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1  | INTRODUC TION

Spermatozoa are produced in the seminiferous tubules of the tes-
tes via a complex, highly regulated differentiation process called 
spermatogenesis. Testicular spermatozoa are nonfunctional 
and lack the ability to naturally fertilise an oocyte (Jones, 1999; 
Tulsiani & Abou-Haila, 2012; Xu, Washington, & Hinton, 2014; 
Zhou, De Iuliis, Dun, & Nixon, 2018). After being released from 
the germinal epithelium in the process called spermiation, sper-
matozoa pass through tiny channels, the rete testis and the effer-
ent ducts into the epididymis, where they undergo a complicated 
maturation process leading to biochemical, physiological and 
functional changes. During the epididymal transit, epididymal 
duct secretions are mixed with the testicular content to provide 
a specific environment in which functionally immature spermato-
zoa undergo multiple modifications, resulting in a functional sper-
matozoon that is able to successfully fertilise an oocyte (Amann, 
Hammerstedt, & Veeramachaneni, 1993).

Sperm dysfunctions are recognised as the most significant cause 
of male infertility (Cornwall & Horsten, 2007) and many may think 
that sperm dysfunction is only self-contained in the sperm cell itself 
as a result of defective spermatogenesis. However, it can also be the 
result of an inadequate epididymal maturation process due to im-
proper epididymal function (Kathrins, 2017).

Understanding of post-testicular sperm development and 
maturation including epididymal storage remains limited, which 
can significantly influence the diagnosis and treatment of male 
infertility, excluding assisted conception. Since the most dramatic 
modifications affecting spermatozoa have been localised in the 
epididymis, it is necessary to recognise these maturation events 
as a significant cause of male infertility (Jones & Dacheux, 2007). 
Therefore, the purpose of this review is to focus on the effects of 
epididymal disorders on sperm quality and male infertility. This 
systematic review may also provide an explanation for abnormal 
spermiogram values of infertile men as well as cases of idiopathic 
male infertility.
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Abstract
The diagnosis and treatment of male infertility, excluding assisted conception, are 
limited because of, but not limited to, poor understanding of sperm post-testicular 
development	and	storage.	Many	may	think	that	sperm	dysfunction	is	only	self-con-
tained in the sperm cell itself as a result of defective spermatogenesis. However, 
it can also be a consequence of inadequate epididymal maturation following disor-
ders of the epididymis. Improper epididymal functions can disturb semen parameters 
and sperm DNA integrity, result in high leucocyte concentrations and high numbers 
of immature germ cells and debris or even cause idiopathic infertility. To date, the 
data are limited regarding critical markers of sperm maturation and studies that can 
identify such markers for diagnosis and managing epididymal dysfunction are scarce. 
Therefore, this article aims to draw attention to recognise a disturbed epididymal 
environment as a potential cause of male infertility.
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2  | MATERIAL S AND METHODS

2.1 | Literature search

A computerised literature search was performed independently by 
three	reviewers	 (SB,	YM	and	AR)	 in	PubMed,	MEDLINE,	EMBASE,	
CENTRAL	 and	 randomised	 controlled	 trials	 (RCT)	 registries,	 cov-
ering the period from 1970 to October 2019, aiming to identify all 
available studies investigating the epididymal disorders in human or 
animals and its effect male infertility. Further manuscripts published 
before 1970 were reviewed for specific topic areas and included as 
appropriate.

For this purpose, the free text search key words (epididymis, 
post-testicular sperm maturation, sperm maturation, sperm storage, 
epididymal anomalies and epididymal toxicity, combined with infer-
tility, male factor, sperm dysfunction, inadequate events and semen 
parameters) were used. Additionally, the citation lists of all relevant 
publications and review articles were hand-searched. No language 
limitations were applied.

2.2 | Study selection

Articles that were published in any language and that focused on 
the specific topics described above were included. Additional papers 
cited in the primary reference were also taken into account.

3  | MECHANISM OF FUNC TION

The epididymis is a long, complex, highly convoluted tubule con-
nected to the rete testis by efferent ducts and downstream to 
the vas deferens. The adult epididymis reaches over an estimated 
length of 5–7 m in men (O’Hara, Welsh, Saunders, & Smith, 2011; 
Sullivan, 2004), 1 m in mice (Takano, Abe, & Ito, 1981), 3 m in rats 
(Turner,	Gleavy,	&	Harris,	1990)	and	80	m	in	horses	(Maneely,	1959).	
Despite differences in the length of the epididymal duct, the mam-
malian epididymis is generally divided into four distinct anatomical 
regions: initial segment, caput (head), corpus (body) and cauda (tail), 
as	early	described	by	Benoit,	1926	(Figure	1).

At	day	 (E)	14.5,	 the	upper	 reproductive	 tract	 consists	of	 three	
distinct systems: the Wolffian duct, the mesonephric tubules and the 
Mullerian	duct.	At	E15,	the	anterior	portion	of	the	Wolffian	duct	ad-
jacent to the testis elongates and folds into the epididymis, the mid-
dle portion remains as a simple tube, to form the vas deferens, while 
the posterior portion dilates, elongates cranially and forms a distinct 
diverticulum. The mesonephric tubules fuse with the Wolffian duct 
and are believed to become the efferent ducts, which connects be-
tween	the	rete	testes	and	epididymis	 (Barsoum	&	Yao,	2006).	The	
epididymis further changes from a simple straight tube to a highly 
convoluted structure through a complex coordinated succession of 
molecular and morphogenic events (Joseph, Yao, & Hinton, 2009). 
For example, in the mouse, the Wolffian duct is approximately 1mm 
at	 embryonic	 day	 14	 (E14),	 which	 means	 it	 must	 elongate	 1,000	

F I G U R E  1   Segmental structure of the epididymis. (a) Normal cross section the ductuli efferentes, the epididymis and vas deferens. The 
regionalisation of the epididymis, that is, the initial segment, intermediate zone, caput, corpus and proximal and distal cauda, are indicated. 
(b) Typical schematic patterns of mouse and (c) rat epididymal segmentation. (d) Histological appearance of segments 1–11, which comprise 
the	rat	caput	epididymis	and	proximal	corpus.	(a)	Reprinted	with	permission	from	(Robaire	et	al.,	2006),	and	(b),	(c)	and	(d)	Reprinted	with	
permission from (Jelinsky et al., 2007)
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times its length within a defined space (Domeniconi, Souza, Xu, 
Washington,	&	Hinton,	2016).	These	modifications	are	not	 limited	
to a simple elongation event; the epididymal duct starts expansion, 
coiling	and	segmentation	at	E16.5	to	morph	from	a	straight	tube	to	
an elaborately, convoluted, segmented tube. During this period, the 
efferent ducts have also initiated coiling (Snyder et al., 2010). From 
E16.5	to	postnatal	Day	1	(P1),	coiling	resumes	in	the	efferent	ducts	
and moves caudally from the initial segment to the cauda of the 
developing epididymis. These modifications end with the three-di-
mensional coiled epididymis that is comprised of several distinctly 
functional segments. In the human, the epididymis transforms its 
morphology	to	form	a	6-m-long	duct	that	is	coiled	and	packed	into	
a three-dimensional organ of ~10 cm in length (Hinton et al., 2011; 
Murashima,	Xu,	&	Hinton,	2015).

The epididymal tube is folded into a highly organised struc-
ture comprised of many discrete, intraregional segments that are 
structurally and functionally delineated by connective tissue septa 
(Turner,	 Bomgardner,	 Jacobs,	 &	 Nguyen,	 2003).	 Each	 segment	 is	
considered as an individual ‘organ’, creates its unique specialised 
luminal microenvironment known as ‘segment-specific microenvi-
ronment’, possessing its own overlapping genes, regulatory proteins 
and signal transduction pathways within distinct epithelial cell types 
(Cornwall, 2009). Thus, we can consider the epididymis a series of 
small	organs	placed	side	by	side	(Domeniconi	et	al.,	2016).	The	cells	
lining these segments do not function in isolation but communicate 
with neighbouring and/or downstream cells via paracrine mech-
anisms. Ordered and compartmentalised alternation in a series of 
individual epididymal microenvironments results in sperm func-
tional maturation leading to changes in morphology, motility, bio-
chemistry, permeability, concentration and metabolism (Cosentino 
&	Cockett,	1986).

Considering that spermatozoa are translationally silent, dynamic 
modification of the proteome of spermatozoa via uptake, reposition-
ing and post-translational modification of a variety of protein and 
small noncoding RNA promotes the gradient of increasing fertility 
in	 the	 sperm	 population	 held	 therein	 (Liu	 &	 Liu,	 2015;	 Paunescu	
et	al.,	2014;	Skerget,	Rosenow,	Petritis,	&	Karr,	2015).	Several	hun-
dred proteins are secreted by the epididymal epithelium into the 
epididymal	 lumen.	 Moreover,	 extracellular	 vesicles	 called	 epidid-
ymosomes contain proteins (Nixon et al., 2019), small noncoding 
RNAs	(Reilly	et	al.,	2016;	Sharma	et	al.,	2018)	and	lipids	 (Girouard,	
Frenette, & Sullivan, 2011) that are delivered to maturing sperma-
tozoa. Not only protein and chemical composition vary along the 
duct, but also their concentration. For example, the protein con-
centration ranges from 2 to 4 mg/ml in the initial segment of the 
epididymis,	peaks	to	a	maximum	of	50–60	mg/ml	in	the	distal	caput	
and returns to 20–30 mg/ml in more distal regions of the organ 
(Belleannee	et	al.,	2011;	Fouchecourt,	Metayer,	Locatelli,	Dacheux,	
& Dacheux, 2000). These variations in protein concentration are as-
sociated with changes in water content of the fluid as determined 
by changes in sperm concentration between the testis, the deferent 
duct and epididymis. From the rete testis to the deferent duct, the 
sperm concentration raises from 108 to 109 spermatozoa/ml, with a 

maximum in the first part of the epididymis. Although much of the 
fluid leaving the testicle is resorbed within the efferent ducts, water 
reabsorption	continues	at	a	low	level	up	to	the	epididymis	(Levine	&	
Marsh,	1971;	Wong	&	Yeung,	1978).	A	family	of	small,	hydrophobic	
proteins termed aquaporins acts as water channels that facilitates 
rapid water movement across cell membranes via transepithelial 
movement of Na+, Cl−, HCO3− and results also in significant modifica-
tions in the ionic composition of the lumen fluid along the epididymal 
tubule	(Agre	et	al.,	2002;	Verkman	&	Mitra,	2000).

The epididymal epithelium comprises different epithelial cell 
types including mainly principal cells (~85%), narrow cells (found 
only in the initial segment), basal cells, accompanied by other spe-
cialised cells including apical, narrow, clear and halo cells (intraepi-
thelial	leucocytes;	Breton,	Ruan,	Park,	&	Kim,	2016).	These	cell	types	
distribute in a segment-specific manner to serve different functions 
such as secretion, absorption, and endocytosis, acidification of the 
luminal fluid, immune defence, phagocytosis, and production of 
antioxidants (Hermo & Robaire, 2002). Tight, adhered junctional 
complexes between epithelial cells are found at their luminal sur-
face (Dubé, Chan, Hermo, & Cyr, 2007) maintaining the integrity of 
the epididymal epithelium and form a protective blood–epididymis 
barrier (Cornwall, 2009). This blood–epididymis barrier has several 
functions, including regulation of epididymal lumen composition via 
selective transport of ions, solutes and macromolecules through the 
epithelium, protection of spermatozoa from immune system and 
bacterial attacks (Dubé & Cyr, 2012).

Epididymal	 structure	 and	 function	 were	 shown	 to	 be	 primar-
ily dependent on testosterone through genomic and nongenomic 
mechanism of action. Testosterone enters the epididymis via two 
distinct routes: (a) it enters through the efferent ducts after leaving 
the rete testis (b) and also enters the epididymal epithelial cells by 
passive diffusion (Robaire & Hamzeh, 2011). The effects of testos-
terone withdrawal and replacement have been extensively studied 
through many experimental models. Neither cell survival nor cell 
division was affected by androgen administration or withdrawal 
(Hamzeh & Robaire, 2011). Human hypogonadism associated with 
testosterone deficiency is also correlated with impaired sperm epi-
didymal	maturation	(Schorr-Lenz	et	al.,	2016).	Hypogonadism	results	
in an accelerated sperm transit time through the epididymis, loss of 
sperm motility and reduced ability of the cauda epididymis to store 
spermatozoa	 (Robaire	 &	 Hinton,	 2015).	 Moreover,	 removing	 both	
testes (bilateral orchidectomy) results in a loss not only of andro-
gens, but also a 25% decrease in the weight of the epididymis. This 
treatment is often followed by androgen replacement, showing a 
partial	restore	of	the	weight	of	the	epididymis	(Brooks,	1987;	Cheuk,	
Leung,	Lo,	&	Wong,	2000;	Fan	&	Robaire,	1998).

Not only androgens, but there is also evidence that the epidid-
ymis of mammals is dependent on oestrogen (Filippi et al., 2002; 
Snyder,	Small,	Li,	&	Griswold,	2009).	Oestrogen	is	mainly	produced	
by germ cells, presenting a relatively high concentration in rete tes-
tis fluid. Unlike the caput through cauda regions of the epididymis, 
androgen replacement following rete testis ligation or castration 
does not rescue epithelial morphology of the initial segment regions 
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(Chauvin	 &	 Griswold,	 2004;	 Fawcett	 &	 Hoffer,	 1979).	 Meistrich,	
Hughes,	 and	 Bruce	 (1975)	 were	 the	 first	 reporting	 a	 decrease	 in	
sperm transit time with exposure to oestrogen; however, the dosage 
was very high. Another interesting study by Hess et al., 1997 further 
demonstrated that oestrogen regulates the reabsorption of luminal 
fluid	in	the	head	of	the	epididymis.	Many	other	studies	have	shown	
that oestrogen regulates epididymal contractility by upregulating 
the calcium-sensitising RhoA/ROCK pathway in epididymal smooth 
muscle (Fibbi et al., 2009), which maintains epididymal sensitivity 
to oxytocin and endothelin-1 (Filippi et al., 2002, 2005; Vignozzi 
et al., 2010).

Sperm cells possess unique surface proteins, which are potential 
stimuli of the immune system, with the risk of inducing autoantibod-
ies	and	consequently	male	infertility	(Witkin,	Jeremias,	Bongiovanni,	
&	Munoz,	1996).	However,	there	 is	a	special	need	for	efficient	 im-
mune response to pathogens. Thus, a finely tuned balance between 
efficient immune responses to pathogens and strong tolerance to 
sperm cells is essential requirement to maintain epididymal normal 
function. The mammalian epididymal immune system is rather dif-
ferent from that of the testis. Firstly, epididymitis, the inflamma-
tion of epididymis caused by the immune response to pathogens, is 
largely more common than orchitis and the latter very often leaks to 
epididymo-orchitis while the reverse is not that frequent. Secondly, 
acute epididymitis is essentially induced by retrograde invasion of 
urethral bacterial pathogens in sexually transmitted disease cases, 
while orchitis is more frequently due to blood-transmitted pathogen. 
Moreover,	 the	 incidence	of	 epididymal	 tumours	 is	 about	50	 times	
less than that of the testis and 80% of epididymal cancers are benign 
(Yeung, Wang, & Cooper, 2012). This suggests that despite their lu-
minal connection through the efferent ducts, the immune regulatory 
surveillance that controls the seminiferous and epididymal tubules is 
probably different and that the caput could be a control point limit-
ing	the	proliferation	of	ascending	pathogens	(Guiton,	Henry-Berger,	
& Drevet, 2013).

The epididymal immune balance must be set and maintained to-
wards spermatozoa. The first level of protection is the blood–epidid-
ymis barrier, either by preventing sperm antigens from escaping the 
duct or by impeding immune cells from infiltrating into the lumen. 
The second level of protection against immune responses to sper-
matozoa depends on the immune cells populating the tissue. Data 
from experimental animal models showed that mechanisms underly-
ing infectious disease and inflammatory conditions are interrelated 
with autoimmune phenomena (Hedger, 2011). Furthermore, mouse 
bacterial epididymitis models point to the importance of the host 
response	to	 infection	 in	causing	damage	 (Michel	et	al.,	2016).	This	
is prompting us to consider the value of anti-inflammatory or immu-
nomodulatory therapy in addition to standard antibiotic treatment. 
Therefore, immune-based male infertility should be considered in a 
broader context, beyond the presence of antisperm autoantibodies, 
as it is commonly defined.

In the human, spermatozoa migrate through the epididymis 
in an estimated period of 2–4 days (Jones & Dacheux, 2007). 
However, some spermatozoa may take a period of 12 days, and 

some other transit through the duct in only 1 day (Johnson & 
Varner, 1988; Rowley, Teshima, & Heller, 1970), depending on the 
ratio of epididymal sperm reserves and testicular sperm output. 
Therefore, there is a considerable heterogeneity of the age of 
spermatozoa present in the cauda epididymis reflecting the asyn-
chronous nature of sperm maturation (Jones & Dacheux, 2007). 
Upon sperm maturation, the spermatozoa are stored within the 
cauda epididymis in a quiescent state until ejaculation (Zhou et al., 
2018). Although the lumen of the cauda epididymis has the ca-
pacity to maintain spermatozoa viable and in a potentially fertilis-
ing condition at high sperm concentrations up to up to 7–8 weeks 
after	the	last	ejaculation	(Bedford,	1994),	a	period	of	3–4	days	is	
estimated to be optimum storage period for spermatozoa within 
the cauda. Due to a relative small storage capacity of its poorly 
differentiated cauda, a decline in semen quality is observed after 
10	days	of	abstinence	(Moore,	1998).

Besides	 the	well-known	 role	of	 the	epididymis	 in	 sperm	matu-
ration and preservation, an additional function has been suggested 
to provide a site for elimination of old or deteriorated spermatozoa 
(Cornwall, 2009). However, there is no sufficient evidence to sup-
port	this	function	(Robaire,	Hinton,	&	Orgebin-Crist,	2006).	Any	ab-
sence or depletion in the epididymal functions can be a significant 
factor in male infertility (Turner, 2008).

4  | EPIDIDYMAL ANOMALIES

The epididymis connects the efferent ducts to the vas deferens 
and is normally attached to the posterolateral surface of the tes-
tis through the cranial pole. The attachment of epididymis to the 
testis takes place medially through the epididymo-testicular con-
nective tissue and distally by the caudal connective tissue and the 
epididymal fat pad. As described, the epididymis is generally divided 
into four regions: initial segment, caput (head), corpus (body) and 
cauda	(tail).	Embryologically,	the	epididymis	develops	from	the	cra-
nial part of the mesonephric (Wolffian) duct under the influence of 
androgens	produced	by	the	differentiated	Leydig	cells.	At	birth,	the	
epididymis consists mainly of mesenchymal tissue. The epididymis 
then elongates and convolutes till puberty, to form a fully differ-
entiated, highly tortuous tubule lined by epithelial cells. Structural 
epididymal abnormalities, either acquired or congenital, lead to a 
disturbed epididymal microenvironment, which ultimately causes 
infertility	(Singh,	Hamada,	Bukavina,	&	Agarwal,	2012).	For	the	prac-
tising urologist, it is important to identify epididymal deformities so 
that adequate treatment can be instituted promptly.

Epididymal	 anomalies	 (Figure	 2)	 have	 been	 frequently	 associ-
ated with cryptorchidism (Favorito, Riberio Julio-Junior, & Sampaio, 
2017). However, some authors thought that this association may 
reflect	 the	 role	 of	 the	 epididymis	 in	 testicular	 descent.	 Bedford	
hypothesised that the regulation of normal testicular descent into 
the scrotum is primarily to preserve normal epididymal function 
(Bedford,	1978).	According	to	the	study	conducted	by	Hadziselimovic	
& Herzog, 1983, the gubernaculum inserts in the epididymis and not 
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in the testis and thus drives the epididymal descent (ruling the tes-
ticular descent indirectly).

Physical	deformities	of	the	epididymis	have	been	reported	in	the	
literature including epididymal cysts, epididymal fusional anomaly, 
elongated epididymis and epididymal agenesis. The most reported 
common anomaly is the epididymal cysts, with an incidental find-
ing	in	approximately	30%	of	asymptomatic	males.	Epididymal	cysts	
(Figure 2h) are small retention lesions of the epididymis, which con-
tain lymphatic fluid and lined with a single layer of epithelial cells. 
They are usually asymptomatic that are diagnosed incidentally on 
physical examination or ultrasonography. They may arise from either 
acquired or congenital basis, perhaps arias during maturation of the 
mesonephric	ductal	 system	 (Vohra	&	Morgentaler,	1997).	Patients	
with	 von	 Hippel–Lindau	 syndrome,	 early-onset	 renal	 cell	 carci-
noma, polycystic kidney disease, and offspring of females exposed 
to diethylstilbestrol exposure in utero have an increased risk of ep-
ididymal cysts (Singh et al., 2012). If spermatozoa appear in the ep-
ididymal	cysts,	they	are	called	spermatoceles	(Hirsh,	Dean,	Mohan,	
Shaker,	&	Bekir,	 1996).	 The	 association	 between	 epididymal	 cysts	
or spermatoceles and male infertility has not yet been established 
(Singh et al., 2012). Surgical excision of epididymal cyst or sper-
matocele is only recommended for abnormally enlarged or painful. 
Unfortunately, the surgery almost results with epididymal injury, in 
which a part of epididymal tube may be damaged as a result of such 
surgery procedures. This may result in either a segmental damage 
that will affect the maturation and storage efficiency without ob-
struct total luminal flow through the organ or complete epididymal 
obstruction	(Turner,	2008).	Epididymal	injury	of	the	epididymis	may	
also possibly occur in cases underwent microsurgical epididymal 
sperm	extraction	(MESA)	or	percutaneous	sperm	aspiration	(PESA).	
Therefore,	using	MESA	and	PESA	in	clinical	practice	should	be	re-
considered due to the possible induced injury or obstruction.

An elongated or extended epididymis (Figure 2f,g) is another 
common epididymal defect, in which a thin, loosely attached and 
long looping epididymis extends distally beyond the testis into the 
lower	 inguinal	 canal	 or	 upper	 scrotum	 (Fahmy,	 2015;	 Marshall	 &	
Shermeta, 1979; Rosenberg & Urca, 1972; Scorer & Farrington, 1972). 

In cryptorchidism, the anomaly appears most commonly, but with 
lesser degree of extended epididymis.

Epididymal	agenesis	(Figure	2a)	is	a	rare	congenital	anomaly,	char-
acterised by unilateral or bilateral absence of the epididymis totally 
or	 segmentally	 (McCullough,	 Marshall,	 Berry,	 &	 Detweiler,	 1984).	
This anomaly appears secondary to a congenital Wolffian duct de-
fect and is almost associated with unilateral or bilateral absence of 
the	vas	deferens	(Badr,	Motlagh,	&	Sepehran,	2015).	Epididymal	at-
rophy (Figure 2d) is another anomaly, characterised by a diminished 
diameter and weight of the epididymal ducts due to epithelial atro-
phy. The epididymis appears in a scalloped form due to intraductal 
folding of the epithelium. It is mainly caused secondary to decreased 
testicular testosterone and reflects a decreased testicular spermato-
genesis (Vidal & Whitney, 2014).

Epididymal	 fusional	 anomaly,	 in	 which	 the	 epididymis	 fails	 to	
attach with testis, is a very rare congenital malformation and its 
incidence is very often higher in patients with undescended testis 
(Lazarus	&	Marks,	1947).	It	has	also	been	reported	in	boys	who	have	
undergone hydrocele surgery (Han & Kang, 2002). It may occur at 
the junction of caput and the testis (Figure 2b), at the corpus, in 
the distal epididymis at the junction of the tail and vas deferens 
(Scorer	&	 Farrington,	 1972;	Marshall	 &	 Shermeta,	 1979;	 Scorer	&	
Lythgoe,	1961).

5  | EPIDIDYMAL TOXICIT Y

The functional diversity and the complexity of the epididymis ren-
der it, directly or indirectly, highly suitable to chemical disturbance. 
Some chemical compounds can induce epididymal toxicity leading to 
histological changes throughout the epididymal tube. Unfortunately, 
the influence of nutritional and environmental toxins on epididymal 
function	 is	 still	 overlooked	 (Chitra,	 Manogem,	 Vardhanan	 Shibu,	
Sebastian, & Jayakumar, 2011).

Since the epididymis is obligatory androgen-dependent in its 
function, testosterone and dihydrotestosterone regulate sperm 
maturation and transit through the epididymal tube (Dyson & 

F I G U R E  2   (a) Agenesis of all 
mesonephric derivatives. (b) Nonunion 
between the globus major of the 
epididymis and the testicle. (c) Agenesis 
at mid-epididymis. (d) Atresia at mid-
epididymis. (e) Agenesis or atresia at tail 
of	epididymis.	(f)	Extended	or	looped	
epididymis	and	vas	deferens.	(g)	Extended	
or looped epididymis and vas deferens: 
more extensive anomaly than represented 
in	(f).	(h)	Epididymal	cyst	of	globus	major	
of epididymis. Adapted from (Kroovand & 
Perlmutter,	1981)
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Orgebin-Crist, 1973). Therefore, functional disturbances in the an-
drogen balance in blood and rete testis fluid will negatively affect 
the epididymis, sperm maturation and fertility (Vidal &Whitney, 
2014). In general, continued exposure to any compound that causes 
testosterone deficiency indirectly results in decreased epididymal 
weight and apoptosis of the luminal epithelium. For example, xe-
nobiotics are toxic substances that act as endocrine disrupters that 
decrease testosterone synthesis and androgenic signalling, and con-
sequently alter epididymal epithelial cell function and sperm matu-
ration	(Marty,	Chapin,	Parks,	&	Thorsrud,	2003).	Androgen	receptor	
antagonists	cause	similar	changes	to	the	epididymis.	Moreover,	an-
drogen deprivation due to castration, hypophysectomy, implantation 
of testosterone–oestradiol implants and administration of a potent 
Leydig	 cell	 toxicant	 (EDS)	 could	 result	 in	 epithelial	 apoptosis	 and	
decrease in epithelial cell height and epididymal tubule diameters 
(Zhu et al., 2000). Furthermore, testosterone deficiency in the age-
ing male severely affects the histology of the epididymal epithelium 
(Serre & Robaire, 1998), resulting in changes in the DNA methylation 
pattern (epigenetic changes), altered sperm motility and retention 

of	cytoplasmic	droplets	(Geyer,	Kiefer,	Yang,	&	McCarrey,	2004).	All	
of these alterations persist until androgen levels recover (De Grava 
Kempinas & Klinefelter, 2014).

Epididymal	alterations	might	not	only	be	secondary	to	testicular	
disorders, but also direct pathologic effects may be another reason, 
Table 1. Some compounds, such as methyl chloride, alter directly 
the structure and function of the epididymis resulting in apoptosis 
and exfoliation of principal cells with increasing the epithelial height 
(Working,	Bus,	&	Hamm,	1985).

6  | SEMEN PAR AMETERS

Disruption of the epididymal environment or toxic effects on sper-
matozoa can also occur in the absence of any histological changes in 
the epididymis (e.g., alterations in the luminal pH affect sperm matu-
ration and storage). Semen analysis of motility, morphology, DNA 
fragmentation as well as leucocytes, immature germ cells and debris 
could reflect the epididymal performance.

TA B L E  1   Some cell-specific toxicants of the epididymis

Toxicant Description Effect

Xenobiotics Synthetic chemicals • decreased epididymal weight
• atrophy of luminal epithelium
• decreased tubular diameter
• alter epididymal epithelial cell function and sperm maturation

Finasteride ( Garcia 
et al., 2012)

( Inhibitors of 5-α reductase) • alterations in the proximal epididymal caput
• lower epithelial height and epididymal duct
• compromises sperm maturation
• affecting semen parameters and impairs fertility

Triptolide (Huynh et al., 2000) • interference with sperm maturation
• Cauda epididymal sperm content decreased by 84.8% and sperm motility 

was reduced to zero.
• cauda epididymal spermatozoa exhibited severe structural abnormalities.

Cyclophosphamide (Trasler & 
Robaire, 1988)

Anticancer drug • reduction in epididymis weight

Busulfan	(Fang	et	al.,	2017) Anticancer drug • Toxic to the morphological structure and function.
• Downregulated the epididymal expression of vimentin and zonula 

occludens-1 (ZO-1) at the mRNA and protein levels.

Methyl	chloride	(MeCI)	(	
Creasy, 2001)

Organic compound •	 Epithelia	l	necrosis	resulting	in	sperm	granulomas

Vincristine ( Sonawane, Azaz, 
Hemant,	&	Liji,	2019)

• Chemotherapy of cancer
• Reduces testosterone levels

• Changes in ion concentrations of cauda and caput of epididymis with 
changes in protein profile of the tissue

α-Chlorohydrin (high doses) ( 
Creasy, 2001)

Organic chemical compound  
• Inhibits fluid resorption and causes oedema of the caput resulting in 

sperm granulomas

Cadmium ( Adamkovicova 
et al., 2014)

Toxic, heavy metal • Reduction of epithelium.
• Increased epididymis weights
• Necrotic epithelial cells.
• Vasoconstriction
• Interstitial oedema together with mononuclear cell infiltration.

Benzo(a)pyrene	(	Ramesh	
et al., 2008)

Widespread environmental 
contaminant

• Decreased epididymal weight
• impaired epididymal function

Bisphenol	A	(BPA)	(Takahashi	
& Oishi, 2003)

endocrine disruptors • Decreased epididymal weight.
• Reduced epididymal sperm count.
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6.1 | Sperm concentration

Within the epididymis, the increase in the luminal sperm concen-
tration is caused by water reabsorption via osmotic shifts, driven 
by transepithelial movement of Na+, Cl− and HCO3

- (Da Silva, 
Piétrement,	 Brown,	 &	 Breton,	 2006).	 This	 consequence	 of	 such	
water reabsorption results in a spectacular increase in the luminal 
sperm concentration from 108 spermatozoa/ml	in	the	rete	testis	fluid	
to 109 in the cauda epididymis (Dacheux & Dacheux, 2013). The ina-
bility to reabsorb water causes dilution of caput spermatozoa, which 
in turn result in a decline in sperm count (Hess, 1998). Furthermore, 
oestrogen imbalance disturbs the reabsorption of luminal fluid in the 
head of the epididymis. This also causes spermatozoa to enter the 
epididymis diluted, rather than concentrated, resulting in declines in 
human sperm counts (Hess et al., 1997).

Moreover,	 the	 rate	 of	 sperm	 transit	 through	 the	 epididymal	
tube has an important influence on the concentration of sper-
matozoa and also effects the concentration of secreted or ab-
sorbed molecules important for sperm maturation (Gervasi & 
Visconti, 2017). Consequently, decreased sperm transit along 
epididymal tubule can directly reduce the final sperm concentra-
tion stored in the cauda. Thus, the final sperm concentration may 
reflect both cellular mechanisms and function of the epididymis 
(Turner, 2008).

6.2 | Sperm motility

Testicular spermatozoa are usually immotile and functionally imma-
ture. Under the effect of epididymal secretions, the motility gradu-
ally	increases	from	caput	to	cauda	(Sullivan	&	Mieusset,	2016),	with	
considerable species-specific differences between the acquisition 
of	motility	 (Dacheux	&	Paquignon,	1980).	 In	 the	human,	 sperma-
tozoa	leave	the	caput	with	sluggish	and	irregular	motion	(Mathieu	
et al., 1992). As spermatozoa are moving through the distal half 
of the corpus, qualitative changes in sperm motility, from only a 
faint twitch of the tail to a full vigour rapid and forward motion, 
are observed (Amann et al., 1993). Such motility is only analysed 
in vitro when epididymal spermatozoa have been diluted in a cul-
ture medium either with or without epididymal fluids (Abella, Da 
Costa, Guérin, & Dacheux, 2015). However, most of the cauda 
spermatozoa are only in the quiescent state in vivo (Dacheux & 
Dacheux, 2013).

In the human, about 20%–40% of ejaculated spermatozoa are 
immotile	 (Ola,	 Afnan,	 Papaioannou,	 Sharif,	 &	 Bjorndahl,	 2003).	
Similarly, about 30%–40% of cauda epididymis spermatozoa in mice 
are still immotile after incubation into human tubal fluid (HTF) me-
dium	 (Turner,	 2006).	 This	 may	 suggest	 that	 a	 large	 proportion	 of	
spermatozoa leaving the testicles are in fact defective. On the other 
hand, reduced motility may also reflect inadequate epididymal mat-
uration events. A long sperm storage period, observed in sexually 
inactive or older men, is also associated with reduced motility due to 
senescence of spermatozoa in the cauda epididymis (Turner, 2008). 

In	addition,	Correa-Perez,	Fernandez-Pelegrina,	Aslanis,	and	Zavos	
(2004) have suggested that an abnormal epididymal sperm storage 
capacity could result in complete absence of motility as well as re-
duced viability that is so called necrozoospermia.

6.3 | Sperm morphology

Under the influence of epididymal secretions, spermatozoa undergo 
morphological remodelling, in particular, formation of a condensed 
acrosome and reorientation of the sperm head and tail (Dun, Aitken, 
& Nixon, 2012).

The location and migration pattern of cytoplasmic droplet are a 
characteristic feature of sperm maturation (Cooper, 2011). During 
sperm transit through the epididymis, a cytoplasmic residue is lo-
cated at the anterior region of the mid-piece of spermatozoa as a 
cytoplasmic	droplet	(Hermo,	Pelletier,	Cyr,	&	Smith,	2010).	In	most	
mammalians, the migration of this cytoplasmic droplet along the 
sperm flagellum and finally its loss is observed during sperm trans-
port to the cauda epididymis. The cytoplasmic droplet is not just 
a residue as it has to play significant roles for the continued mat-
uration of epididymal spermatozoa. These include osmoadaptation 
by permitting water to enter or exit the cell (Chen et al., 2011) and 
providing energy for continued maturation (Yuan, Zheng, Zheng, & 
Yan, 2013). The presence of large amounts of cytoplasm around the 
mid-piece of ejaculated spermatozoa is considered a major abnor-
mality	(Rengan,	Agarwal,	van	der	Linde,	du	Plessis,	&	S.,	2012)	and	
reflects mainly a diminished sperm maturity (Gergely et al., 1999). In 
transgenic mice, the presence of a cytoplasmic droplet at the neck of 
ejaculated spermatozoa is associated with infertility, because these 
spermatozoa fail to maintain their volume upon osmotic challenge 
in the female genital tract (Cooper, Yeung, Wagenfeld, et al., 2004). 
Excessive	residual	cytoplasm	is	observed	in	spermatozoa	from	men	
with varicocele (Zini, Defreitas, Freeman, Hechter, & Jarvi, 2000), 
smokers	 (Mak	et	al.,	2000)	and	men	with	high	 levels	of	DNA	frag-
mentation (Fischer, Willis, & Zini, 2003). It may also indicate ab-
normal maturation because of defective spermiogenesis (Cooper, 
Yeung, Fetic, Sobhani, & Nieschlag, 2004).

A number of gradual structural changes towards normal shape of 
spermatozoa are observed during epididymal passage, such as acro-
somal reshaping, nuclear chromatin condensation, changes in some 
tail organelles, changes in the plasma membrane and fusion epi-
didymosomes (Dun et al., 2012; Toshimori, 2003). Thus, any sperm 
morphological defect may be correlated with inadequate epididymal 
functional	maturation	and	subsequent	storage	(Robaire	et	al.,	2006).

On the other hand, the decrease in the percentage of mor-
phologically abnormal spermatozoa in the epididymis as com-
pared	 to	 abnormalities	 of	 testicular	 origin	 (Axnér,	 Linde-Forsberg,	
&	 Einarsson,	 1999)	 is	 also	 thought	 to	 be	 due	 to	 the	 ability	 of	 the	
epididymis in recognition and elimination of a morphologically ab-
normal	spermatozoon	(Varesi,	Vernocchi,	Faustini,	&	Luvoni,	2013).	
Although there are different mechanisms such as phagocytosis, dis-
solution by ubiquitination and degradation via other proteins were 
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proposed to explore such a phenomenon, and there is no evidence 
to support the ability of the epididymis in removal of abnormal sper-
matozoa	(Robaire	et	al.,	2006).

In contrast, the presence of a high proportion of sperm anomalies 
may indicate a disturbance of epididymal physiology (Kathrins, 2017). 
In the mouse model, alterations in ion and fluid transporters within 
the epididymis result in significant changes in the luminal fluid com-
position. Furthermore, abnormal water reabsorption is associated 
with abnormal sperm morphology. As a result, morphologically ab-
normal spermatozoa are leaving the testis (Hess, 1998). For example, 
epididymal hypo-osmolality in mouse leads to a decreased rate of 
fluid transport and subsequent dilution of the downstream luminal 
fluid. This further results in the presence of two major morpholog-
ical defects: spontaneous acrosome reactions and severe flagellar 
coiling (Joseph, Shur, Ko, Chambon, & Hess, 2010). Thus, sperm mor-
phology could be a biophysical marker of sperm maturity (Gutiérrez-
Reinoso	&	García-Herreros,	2016).

6.4 | Oxidative stress and DNA fragmentation

During the period of transit through and storage in the epididymis, 
spermatozoa are at risk of attacks by reactive oxygen species (ROS) 
due to the extraordinary high amount of polyunsaturated fatty acids 
in their plasma membrane (Vernet, Aitken, & Drevet, 2004). If sper-
matozoa are exposed to excessive levels of ROS then their fertilis-
ing capacity and genetic integrity could be compromised directly or 
indirectly	through	many	different	mechanisms	(Elbashir	et	al.,	2018;	
Sakkas & Alvarez, 2010). However, microenvironment associated 
with mammalian spermatozoa as they transit the epididymis utilises 
powerful, sophisticated enzymatic and nonenzymatic strategies to 
control ROS generation and recycling. Some nonenzymatic mol-
ecules that present during epididymal transit possess intrinsic radi-
cal scavenging activity such as α-tocopherol, ascorbic acid, uric acid, 
glutathione	(Halliwell	&	Gutteridge,	1989),	pyruvate	(de	Lamirande	
& Gagnon, 1992), taurine, hypotaurine and albumin (Alvarez & 
Storey,	1983).	Moreover,	different	enzymes	are	present	within	the	
epididymis such as glutathione peroxidase, catalase, superoxide dis-
mutase and indoleamine dioxygenase that possess the ability to me-
tabolise hydroperoxides and protamine thiol oxidation, in addition to 
serving as an antioxidant protector (Vernet et al., 2004).

Disturbed epididymal maturation results in a large proportion of 
immature spermatozoa, which produce high levels of ROS (Sanocka 
& Kurpisz, 2004). The epithelial cells from the epididymis may also 
produce hydroxyl radical or nitric oxides that results in generation 
of ROS (Ollero et al., 2001). When generation of ROS exceeds recy-
cling and/or when there is failure of all the systems, eukaryotic cells 
have evolved to fight the inherent dangerous by-products of oxy-
gen consumption, this directly induces oxidative stress (OS) leading 
to one major threat for sperm cells is oxidative injury. Current ev-
idence has shown that spermatozoa as well as male infertility are 
impaired by OS. The effect of OS that is directly related to DNA 
damage to human spermatozoa could also be linked to a wide range 

of adverse clinical outcomes including compromised embryonic de-
velopment, increase incidence of miscarriage and morbidity in the 
offspring, including childhood cancer (Chabory et al., 2009; Salah 
et al., 2018).

Higher DNA fragmentation in the caudal epididymal and ejacu-
lated spermatozoa compared with testicular spermatozoa or sperma-
tozoa from the corpus and caput epididymis was previously reported 
(Ollero	et	al.,	2001).	Elevated	scrotal	temperature	or	adverse	envi-
ronmental factors can directly impair the cauda epididymis environ-
ment and thereby induce ROS-DNA damage through the activation 
of sperm endogenous caspases and endonucleases (Rubes, Selevan, 
Sram,	 Evenson,	&	Perreault,	 2007).	 In	 addition,	 long	 storage	 peri-
ods of densely packed spermatozoa in the cauda increase the ex-
posure period of spermatozoa to ROS and thereby increase the 
ROS-induced	DNA	damage	(Sabeti,	Pourmasumi,	Rahiminia,	Akyash,	
&	Talebi,	2016).	Hence,	the	epididymis	is	playing	a	significant	role	in	
restricting oxidative stress against spermatozoa through enzymatic 
and nonenzymatic defence mechanisms. In rats, γ-glutamyl trans-
peptidase present in the lumen of the proximal region of the epidid-
ymis regulates the levels of glutathione and taurine, which protect 
spermatozoa	against	ROS	 (Hinton,	Palladino,	Mattmueller,	Bard,	&	
Good, 1991). Thus, compromised epididymal integrity is associated 
with a reduced antioxidant activity and increase in sperm DNA frag-
mentation (Watanabe et al., 2009).

6.5 | Debris and germ cells

In normal adult rats, very few sloughed germ cells or cellular debris 
is present in the epididymal lumen. Germ cells or cellular debris is 
mainly produced from the testis, and their increased concentration 
in seminal fluid may be secondary to disturbed spermatogenesis (De 
Grava Kempinas & Klinefelter, 2014). However, structural alterations 
in the epididymal epithelium secondary to direct toxicity can cause 
sloughing of principal cells into the epididymal lumen (De Andrade, 
Oliva,	Klinefelter,	&	De	Grava	Kempinas,	2006).	In	old	men,	the	func-
tional integrity of the blood–epididymis barrier may be altered, re-
sulting in leaking of the debris of immature germ cells into the luminal 
fluid	(Levy	&	Robaire,	1999).	Thus,	epididymis-specific	proteins,	such	
as	CRISP,	RABP	or	clusterin,	may	provide	a	useful	diagnostic	tool	to	
distinguish the origin of the cell debris, either testicular disorder or 
epididymal toxicity (De Grava Kempinas & Klinefelter, 2014).

6.6 | Leucocytes

Leukocytospermia	is	the	most	common	cause	of	male	infertility	(Li	
&	Liu,	2006).	Some	studies	showed	that	the	presence	of	leucocytes	
in the semen is almost conjugated with decreased sperm motility, 
decreased number of normal sperm forms and impaired sperm func-
tion	 (Lackner,	 Agarwal,	Mahfouz,	 du	 Plessis,	 &	 Schatzl,	 2010).	 An	
elevated seminal leucocyte count may reflect a genital tract infec-
tion or inflammatory disorder. The distribution, origin and role of 
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leucocytes	in	semen	are	still	controversial	(Li	&	Liu,	2006);	however, 
it appears that most leucocytes may come from the epididymis as 
they are absent after vasectomy (Wolff, 1995). Genital tract infec-
tions are often preceded and accompanied by colonisation of the 
urethra or urine by pathogens, from which infection can affect the 
epididymis	through	the	vas	deferens	(Bar-Chama	&	Fisch,	1993).

7  | PROSPEC TIVE

Despite considerable progress made in recent years, there are still 
many unresolved questions concerning the molecular and biochemi-
cal mechanisms that regulate the maturation process of spermatozoa 
in the epididymis. Since the isolation of various different epididymal 
cell types has not yet succeeded, our knowledge of actual functions 
of	these	different	cells	is	still	unclear.	Little	is	known	about	the	dif-
ferent levels of expression of various proteins within the principal 
cells as well as about the aspects of the cauda epididymal fluid that 
keep spermatozoa dormant and functional for protracted time peri-
ods. In addition, the changes in composition of luminal fluids along 
the fertile and infertile human epididymis still have to be identified 
(Jones	&	Dacheux,	2007).	Many	reasons	for	epididymal	dysfunction	
will remain unknown until the critical markers of epididymal function 
and the underlying regulatory mechanisms of sperm maturation are 
identified.

Data obtained using laboratory species about epididymal func-
tions and structure should be extrapolated to humans with caution. 
Data from a long-term collaboration with local organ transplanta-
tion	programme	by	Sullivan,	Légaré,	Lamontagne-Proulx,	Breton,	
and Soulet (2019) showed that the human epididymis is peculiar 
when compared to laboratory animals. They found that there is 
no apparent initial segment and the proximal region is occupied 
by efferent ducts with a histology and cellular signature distinct 
from the adjacent caput epididymis segment. Furthermore, there 
is no segmentation in the first third portion of the human epidid-
ymis other than the efferent ducts and the caput segment. In ad-
dition, the distal part of the epididymis shows some histological 
variations, but appears quite similar with regard to gene expression 
profiling.

Well-designed studies on human epididymal functions are cur-
rently	 lacking.	Most	of	 the	studies	 that	provide	 information	about	
the human epididymis have been performed with laboratory ani-
mals such as rats and the results were extrapolated to the human 
and other mammals. The lack of human epididymal tissue suitable 
for such studies is a major hurdle to fully understand the molecular 
and biochemical pathways. Since the epididymis is a single, highly 
coiled tube, it is very difficult to be biopsied. On the other hand, 
surgical epididymectomy is an extremely rare condition, in particu-
lar in men at reproductive age. Therefore, most of available studies 
on human epididymis have been performed with tissues from older 
men who have undergone therapeutic orchiectomy for prostate can-
cer. Tissues may also be extirpated from elderly men with testicular 
cancer.

Another occasional source of human epididymal tissue is from 
diseased men. Such tissue, however, cannot be considered normal 
because of its exposure to different medical treatments that inter-
fere with the endocrine, paracrine and lumicrine signalling of the 
epididymis.	Moreover,	 there	are	 time	 limitations	with	 the	 retrieval	
of the tissue since the tissue degenerates after death as well ethical 
issues that have to be considered.

8  | CONCLUSION

Ions, organic solutes and proteins secreted under androgenic control 
vary from one segment to the other along the epididymal tube. Their 
contribution modifies the male gamete in a sequential maturation 
process, resulting in fully fertilisation-competent spermatozoa that 
are	 stored	 safely	 in	 the	 cauda	epididymis.	 Epididymal	 dysfunction	
as a result of physiological, physical and/or pathological disorders 
affects sperm quality and function and may subsequently affect fer-
tility. Analysis of the semen quality could therefore reveal important 
information about sperm maturation and storage functions of the 
epididymis. Although significant progress has been made over the 
past years to increase the understanding of post-testicular sperm 
maturation, there is still only limited knowledge regarding the exact 
regulatory mechanisms that allow spermatozoa to attain full func-
tional competence.
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