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Abstract—Here we present the application of an advanced
Sparse Gaussian Process based machine learning algorithm to
the challenge of predicting the yields of inertial confinement
fusion (ICF) experiments. The algorithm is used to investigate
the parameter space of an extremely robust ICF design for
the National Ignition Facility, the ‘Simplest Design’; deuterium-
tritium gas in a plastic ablator with a Gaussian, Planckian drive.
In particular we show that i) GPz has the potential to decompose
uncertainty on predictions into uncertainty from lack of data and
shot-to-shot variation, ii) permits the incorporation of science-
goal specific cost-sensitive learning e.g. focussing on the high-yield
parts of parameter space and iii) is very fast and effective in high
dimensions.

I. INTRODUCTION

Inertial confinement fusion (ICF), in which deuterium-
tritium (DT) fuel is compressed to temperatures and densities
exceeding that found in the Sun, is one of the main potential
pathways to nuclear fusion as a source of energy. The world’s
leading ICF facility is the National Ignition Facility (NIF) at
Lawrence Livermore National Laboratory (LLNL). NIF uses
indirect drive in which lasers first hit a holhraum (typically a
gold can), which then emits a thermal radiation field which
drives the implosion, in contrast to direct drive ICF in which
laser beams themselves drive the implosion.

Although huge progress has been made, NIF has been
unable to reach the yields originally hoped for. This has led
to an interest in using modern machine learning techniques
to produce new designs and quantify uncertainties on pre-
dictions. [1] presented an early ensemble of thousands of
ICF implosions, and used Gaussian Processes (GPs) to model
the parameter space. [2] developed a novel neural network
(NN) machine learning algorithm called DJINN (‘deep jointly-
informed neural networks’) that used random forests to con-
struct appropriate neural network architectures with relatively
little human input, which was used in [3] to identify a novel
non-spherically symmetric design for NIF. [4] used transfer

learning1 with DJINN to update the machine learning predic-
tions based on seeing real experiments. Finally [5] used genetic
algorithms in an even wider parameter space to produce ICF
designs almost from scratch.

In this work we use a GP based machine learning algorithm
GPz, [6], [7] to build surrogate models of a robust ICF
design. GPz has i) a flexible cost-sensitive learning feature that
permits optimisation for the specific science goal at hand, ii)
models heteroscedastic noise, permitting the uncertainty to be
decomposed into uncertainty from shot-to-shot variation and
uncertainty from lack of data, and iii) uses a sparse framework
that lets it run quickly even in high dimensions. We compare it
to DJINNs performance on the same data, and discuss future
approaches to building ICF surrogates.

II. PROBLEM FORMULATION AND METHODOLOGY

1) The Simplest Design: The point design for NIF is an
indirect drive design, with a capsule of DT gas inside a ablator
shell (plastic, CH or a few other options) with a thin layer
of solid DT ice on the inside. In the conventional implosion
the ablation compresses the DT gas to a relatively high
convergence ratio (the ratio of the DT radius at the start of the
experiment to the radius at peak compression), and extremely
high temperatures. If certain criteria are met, sufficient nuclear
reactions take place that alpha heating (heating of the DT
plasma by alpha particles produced in the nuclear reactions)
dominates, and the gas ignites. This then starts a burn wave
propagating through the DT ice layer, from which most of
the neutron yield comes from. Most designs use a series of
shockwaves to fine-tune the implosion, with several variants
studied.

The Simplest Design removes some of the more com-
plex/challenging aspects of ICF where the physics is more
uncertain: i) delicate pulse timing, ii) the burn wave through
the DT ice and iii) high convergence ratios. This design simply

1Transfer learning is a family is of machine learning methods that seek to
let an algorithm apply information/knowledge gained from one problem, to
the task of solving a similar but different problem.
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has DT gas (but of a much higher density), with a CH ablator,
and a Gaussian drive (sketch of capsule design shown in figure
1). It is unlikely that the Simplest Design will be able to lead
to ignition at NIF, but it does represent a pathway to very
predictable robust 1D implosions. We use a thermal x-ray drive
with a Gaussian temperature time dependence.

We parametrise the Simplest Design with 5 parameters and
investigate the parameter space within the following limits:

• 50eV < Tpeak < 400eV - the peak temperature of the
drive

• 0.01ns < σ < 5ns - the standard deviation of the time
dependence of the temperature of the drive

• 0.1mm < r1 < 1.5mm - the radius of the DT gas
• 0.05mm < r2 < 1mm - the radius of the CH ablator
• 10mg/cc < ρ < 200mg/cc - the density of the DT gas

(mg/cc)

N.B. the gas fill is much higher than typical for ICF (nor-
mally closer to ∼ 0.1mg/cc) - meaning that the implosions
have a much lower convergence ratio, but that we would not
expect the design to be able to reach yields comparable to that
which are in principle possible with the point design on NIF.
This is because the point design has low density gas that is
(comparatively) easily compressed. At peak compression, the
hotspot (the low density gas that has been compressed) and DT
ice are approximately isobaric, but the density is highly non-
uniform - resulting in a small region of high temperature in
the hotspot, with low temperature in the ice. The temperatures
in the low density hotspot are in principle sufficient to initiate
significant burn within the hotspot (which hopefully drives a
burn wave through the DT ice, to give extremely high yields).
For an equivalent DT mass arranged uniformly (as a function
of radius), the energy required to compress it sufficiently to
heat it to temperatures high enough to initiate fusion would
be far higher than that available on NIF. The design space
is chosen to roughly correspond to what is achievable with a
gold hohlraum on NIF; the main restrictions are total capsule
radius and total energy in drive.

The Simplest Design shares some design philosophy with
the 2-shock design of [8] and [9]. The design of shot N161004
described in [9] still has a DT ice layer like more typical
designs, but has a relatively high gas fill density of 5mg/cc
(much closer in log-space to the densities we consider than
to the point design), and a correspondingly more modest
convergence ratio. They also have a relatively simple 2-shock
drive. These features are experimentally observed to make the
implosion much more 1D, and much closer to the predictions
of simulations. The Simplest Design goes a step further, with
an even higher gas fill, even lower convergence ratio and and
an even simpler 1-shock drive - and thus also has the potential
to give a robust 1D implosion that closely matches simulation.

2) Data: Typically machine learning methods give better
predictions in parts of parameter space with lots of data, and
vice-versa. We use here a Monte Carlo sampling, but rather
than sampling uniformly in the parameter under consideration,

Fig. 1. Example Simplest Design diagram; black shows CH, pale blue DT
gas. Scale and of proportions of the 4× 1015 design of Section III-1 shown,
labels are radii from the centre of the capsule.

points are sampled from a multi-variate Gaussian2 centred on
where a preliminary estimate for an optimal design was3. [3]
conversely use latin hypercube sampling (LHS) to achieve
good coverage of the parameter space, which may be a
valuable alternative sampling approach for future work. This
base design was Tpeak = 300eV, σ = 2ns, r1 = 1mm,
r2 = 0.15mm and ρ = 55mg/cc. 5000 simulations were run
and we divided it into 30% training, 30% validation and 40%
testing data. The training data is used to infer the large number
of parameters that make up the machine learning predictive
model, the validation data is used to infer model hyper-
parameters (essentially the complexity of the model), and the
test data is held back to use as a final test of performance. We
simulate shot-to-shot variation by artificially adding Gaussian
scatter to the calculated log-yields4 in number of neutrons.
This is chosen to be ρ dependent; the scatter is chosen to
have standard deviation 0.1× ρ/(55mg/cc) dex.

Our implosion simulations are performed using the
HYADES[10] radiation-hydrodynamics simulation code, which
is well benchmarked and used widely for the simulation of in-
ertial fusion and high energy density physics applications[11],
[12], [13], [14]. HYADES models hydrodynamics within a La-
grangian framework. Electron and ion thermal energy transport
is described by a flux-limited Spitzer-Härm thermal conduc-
tivity model. Equations-of-state either use the Los Alamos
SESAME tables[15] or QEOS[16]. Ionization levels come
from a hydrogenic average-atom model or self-consistently

2In log-space
3Optimal sampling in the parameter space likely depends on the end goal

e.g. if planning to eventually implement transfer learning it may still be
valuable to sample the low-yield parts of parameter space.

4Log-yields always measured in logarithms of base ten of number of
neutrons



from QEOS. Radiation transport uses the multi-group diffusion
approximation; here we use 60 groups. A 1D spherically
symmetric geometry is employed.

Neither laser-plasma interactions nor hohlraum physics are
modelled; instead we use an incoming x-ray drive imposed at
the outside of the grid. The capsules are modelled within a
5mm helium container. Simulations start in cryogenic condi-
tions at 1.551× 10−3eV= 18K. The HYADES runs were per-
formed on SCARF at the Central Laser Facility at Rutherford
Appleton Laboratory using 500 CPUs. The modelling used
here is likely appropriate for the design investigated here5, but
the next level of sophistication of modelling would be to a)
move to 2D/3D simulations (e.g. so Rayleigh-Taylor instabili-
ties are incorporated) and b) start to include laser/hohlraum
physics and non-Planckian drives (e.g. simulate the laser
light being converted to x-rays, rather than just assuming an
incoming x-ray drive). See [17], [18] for overviews of the
wide range of physics involved in ICF, and associated issues
concerning which physics to include in simulations etc.

3) GPz: GPz is a machine learning regression algorithm
originally developed for the problem in astrophysics of calcu-
lating the photometric redshifts of galaxies; the details of the
algorithm and the key developments in machine learning (ML)
theory are described in [6], [7], and applied to photometric
redshift calculation in [19], [20], and to orbital dynamics in
[21]. The algorithm is ‘GP’ based; a Gaussian Process is a
stochastic process with a random variable defined at each
point in a space of interest, such that any finite subset of
the random variables has a multivariate normal distribution
(equivalently any linear combination of random variables from
different points has a normal distribution). A GP is essentially
an un-parametrised continuous function defined everywhere
with Gaussian uncertainties. A GP based ML algorithm will
typically take a set of data over the parameter space of interest
and in some sense try and find the function in the function
space defined by the Gaussian process that was most likely to
have produced the data - and then make predictions for other
parts of parameter space based on that.

GPz is a sparse Gaussian process based code, a fast and a
scalable approximation of a full Gaussian Process [22], with
the added feature of being able to produce input-dependent
variance estimations (heteroscedastic noise). For the full de-
tails of the algorithm see [6], [7], [23], but we summarise the
main details here. The model assumes that the probability of
the observing a target variable y given the vector input x is
p(y|x) = N (µ(x), σ(x)2). The mean function, µ(x), and the
variance function σ(x) are both linear combinations6 of ‘basis

5It is in some sense hard to definitively know this is the case until a
real shot has been performed, so this statement must remain conditional
without experimental data. However the aforementioned design of [9] finds
that 1D models are in reasonable agreement with the data; and the implosions
described here should be ‘even more 1D’.

6N.B. This is a different sense of linear combination to that which can be
used in the definition of a Gaussian Process. That definition of a Gaussian
Process involves the addition of random variables at different points; the linear
combination discussed here is an addition of multivariable functions to build
up a representation of µ(x) and σ(x) .

functions’ that take the following form:

µ(x) = Σm
i=1φi(x)wi (1)

σ(x) = exp (Σm
i=1φi(x)vi) (2)

where {φi(x), wi, vi}mi=1 are sets of m basis functions and
their associated weights respectively7. Basis function models
(BFM), for specific classes of basis functions such as the
squared exponential, have the advantage of being universal
approximators, i.e. there exist a function of that form that
can approximate any function, with mild assumptions, to any
desired degree of accuracy; i.e. a one size fits all function.
BFM are a form of sparse Gaussian Processes [23].The most
general form of the squared exponential is:

φi(x) = exp

(
−1

2
(x− µi)

T Λ−1
i (x− µi)

)
(3)

The goal of GPz essentially is to find the optimal param-
eters, {µi,Λi, wi, vi}mi=1 such that the mean and variance
functions, µ(x) and σ(x), are the most likely functions to
have generated the data - using Bayesian inference. These op-
timal parameters are found with a Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm [24] (a hill-climbing op-
timisation algorithm for differentiable non-linear problems).
During the training stage of the algorithm GPz is inferring the
locations and spreads that describe the basis functions; during
the validation stage it is inferring the appropriate complexity
of the model, essentially how many basis functions to use.

The key features introduced by GPz include a) implemen-
tation of a sparse GP framework, allowing the algorithm to
run in O(nm2) instead of O(n3) (where n is the number of
samples in the data and m is the number of basis functions),
b) a ‘cost sensitive learning’ framework where the algorithm
can be tailored for the precise science goal, and c) properly
accounts for uncertainty contributions from both variance in
the data as well as uncertainty from lack of data in a given
part of parameter space (by marginalising over the functions
supported by the GP that could have produced the data).

Unless otherwise stated, we use the settings in Table I
(see [6], [7] for precise definitions and interpretations). GPz
requires very little fine-tuning. The most important parameter
is m, the number of basis functions. A higher m corresponds
to higher model complexity and longer training times. Figure
2 shows algorithm performance as a function of m; best
performance is achieved for m ≈ 10 − 100, in line with
findings in [6], [7].

GPz permits custom cost-sensitive learning e.g. a specific
science goal to specified to the algorithm. In the application of
calculating galaxy redshifts this typically might be something
like specifying that low-redshift galaxies are a low priority.
In the ICF case, we can also set particular parts of parameter
space of interest e.g. areas around a cliff, parts of parameter

7In practice GPz actually uses σ2 = exp(Σm
i=1φ(x)vi + b) where

addition of the bias term ‘b’ is used for practical reasons but is not required
theoretically.



TABLE I
PARAMETER SETTING OF GPZ.

Parameter Value Description
m 100 Number of basis functions (the φi); complexity of GP
maxIter 500 Maximum number of iterations (comparisons with the validation data) permitted
maxAttempts 50 Maximum number of iterations to attempt if there is no progress on the validation set
method GPVC Type of bespoke covariances (the Λi in equation 3) used on each basis function (see [7] for the different options)
normalize True Pre-process the input by subtracting the means and dividing by the standard deviations
joint True Jointly learn a prior linear mean-function (learn the function means and variances jointly)
heteroscedastic True Model noise as well as point estimates

Fig. 2. The performance of the algorithm as a function of the number of
basis functions used. The y-axis is the fraction of test data within 0.2 dex of
the prediction.

space that are possible with a particular facility etc. In this
work we will use the weighting w =

√
Y (where Y is the

simulated yield in number of neutrons), up-weighting the cost
of getting predictions wrong in the high-yield part of parameter
space, and assuming that we are relatively insensitive to getting
predictions wrong in low-yield parts of parameter space. The
choice of w =

√
Y was motivated by requiring a function

that was a) monotonically increasing with Y (so that higher
yield parameter space has a higher weight than lower yield
parameter space), b) a power law (so that the weighting is
invariant under rescaling of Y ) and c) has a ‘reasonable’
dynamical range for the design space considered (here yield
spans ∼ 1010 − 1016, so the ratio of weightings of different
parts of parameter space can reach up to ∼

√
1016

1010 = 1000).
The 5D space considered here is of relatively modest

dimensionality, but GPz has been shown to be effective and
fast running in &10D, see [19] and subsection III-5.

We also trialled our data with DJINN [2]8. The DJINN
solution to difficulties in designing neural network structure is
to use a novel mapping from decision tree to network structure,
giving a very user-friendly algorithm that works with very little
human input in a wide variety of circumstances. Parameters
used for DJINN used are shown in table II, with choices
motivated by [2] (improved performance may be achievable
with further parameter fine-tuning).

8Taken from the version on https://github.com/LLNL/DJINN

III. RESULTS

1) Predictions and Optimal Design: Figure 3 shows the
yield predicted by the machine learning algorithms for the test
data, compared with the Hyades yields. GPz is largely able
to correctly predict the yield for most of the test data, with
reasonably realistic uncertainties. Figure 4 shows the yield as
a function of two of the parameters and the corresponding
uncertainty on the predictions. The part of parameter space
with maximal yield within design constraints (e.g. what is
feasible for a given facility) can easily be extracted, or
a similar stability test as in [3] can be used to find the
design with the best combination of yield and stability etc.
For example, say we fix the drive at Tpeak = 300eV and
σ = 1.5ns, and restrict interest to capsules smaller than 1.5mm
(e.g. r1 + r2 < 1.5mm). The capsule with highest predicted
yield is easily found to be r1 ≈ 1.2mm, r2 ≈ 0.3mm and
ρ ≈ 25mg/cc, giving a yield of Y ∼ 4 × 1015. However
suppose we were only interested in making sure that the design
robustly had a yield above Y = 1015, and instead wanted to
minimise the capsule radius. We define P (Y > 1015|δ = 0.2)
as the fraction of designs that still have a yield above Y = 1015

when each parameter is perturbed by an amount sampled
from a Gaussian with a standard deviation of 20% (c.f.
[3]). We can find the design that minimises r1 + r2 with
P (Y > 1015|δ = 0.2) > 0.9, leading to a slightly different
design, r1 ≈ 0.95mm, r2 ≈ 0.3mm and ρ ≈ 25mg/cc
(Y ∼ 2.5× 1015).

2) Cost-Sensitive Learning: Figure 3 shows a comparison
of GPz w = 1 (‘normal’ in [6]) and using cost-sensitive
learning (w =

√
Y ). Figure 5 and 6 show the bias (mean of

Ytest − Yprediction) and root-mean-squared-error (RMSE) on
the predictions, illustrating that performance in higher yield
parts of parameter space (logY ∼ 15−17) is indeed improved
at the cost of performance in lower yield regions. In general
CSL can be linked to specific science goal of a study e.g. for
the goal of achieving ignition at the NIF we probably have
particular interest in having low RMSE close to cliff edges,
but are relatively insensitive to RMSE or bias both far above
and far below this boundary. We would note that CSL is a
method that can in some circumstances obtain slightly better
statistical properties in certain parts of parameter space [20];
but it cannot extract information from the data that simply
isn’t there (e.g. a really extreme weighting scheme will still
fail to improve predictions in parts of parameter space with
almost no data).



TABLE II
PARAMETER SETTING OF DJINN.

Parameter Value Description
ntrees 10 Number of neural nets in ensemble
maxdepth 5 Maximum depth of tree
dropoutkeep 0.95 Dropout
niters 100 Number of times network evaluated for

3) Comparison with DJINN: We also applied (Bayesian)
DJINN to our data, also shown in Figures 3, 5 and 6. The
intention is not to do a rigorous code comparison, as the codes
were developed for different machine learning goals and it is
non-trivial to directly compare model complexity, but simply
to illustrate that Gaussian processes are comparably viable
tools for building ICF surrogates.

DJINN also performs well in producing a surrogate model.
The algorithm trained and predicted in ∼80s and ∼2s respec-
tively, compared with ∼5s and ∼0.02s for GPz on a laptop9.

Some authors have found that the best results are achieved
using a committee of a variety of machine learning methods,
so it is possible best results could be achieved using a
combination of neural nets and Gaussian processes with an
ensemble averaging [25] or hierarchical Bayesian approach
[20]. This would also start a move towards non-Gaussian pdfs,
as predictions near cliffs are likely to be multi-modal (an
experiment either ignites or it doesn’t). Greater precision in
key parts of parameter space can of course also be achieved
by doing more simulations in that part of parameter space, but
that requires advance knowledge of which part of parameter
space is interesting. Future work could couple the process of
sampling parameter space and building the surrogate. It might
also be interesting to consider how CSL-like methods might
be implemented within DJINN e.g. loss-calibrated learning as
per [26].

4) Uncertainty Decomposition: The right subplot of Figure

4 shows
√
ν/β−1

? , the ratio of uncertainty from lack of data
to uncertainty from intrinsic variation. ν is the variance from
lack of data, defined as ν = φ(x)Σ−1φ(x)T , where φ is
the vector of non-linear basis functions that the prediction
mapping is constructed from, x is the test data, and Σ is the
covariance matrix of uncertainty on the weights applied to the
basis functions when constructing the posterior mean. It is
essentially the uncertainty on the µ(x) in equation 1. β−1

? is
the input-dependent noise variance. It is essentially the σ(x)2

in equation 2. The total variance is σ2
Total = ν + β−1

? . See
Equations 3.13 and 5.10 in [7] for a more in depth explanation
of the calculation and interpretation of these quantities, and
[27] for a more general background. The plot illustrates that
GPz correctly identifies that for ρ < 10mg/cc more of the
uncertainty is coming from lack of data rather than shot-to-
shot variation (as there were no simulations done in that part
of parameter space). This shows that GPz can help under-
stand what is the dominant source of uncertainty in different

916 GB RAM, 3.1 GHz Intel Core i5

parts of parameter space. This uncertainty decomposition does
however come with the caveat that uncertainty is still likely
underestimated at the edge of the domain, and anywhere
far from data, due to the use of only a finite number of
basis functions. Estimates of shot-to-shot variation can also
be incorporated into design optimisation e.g. suppose we
wanted to find the design with a yield above Y = 1015, but
with minimal shot to shot variation, we can find the design
with smallest β−1

? that meets this yield criterion, which is
r1 ≈ 1.05mm, r2 ≈ 0.15mm and ρ ≈ 15mg/cc (for the same
drive as in Section III-1.

The shot-to-shot variation considered here is not quite
identical to the real problem in ICF; here we added scatter
to the thousands of simulations, whereas more realistically
we might have a large number of simulations with no scat-
ter/uncertainty, and then just a few experiments with some
shot-to-shot variation. Nonetheless an approach similar to
that detailed here could be effective in folding shot-to-shot
variation into surrogate building. For example, one might
simulate a large number of shots varying both parameters the
designer controls (e.g. capsule shell thickness) as well as ones
they don’t (e.g. imperfections on the surface of the shell). The
outputs from these simulations could then be used to build a
‘noisy’ surrogate as a function of the controlled parameters.
Another useful feature is that understanding the shot-to-shot
variation permits the model to say that there is substantial
amount of uncertainty in the prediction of the yield for an
individual shot, but also to say that there is no need to do any
further experiments in that part of parameter space as all the
uncertainty is from shot-to-shot variation. Features of GPz in
development that could be useful for ICF surrogate building
in future include i) incorporating uncertainty on predictions
due to uncertainty on input parameters (e.g. if there are error
bars associated with the gas fill densities and shell thicknesses
etc.) and ii) coping with incomplete data (e.g. training on
data where a subset of the shots don’t have some of the
experimental properties recorded).

5) Scalability: Thus far we have explored the applicability
of GPz to building ICF surrogates in the context of the
Simplest Design, as a possible pathway to extremely robust
implosions. Other ICF design space data sets in general
however might have more complex features, in particular i)
sharp ignition cliffs, ii) higher dimensionality and iii) larger
numbers of simulations. Future work will investigate more
fully the performance of GPz in more complex design spaces.
Here however we briefly consider a simple analytic model, to
see if GPz is likely to have the capacity to scale well (c.f.



Fig. 3. Surrogate yield and Hyades yield compared for different surrogate set-ups.. GPz-Normal is shown in red (left), GPz-CSL in blue (centre), DJINN
in green (right). The diagonal filled line shows equality, and the dashed lines show one dex discrepancies

Fig. 4. A 2D slice through the 5D parameter space (with the other three parameters set to r1 = 1mm, Tpeak = 300eV, σ = 0.5ns), showing the surrogates
yield (left), the uncertainty on the prediction (centre) and the uncertainty from lack of data divided by uncertainty from shot-to-shot variation (right).

the simple analytic model considered in Section 2 of [4]). We
consider a 10-dimensional hypercube with sides going from 0
to 1, and sample 100,000 points randomly in this volume (each
dimension sampled uniformly independently). We calculate a
mock-yield of Y = r5(1 + 100000× (1 + erf(10× (r− 2)))),
where r is the radius from the origin in this 10D space (the
error function giving an ignition-like cliff). We then train GPz
(with m = 100 basis functions; same settings as Table I used
except heteroscedastic=false) and DJINN on 90% of this data
(90,000 points) and test on the other 10% (10,000 points);
results shown in figure 7. Training time was 415s for GPz and
450s for DJINN. Predicting time was 0.1s for GPz and 7s for
DJINN. Both capture the design space well, with each doing
slightly better or worse at different aspects of the prediction
e.g. GPz has a few outliers which DJINN doesn’t, but it is
less biased for high and low r. Which statistical properties are

most desirable are in general likely to depend on the specific
science goal at hand. In summary it appears that GPz should
be able to perform well, and run in reasonable amounts of
time, for higher dimensional spaces, with larger quantities of
data, when there are steep cliffs in the design space.

IV. CONCLUSIONS

Our results show that Gaussian processes have the potential
to be useful ICF surrogates, and that in particular GPz is
shown to be effective for the task as an easy-to-use algorithm
that can cope with huge amounts of data in a high number
of dimensions, with realistic uncertainties. In particular GPz
may be useful for modelling shot-to-shot variation alongside
uncertainty from lack of data in integrated experiments.

Future work will seek to combine experiment and simula-
tion, either through transfer learning as per [4], or possibly



Fig. 5. The bias on the predictions, GPz-Normal shown in red (solid line),
GPz-CSL in blue (dashed), DJINN in green (dotted).

Fig. 6. The RMSE on the predictions, GPz-Normal shown in red (solid line),
GPz-CSL in blue (dashed), DJINN in green (dotted).

through scaling the surrogate as per [28], taking care to
understand biases induced by differences between the target
distribution and the training set.

Key findings:
• GPz can make highly effective surrogate models for

predicting the outcomes ICF experiments
• Cost-sensitive learning can help the improve the statistical

properties of predictions in the most important parts of
parameter space

• It is possible to distinguish between uncertainty from
shot-to-shot variation and uncertainty from lack of data

• The Simplest Design should be able to produce yields of
order 1015 neutrons extremely robustly on NIF
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