–hexadecapole (black long-dashed).

its covariance is due to the variance of each multipole, plus
the covariance between them. We follow the method developed
in Hall & Bonvin (2017) and Tansella et al. (2018) to calculate each
of these terms. We have contributions from the cosmic variance
of �, κ , and the covariance between them. In addition, we have a
contribution from shot noise, which affects �; and a contribution
from the error in the determination of κ . Schmidt et al. (2012),
Casaponsa et al. (2013), Heavens, Alsing & Jaffe (2013), and Alsing
et al. (2015) proposed an estimator to measure κ by combining
the size and luminosity of galaxies. In the forecast we consider
a spectroscopic survey with specifications like the Bright Galaxy
Sample (BGS) of DESI (Aghamousa et al. 2016) that will measure
the redshift, position, and luminosity of 10 millions of galaxies.
Sizes will be measured by the DESI Legacy Imaging Survey (Dey
et al. 2019). The error in the measurement of the size not only
depends on the resolution of the instrument, but also on the type
of galaxies. As discussed in Alsing et al. (2015), the sizes of late-
type (spiral) galaxies tend to be better measured than for early-type
(elliptical) galaxies. This results in an error on κ ranging from σ κ =
0.3 to 0.8. In the following we use σ κ = 0.3 as fiducial value, and we
explore how the constraints degrade when σ κ = 0.8. In Fig. 1, we
show the different contributions to the variance. We see that at small
separations, the dominant contribution is due to the dipole, more
particularly to the error in the measurement of the convergence σ κ .
At large separations on the other hand, the dominant contribution is
due to the cosmic variance of the quadrupole.

To apply the null test on data we do not need any modelling of the
growth of structure: we simply combine the measured ξ̂�

2 , ξ̂�
4 , and

ξ̂ κ
1 according to equation (4) and see if the resulting N̂f is consistent

or not with zero. Since DESI data are however not yet available, we
want to forecast how sensitive the null test is expected to be to a
given scale dependence of f. For this we choose a parametrization
of D1 and we forecast how sensitive the null test is. We take

D1(z, k) = D̄1(z)
[
1 + ε(z)γ (k)

]
, γ (k) = c1

1 + c2(k/k∗)m

1 + (k/k∗)m
. (9)

The coefficients c1 and c2 govern the amplitude of γ for large and
small scales, k∗ determines the scale of the transition from one
regime to the other, and m its slope. The amplitude of the deviations
is encoded in ε(z), so we choose c1 and c2 such that 0 ≤ γ (k) ≤ 1.
We assume that the evolution of ε(z) follows that of dark energy,
so that it becomes negligible in the past: ε(z) = ε0

��(z)
��(z=0) , where

��(z) is the density parameter of the cosmological constant, and ε0
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Figure 2. Top: Nf plotted as a function of separation at z = 0.15, for four
different models with ε0 = 0.5, c1 = 1, c2 = 0, and with k∗ = 0.01 h Mpc−1,
m = −1 (blue dashed), k∗ = 0.01 h Mpc−1, m = −4 (green dotted), k∗ =
0.1 h Mpc−1, m = −1 (black dot–dashed), and k∗ = 0.1 h Mpc−1, m = −4
(red solid). Bottom: Nf for the last model, plotted with its variance for a
survey with DESI specifications.

is a free parameter. In Fig. 2, we plot Nf for four different models.
When k∗ = 0.1 h Mpc−1, the deviations are more important at small
separations, whereas for k∗ = 0.01 h Mpc−1 they increase at large
separations. The slope m also has a significant impact on the form
of Nf . For comparison the f(R) model explored in Giannantonio
et al. (2010) has k∗ ∼ 0.05 h Mpc−1.

To assess the sensitivity of the null test to scale dependence, we
forecast the constraints that can be obtained on ε0 for some fixed
representative choices of the parameters c1, c2, m, and k∗. We do
not marginalize over these parameters, because our aim is not to
fit a certain model. We rather want to determine how sensitive the
null test is to a generic scale dependence. We fix the cosmological
parameters to their fiducial value taken from Aghanim et al. (2018),
neglecting massive neutrinos and we construct the Fisher matrix,

Fε0 =
∑
i,j ,z

∂Nf (di, z)

∂ε0

[
cov(N̂f )

]−1
(di, dj , z)

∂Nf (dj , z)

∂ε0
,

summing over the redshift bins and the pixels separations between
dmin and dmax. The minimum separation dmin is determined by the
scale at which non-linearities invalidate the null test. In Section 4,
we show that below ∼30 Mpc h−1, non-linearities generate a Nf

that is larger than the variance. Above this scale, however, linear
perturbation theory is accurate enough. In the forecasts we choose
three values for dmin: 20, 32, and 40 Mpc h−1. The results for a survey
like the BGS of DESI are summarized in Table 1. The constraints are
significantly better for the models with k∗ = 0.1 h Mpc−1, since in
this case the deviations in Nf are important at smaller scales, where
cosmic variance is smaller. The constraints degrade increasing dmin,
but even with a large dmin = 40 Mpc h−1, DESI is sensitive to

Table 1. Minimal values of ε0 leading to a measurement of Nf different
from 0 with a significance of 3σ , for a survey like DESI. We show six
models with c1 = 1, c2 = 0, and k∗, m, and dmin shown. We fix dmax =
156 Mpc h−1; the redshift range is 0 ≤ z ≤ 0.5.

k∗ = 0.1 h Mpc−1 k∗ = 0.01 h Mpc−1

dmin m m
(Mpc h−1) −1 −2 −4 −1 −2 −4

20 0.23 0.13 0.08 0.52 0.88 1.60
32 0.37 0.21 0.13 0.65 0.92 1.60
40 0.47 0.30 0.21 0.74 0.96 1.61

Figure 3. Nf at z = 0.05 calculated with the streaming model for RSD,
with parameters from Xu et al. (2013): �s = 4 Mpc h−1, �� = 10 Mpc h−1,
and �⊥ = 6 Mpc h−1 (blue line). The red region shows the variance of Nf

for a survey with DESI specifications.

deviations ∼20 per cent. They decrease to 8 per cent for dmin =
20 Mpc h−1. The constraints are also sensitive to the precision in
the size measurements. Increasing σ κ from 0.3 to 0.8, we degrade
the constraints by a factor of 1.5–2. On the other hand, increasing
the number density and volume to the ones planned for Square
Kilometre Array Phase 2 (SKA2; Bull 2016), the constraints are
improved by a factor of 2.

Comparing with current constraints on the growth rate f in specific
models, an f(R) model with |fR0| = 3.2 × 10−5 leads to a scale
dependence of 20 per cent in f in the range k ∈ [10−3–10−1] Mpc−1,
whereas current RSD constraints give |fR0| < 10−4 (Song et al.
2015). Planck constraints on a generic scale-dependent μ(z, k) are
of order 1 (Planck Collaboration XIV 2016). In comparison, our
third model in Table 1 (dmin = 20 Mpc h−1) generates a scale
dependence of 10 per cent in f.

4 C O N TA M I NAT I O N S

We now explore the limitations of the null test, i.e. the situations
where Nf �= 0 even if D1 and f are scale independent. First, we
assess the impact of non-linearities on Nf . We use the streaming
model for RSD that has been used to analyse the Sloan Digital
Sky Survey (SDSS) data (Xu et al. 2013), which contains both the
Fingers of God effect (Peacock & Dodds 1994) and the impact of
non-linearities on the baryon acoustic oscillation (BAO; Eisenstein,
Seo & White 2007). We extend this model to the dipole, assuming
that non-linearities in the velocity affect the dipole in the same way
as they affect the multipoles of galaxy clustering. In Fig. 3, we
show Nf obtained by using the streaming model for ξ�

2 , ξ�
4 , and

ξκ
1 , and the linear power spectrum for the coefficients μ̄
 and ν̄1. We

see that below ∼30 Mpc h−1, non-linearities generate an Nf that
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Figure 4. Value of Nf at z = 0.15 obtained by varying the fiducial
cosmology by 2σ : �m (yellow dotted), �b (purple dotted), ns (red dotted),
and h (orange dotted). The green dashed line shows Nf with a scale-
dependent bias. The black solid line and blue solid line show Nf for a
cosmology with massive neutrinos with mass mν = 0.12 eV (black) and
mν = 0.6 eV (blue). The red region shows the variance of Nf for a survey
with DESI specifications.

is significantly larger than the variance. Above this scale, however,
non-linearities become smaller than the variance, meaning that they
do not limit the validity and sensitivity of the null test.

Second, we assess the impact of the fiducial cosmology by cal-
culating Nf with coefficients computed in the fiducial cosmology,
and observables 2σ away from fiducial (we take σ from table 2
of Aghanim et al. 2018). In Fig. 4, we compare Nf obtained in
this way, with its variance for a survey with DESI specifications.
Varying the cosmology generates a Nf that is significantly smaller
than the variance. This means that a detection of Nf �= 0 cannot be
due to our choice of fiducial cosmology, except if Planck constraints
are incorrect by more than 2σ . Let us furthermore mention that we
can always test this assumption by fitting the null test to 0 varying
the cosmological parameters. Any remaining non-zero Nf will then
be purely due to a scale-dependent growth rate.

The third limitation comes from a possible scale-dependent
bias that would induce a non-zero Nf . In Fig. 4, we show Nf

obtained for a particular choice of scale-dependent bias used
in Amendola et al. (2017) and fitted from simulations: b(z, k) =
b0(z)

√
1 + Q(z) (k/k1)2/

√
1 + A(z)k/k1, with A(z) = 1.7, Q(z)

fitted from Amendola et al. (2017), k1 = 1 h Mpc−1, and b0(z)
from DESI. We see that below 10 Mpc h−1 the scale-dependent bias
induces a Nf that is of the same order as the variance. A detection
at those scales could therefore be due to the bias. At larger scales,
however, the scale-dependent bias has a negligible impact, meaning
that the null test is robust above 10 Mpc h−1.

Massive neutrinos also lead to a scale-dependent growth of
structure (Lesgourgues & Pastor 2006). In Fig. 4, we show Nf

induced by a cosmology with two massless neutrinos and one
massive neutrinos, for two choices of mass. We use CAMB to
compute the density and velocity transfer functions with massive
neutrinos (Lewis, Challinor & Lasenby 2000; Howlett et al. 2012).
We see that neutrinos become relevant (i.e. Nf becomes of the
same order as the variance) only for a large mass of ∼0.6 eV.
This is consistent with RSD forecasts that are sensitive to neutrinos
masses of this order (Marulli et al. 2011).

Another possible source of contamination is wide-angle effects.
These effects have been shown to be an important contamination
to the dipole of galaxy clustering, especially when the line of sight
used to compute the multipoles break the symmetry of the configu-

ration (Gaztanaga, Bonvin & Hui 2017; Beutler, Castorina & Zhang
2019). To minimize this effect we use as line of sight the median
to the galaxy pair. With this, we compute Nf using the full-sky
expression for the multipoles ξ�

2 , ξ�
4 , and ξκ

1 . In the lowest redshift
bin of DESI, z ≤ 0.05, we see that wide-angle effects invalidate the
null test above 60 Mpc h−1. For all other redshift bins, however,
they are negligible over the whole range of scales we are using.

Finally, lensing can also potentially contaminate the null test since
it affects both the galaxy number counts � and the convergence κ .
Including these two contributions in Nf we find that for the BGS
sample of DESI, which is limited to z ≤ 0.5, lensing is always
subdominant and does not impact our results. If one wants to use
the null test at higher redshift however, this contribution would have
to be included as a contamination, which would limit the sensitivity
of the null test.

5 C O N C L U S I O N

In this Letter, we have constructed a null test to probe the scale
dependence of the growth of structure. The standard way of
testing for such a scale dependence is to compare observables with
theoretical predictions for a specific modelling of f(k, z) and to
measure the parameters of this model. The drawback of this method
is that if the modelling is incorrect, it can invalidate the test. One
needs therefore to test one after the other a large number of models.
The null test presented in this Letter has the advantage of being
model independent: to apply it on data, one simply has to combine
observables as prescribed in equation (4) and see if the result is
consistent or not with zero. A non-zero Nf can then directly be
interpreted as a deviation from scale dependence. An ideal null
test should not depend on any assumption about cosmology. Here
we have shown that this is not possible, since we need a fiducial
cosmology to calculate the coefficients of the null test. However, we
have demonstrated that the assumptions that we use are very general
and have little impact on the validity of the null test. In short, the
null test is valid as long as the background evolution of the Universe
at late times is consistent with �CDM, and that the cosmological
parameters �b, �m, ns, and h are consistent with Planck constraints.
Under these assumptions, the null test vanishes for any form of the
growth rate f that is scale independent. The price to pay for this
generality is that the null test is limited by the covariance of all
observables, which in total is larger than the covariance of individual
observables. Hence, for a specific model, the null test will perform
worse than individual observables. This test should therefore be
used as a first model-independent discriminating method between
scale-dependent and independent models. We have seen that the null
test will be sensitive to deviations of the order of 10–20 per cent for
DESI, and of 5–10 per cent for SKA2, making it a very valuable
and powerful tool for upcoming surveys.

AC K N OW L E D G E M E N T S

We thank David Bacon, Ruth Durrer, and Martin Kunz for useful
discussions and Goran Jelic-Cizmek for his help with COFFE.
FOF and CB acknowledge support by the Swiss National Science
Foundation. CC was supported by STFC Consolidated Grant
ST/P000592/1.

REFERENCES

Aghamousa A. et al., 2016, preprint (arXiv:1611.00036)
Aghanim N. et al., 2018, preprint (arXiv:1807.06209)

MNRASL 492, L34–L39 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/492/1/L34/5647367 by U
niversity of the W

estern C
ape user on 12 February 2021

https://arxiv.org/abs/1611.00036
https://arxiv.org/abs/1807.06209


Null test of the growth rate L39

Alsing J., Kirk D., Heavens A., Jaffe A., 2015, MNRAS, 452, 1202
Amendola L., Menegoni E., Di Porto C., Corsi M., Branchini E., 2017, Phys.

Rev. D, 95, 023505
Bacon D. J., Andrianomena S., Clarkson C., Bolejko K., Maartens R., 2014,

MNRAS, 443, 1900
Baker T., Ferreira P. G., Skordis C., 2013, Phys. Rev. D, 87, 024015
Beutler F., Castorina E., Zhang P., 2019, J. Cosmol. Astropart. Phys., 03,

040
Bolejko K., Clarkson C., Maartens R., Bacon D., Meures N., Beynon E.,

2013, Phys. Rev. Lett., 110, 021302
Bonvin C., 2008, Phys. Rev. D, 78, 123530
Bonvin C., Durrer R., 2011, Phys. Rev. D, 84, 063505
Bonvin C., Andrianomena S., Bacon D., Clarkson C., Maartens R., Moloi

T., Bull P., 2017, MNRAS, 472, 3936
Buchdahl H. A., 1970, MNRAS, 150, 1
Bull P., 2016, ApJ, 817, 26
Casaponsa B., Heavens A. F., Kitching T. D., Miller L., Barreiro R. B.,

Martinez-Gonzalez E., 2013, MNRAS, 430, 2844
Challinor A., Lewis A., 2011, Phys. Rev. D, 84, 043516
De Felice A., Kobayashi T., Tsujikawa S., 2011, Phys. Lett. B, 706, 123
Dey A. et al., 2019, AJ, 157, 168
Dodelson S., 2003, Modern Cosmology. Academic Press, Amsterdam
Eisenstein D. J., Seo H.-j., White M. J., 2007, ApJ, 664, 660
Gaztanaga E., Bonvin C., Hui L., 2017, J. Cosmol. Astropart. Phys., 01,

032
Ghosh B., Durrer R., 2019, JCAP, 1906, 010
Giannantonio T., Martinelli M., Silvestri A., Melchiorri A., 2010, J. Cosmol.

Astropart. Phys., 04, 030
Gleyzes J., Langlois D., Mancarella M., Vernizzi F., 2016, J. Cosmol.

Astropart. Phys., 02, 056
Gubitosi G., Piazza F., Vernizzi F., 2013, J. Cosmol. Astropart. Phys., 02,

032

Hall A., Bonvin C., 2017, Phys. Rev. D, 95, 043530
Hamilton A. J. S., 1998, in Hamilton D., ed., The Evolving Universe. Kluwer,

Dordrecht, p. 185
Heavens A., Alsing J., Jaffe A., 2013, MNRAS, 433, 6
Howlett C., Lewis A., Hall A., Challinor A., 2012, J. Cosmol. Astropart.

Phys., 04, 027
Jeong D., Schmidt F., Hirata C. M., 2012, Phys. Rev. D, 85, 023504
Kaiser N., 1987, MNRAS, 227, 1
Lesgourgues J., Pastor S., 2006, Phys. Rep., 429, 307
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Linder E. V., 2005, Phys. Rev. D, 72, 043529
Marulli F., Carbone C., Viel M., Moscardini L., Cimatti A., 2011, MNRAS,

418, 346
Peacock J. A., Dodds S. J., 1994, MNRAS, 267, 1020
Planck Collaboration XIV, 2016, A&A, 594, A14
Sawicki I., Bellini E., 2015, Phys. Rev. D, 92, 084061
Schmidt F., Leauthaud A., Massey R., Rhodes J., George M. R., Koekemoer

A. M., Finoguenov A., Tanaka M., 2012, ApJ, 744, L22
Song Y.-S. et al., 2015, Phys. Rev. D, 92, 043522
Starobinsky A. A., 1980, Phys. Lett. B, 91, 99
Tansella V., Jelic-Cizmek G., Bonvin C., Durrer R., 2018, J. Cosmol.

Astropat. Phys., 10, 032
Wang L., Steinhardt P. J., 1998, ApJ, 508, 483
Xu X., Cuesta A. J., Padmanabhan N., Eisenstein D. J., McBride C. K.,

2013, MNRAS, 431, 2834
Yoo J., Fitzpatrick A. L., Zaldarriaga M., 2009, Phys. Rev. D, 80, 083514
Zhang P., Liguori M., Bean R., Dodelson S., 2007, Phys. Rev. Lett., 99,

141302

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRASL 492, L34–L39 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/492/1/L34/5647367 by U
niversity of the W

estern C
ape user on 12 February 2021

http://dx.doi.org/10.1093/mnras/stv1249
http://dx.doi.org/10.1103/PhysRevD.95.023505
http://dx.doi.org/10.1093/mnras/stu1270
http://dx.doi.org/10.1103/PhysRevD.87.024015
http://dx.doi.org/10.1088/1475-7516/2019/03/040
http://dx.doi.org/10.1103/PhysRevLett.110.021302
http://dx.doi.org/10.1103/PhysRevD.78.123530
http://dx.doi.org/10.1103/PhysRevD.84.063505
http://dx.doi.org/10.1093/mnras/stx2049
http://dx.doi.org/10.1093/mnras/150.1.1
http://dx.doi.org/10.3847/0004-637X/817/1/26
http://dx.doi.org/10.1093/mnras/stt088
http://dx.doi.org/10.1103/PhysRevD.84.043516
http://dx.doi.org/10.1016/j.physletb.2011.11.028
http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.1086/518755
http://dx.doi.org/10.1088/1475-7516/2017/01/032
http://dx.doi.org/10.1088/1475-7516/2010/04/030
http://dx.doi.org/10.1088/1475-7516/2016/02/056
http://dx.doi.org/10.1088/1475-7516/2013/02/032
http://dx.doi.org/10.1103/PhysRevD.95.043530
http://dx.doi.org/10.1093/mnrasl/slt045
http://dx.doi.org/10.1088/1475-7516/2012/12/027
http://dx.doi.org/10.1103/PhysRevD.85.023504
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1016/j.physrep.2006.04.001
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1103/PhysRevD.72.043529
http://dx.doi.org/10.1111/j.1365-2966.2011.19488.x
http://dx.doi.org/10.1093/mnras/267.4.1020
http://dx.doi.org/10.1051/0004-6361/201525814
http://dx.doi.org/10.1103/PhysRevD.92.084061
http://dx.doi.org/10.1088/2041-8205/744/2/L22
http://dx.doi.org/10.1103/PhysRevD.92.043522
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1088/1475-7516/2018/10/032
http://dx.doi.org/10.1086/306436
http://dx.doi.org/10.1093/mnras/stt379
http://dx.doi.org/10.1103/PhysRevD.80.083514
http://dx.doi.org/10.1103/PhysRevLett.99.141302

