Spindle-shaped CeO₂/biochar carbon with oxygen-vacancy as an effective and highly durable electrocatalyst for oxygen reduction reaction

Narayanaamoorthy Bhuvanendran a, Sabarinathan Ravichandran a, Sabariswaran Kandasamy a, Weiqi Zhang a, Qian Xu a,*, Lindiwe Khotseng b, Thandavaranay Maiyalagan c, Huaneng Su a,*

a Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
b Department of Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
c Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamilnadu, India

HIGHLIGHTS

- Spindle-shaped CeO₂ on bio-char carbon synthesized by in-situ hydrothermal method.
- Naturally occurring Spirulina platensis microalgae used as the carbon source.
- N, P - doped carbon and O-vacancy of Ce³⁺ in CeO₂/BC700 promote the ORR kinetics.
- CeO₂/BC700 has good ORR activity and remarkable stability after 5000 cycles.

GRAPHICAL ABSTRACT

* Corresponding author.
** Corresponding author.
E-mail addresses: xuqian@ujs.edu.cn (Q. Xu), suhuaneng@gmail.com, suhuaneng@ujs.edu.cn (H. Su).
https://doi.org/10.1016/j.ijhydene.2020.10.115
0360-3199/© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

A rational design and development of electrocatalysts towards oxygen reduction reaction (ORR) could be a vital electrode process of sustainable energy conversion and storage technologies [1–3]. Although, the low temperature fuel cells (LTFCs) turned as an emerging clean energy conversion device, the slow kinetics and complex reaction mechanism of ORR restricting the overall performance [4–6]. The Pt and Pt-based catalysts are widely recognized and employed as the prime choice of electrocatalyst for ORR [7,8]. The high cost, less abundance and poor stability of Pt based electrocatalysts are critically impacting the commercial viability. Hence, significant attentions were paid to find the suitable electrocatalysts with improved ORR activity and stability for LTFCs [9–11]. However, it remains a critical task for researchers to explore the active catalysts with cost-effective measures for large-scale applications.

Moreover, the non-noble metal catalysts such as metal oxides, perovskites, spinel oxides, metal oxy-hydroxides and metal organic frameworks with various carbon supports have been extensively studied for ORR in alkaline medium [10,12,13]. Notably, the rare-earth metal oxide of ceria (cerium oxide, CeO₂) was found as a potential choice of electrocatalyst featuring excellent chemical stability, oxygen storage ability, facile electron transfer (Ce⁴⁺/Ce³⁺ redox couple) and relatively low-cost [14,15]. It has been widely employed as the effective catalyst and co-catalyst/promoter with another noble and non-noble metals in electrocatalysis for various energy conversion and storage applications [16–18]. Interestingly, the Ce⁴⁺/Ce³⁺ redox couple feature as an efficient oxygen buffer during the electrochemical oxidation/reduction reactions, where it can able to release and adsorb/store the oxygen depending on the nature of the reaction. This classical property of ceria could be a crucial part of the enriched oxygen vacancy which induces the improved mechanical and electrochemical stability [19,20].

Recent literatures demonstrate that, the unique redox property of ceria makes it an active co-catalyst with Pt, such as Pt–CeO₂@CN [21], Pt–CeO₂@BC [22], Pt–CeO₂/C [23], Pt–CeO₂/rGO [21] and unsupported Pt–CeO₂ [24] for ORR in both acid and alkaline electrolytes. Some of the literatures have reported the non-platinum catalysts with CeO₂, such as Ag decorated CeO₂ [25], PdCo-Ceria [26], Ceria@Co–N–PCN [27], CeO₂/Co₃O₄@NC [28], Co–CeO₂–N–C [29], Co₃O₄–CeO₂/KB [30], CeO₂/CoPO₄@N, P co-doped carbon [31], CeO₂/Co@N-doped carbon [32], Ce/Fe–NCNW [33] and Mn–CeO₂/rGO [34] showing decent ORR activity owing to the synergistic effect between CeO₂ and other metal catalysts. However, few investigations were reported on the CeO₂ as single active catalyst for ORR in alkaline medium. Sun et al. studied the electrocatalytic performance of CeO₂/rGO nanocomposite prepared through mild ultrasonic-reflux method for oxygen reduction and oxygen evolution reactions. They conclude that, the strong coupling effect between rGO and CeO₂ contributed the improved oxygen bifunctional performance in KOH medium [35]. The effect of synthesis approach and the composition of CeO₂ with carbon have been investigated for electrogeneration of hydrogen peroxide (H₂O₂), reported by Assumpcao et al. They found that the 4% CeO₂ as the optimal loading on a carbon with 88% of H₂O₂ production and follows nearly 2-electron reduction pathway [36].

Soren et al. [15] prepared the nano ceria supported NₐGO catalyst by a single step solvothermal method. They found the kinetic current density (jₖ) of 9.5 mA/cm² for CeO₂/NₐGO, which implies the improved methanol tolerance and ORR activity owing to the effective interaction of catalytic materials. In another work, they reported CeO₂ embedded on graphitized-Carbon nitride (g-C₃N₄) prepared by microwave-assisted solvothermal approach. The resulted CeO₂/g-C₃N₄ showed considerable ORR activity with the average number of electrons transferred as 3.2, due to the key role of pyridinic nitrogen from g-C₃N₄ acting as a promoter of ORR [37]. Peng et al. [38] reported the in-situ growth of CeO₂ on rGO through the controlled heat treatment under inert atmosphere. The
intrinsic ORR activity of CeO$_2$-rGO750 was found to be superior to standard Pt/C catalysts with a higher j_k value (20.31 mA cm$^{-2}$). It is well known that the existence of heteroatoms (N, P, S and B) in carbon materials have a modified electronic and chemical properties than pure carbon materials [14,39]. Hence, the heteroatoms can alter the electronic distribution of the carbon frameworks which effectively increasing the π-electron transfer to balance the electroneutrality of carbon atoms. In addition, the synergistic effect between the carbon and heteroatoms can be more favorable for oxygen adsorption and reduction (oxygen bond breaking), which concurrently promote the electrocatalytic performance of the materials for improved ORR [14,40].

These literatures clearly demonstrated that, the carbon supported CeO$_2$ (CeO$_2$/C) nanostructures could be employed as an efficient ORR catalyst with induced interaction (strong coupling) and synergistic effect between the catalyst components. But, the stability factor of the catalysts has not been well-studied and that should be addressed without compromising the ORR catalytic activity. Based on the above literatures, we are inspired to prepare the CeO$_2$/C catalyst with strong coupling effect, synergistic effect and extend durability through specific choice of carbon source and a simple synthesis method.

Herein, we report the in-situ preparation method for the spindle-shaped CeO$_2$ nanostructures supported on biochar derived carbon (BC). A ‘Spirulina platensis’ microalgae (SPM), which can be found in both fresh water and marine [41], was used as the carbon source. It is a potential bio-energy material which contains self-used as the carbon source. It is a potential bio-energy material which can be found in both fresh water and marine [41], was increasing the distribution of the carbon frameworks which effectively supported CeO$_2$ (CeO$_2$/C) nanostructures could be employed through specific choice of carbon source and a simple synthesis method.

The CeO$_2$/BC catalyst was prepared by one-pot hydrothermal method as follows (Fig. 1). Nine grams of cerium (III) nitrate hexahydrate (Ce(NO$_3$)$_3$·6H$_2$O, Sigma Aldrich), 7.2 g of urea (CO(NH$_2$)$_2$, Sigma Aldrich) and 1.2 g of polyvinylpyrrolidone-40000 (PVP40, Sigma Aldrich) mixed together in 150 mL of Millipore water through ultra-sonication. In this transparent mixture, 8 g of pre-heated SPM was dispersed and stirred for 1 h for homogenous condition. Then, the above mixture was carefully transferred into the hydrothermal reactor (250 mL, autoclave reactor) and heated at 160 °C for 12 h in hot air-oven. The gray-black slurry was obtained through high-speed centrifugation (10,000 rpm) and washed thoroughly with water/ethanol mixture to eliminate the impurities. The moisture content of CeO$_2$/BC was removed by heating at 90 °C for 6 h and used for pyrolysis treatment. The CeO$_2$/BC catalyst was further activated by pyrolysis approach at different temperatures (700, 800 and 900 °C) using tubular furnace for 2 h at the rate of 5 °C min$^{-1}$ under N$_2$ gas flow and the catalysts are named after the respective pyrolysis temperature. For comparison, the standard carbon supported platinum nanoparticles (20% Pt/C) was prepared thru a simple chemical reduction approach with formaldehyde at elevated temperature (120 °C for 6 h). The average Pt nanoparticle size was found between 2 and 3 nm, reported in our previous article [42].

Characterization techniques

The structural features of the catalytic materials were studied using field-emission scanning electron microscopy (FESEM, JSM-7800F) and high-resolution transmission electron microscopy (TEM, JEM-2100, JEOL) techniques. The porosity and specific surface area were found by Brunauer-Emmett-teller (BET, Tristar II 3020) analysis. The nature of carbon and its surface defects were analyzed by using Raman spectra (DXR, ThermoFisher). The elemental oxidation state and composition were estimated by X-ray photoelectron spectroscopy (XPS, ESCA LAB 250Xi) and the bulk composition was obtained from the energy dispersive X-ray spectroscopy (EDX-mapping) technique. The crystallographic properties were examined by using powder X-ray diffractometer (XRD-6100) with the $\lambda = 1.54$ A at 30 kV. The cyclic voltammetry (CV) and polarization (linear sweep voltammetry, LSV) curves were recorded using the electrochemical workstation (CHI 760E) coupled three-electrode system equipped with a working electrode of rotating ring-disc electrode (RRDE, Pt (0.1866 cm2)-GC (0.2475 cm2)). The Ag/AgCl and a thin Pt wire or a graphite rod were employed as the reference and counter electrode respectively. For the preparation of catalyst ink, 5 mg of catalyst in 1 mL of Ethanol and 20 μL Nafion (5 wt % alcohol solution) were mixed under
ultra-sonication for 10 min. Exactly, 10 \mu L of fresh catalyst ink was drop-casted over the working electrode (GC surface) and dried under ambient conditions. The final catalyst loading was about 80 \mu g cm^{-2} over the electrode.

To probe the ORR electrocatalytic activity of the catalysts, the CV and LSV profiles were obtained in 0.1 M KOH under high pure N2 and O2 atmosphere. The hydrodynamic LSV executed between 400 and 2400 rpm at 0.01 V s^{-1}. Here, the potential was reported against reversible hydrogen electrode (RHE) and all the electrochemical studies carried out at 25 \degree C. During RRDE-LSV studies, the ring potential was fixed at 1.2 V vs. RHE. The stability test was performed through the potential cycling (PC) between 0.6 and 1.1 V vs. RHE at 0.1 V s^{-1} under static condition. At regular intervals, LSV curve was recorded at 1600 rpm up to a maximum of 5000 PCs.

Results and discussion

The crystalline phases of CeO2/BC catalysts were examined by XRD patterns, as presented in Fig. 2a. All the three CeO2/BC (700, 800 and 900) catalysts show distinct diffraction peaks located at nearly 28.4°, 32.9°, 47.4°, 56.2°, 59.0°, 69.3°, 76.6°, 78.9° and 88.3° corresponds to (111), (200), (311), (222), (400), (331), (420) and (422) facets respectively [43]. These cubic crystalline phases are clearly indicating the fluorite lattice structure of CeO2, which is a good match with the reported literatures and JCPDS data file no. 43-1002 [43-45]. The sharp and well intense diffraction peaks with no other phases suggest a good crystalline behavior and high purity of the CeO2 nanostructures.

The predominant (111) diffraction peak is considered as the most stable crystalline facet of CeO2 [46]. The d-spacing values were calculated using Eq. (1), about to be 0.3138 nm, 0.3133 nm and 0.3128 nm for CeO2/BC700, CeO2/BC800 and CeO2/BC900 respectively. Moreover, the surface defects and oxygen vacancies are highly relevant to the crystalline phase and dominating the catalytic behavior. The lattice parameters (a) determined by Eq. (2), could be a significant measure to probe the oxygen vacancy [47,48].

\begin{align}
d &= \frac{n \lambda}{2 \sin \theta} \\
a &= d_{hkl} \left(\sqrt{h^2 + k^2 + l^2}\right)
\end{align}

Here, n is an integer (n = 1), \lambda is the wavelength (1.53 A), \theta is the diffraction angle, hkl are the miller indices. The order of ‘a’ found as 5.4351 A (CeO2/BC700) > 5.4265 A (CeO2/BC800) > 5.4178 A (CeO2/BC700). Thus, the higher lattice parameter value for CeO2/BC700 indicates the lattice expansion due to high concentration of Ce^{3+} surface defects [49]. Whereas, the XRD pattern for BC was observed with the broad peak around 23°–26° and 43.1° that assigned to (002) and (100) facets, indicating the graphite structure of carbon support [50,51]. These peaks were not noticeable in all the three CeO2/BC catalysts due to the high intensity CeO2 diffraction planes.

Fig. 2b shows the N2-adsorption/desorption isotherms for BC and all other three CeO2/BC (700, 800 and 900) catalysts. These profiles are observed as a typical type-IV characteristic isotherms elucidating the mesoporous structure of the materials. The higher specific surface area obtained from BET was about 135.88 m^2 g^{-1} for CeO2/BC700 compared to CeO2/BC800 (115.44 m^2 g^{-1}), CeO2/BC900 (74.13 m^2 g^{-1}) and BC (98.14 m^2 g^{-1}). The higher specific surface area and mesoporous structure of CeO2/BC700 could contribute to the improved ORR performance by having more active sites with efficient mass transport of oxygen species [14]. The pore size distribution was determined from the respective desorption isotherms by BJH and given in Fig. S1. This size range clearly indicates that the mesoporosity of the BC supported CeO2 catalysts, which has minimal impact over the pore size distribution. The mean pore diameter of BC was about 3.1 nm and for CeO2/BC700, 800 and 900 catalysts were between 3.7 and 3.8 nm. Raman spectra was performed to determine the graphitic (G) and defective (D) characteristics of carbon support as shown in Fig. 2c. In addition to that, the concentration of oxygen vacancies in CeO2/BC was calculated and
considered as the catalytic activity descriptor as mentioned in the previously reported literatures [52–54].

Both BC and CeO₂/BC (700, 800 and 900) catalysts show distinct peaks at ~1340 and 1582 cm⁻¹ assigned to ‘D’ and ‘G’ carbon bands. Whereas, the ratio of peak intensity (I_D/I_G) was found as 0.84, 1.1, 1.0 and 0.84 for BC, CeO₂/BC700, CeO₂/BC800 and CeO₂/BC900 respectively. The amount of defective sites found higher for CeO₂/BC700 clearly indicates that the carbon support has disordered graphite structure [55]. This phenomenon was well in agreement with the XRD results. A sharp and intense peak was observed at around 455 cm⁻¹ representing to the F₂g level of CeO₂ fluorite phase in all the three CeO₂/BC catalysts. Whereas, the less intense peak observed at ~596 cm⁻¹ for CeO₂/BC700 (highlighted with a green box in Fig. 2c) is associated with vacant oxygen sites, which was well correlated with XPS results for the higher surface oxygen vacancies [49] compared to other catalysts as the latter showed no similar peaks.

The surface chemical state and elemental composition was studied using XPS analysis and the survey spectra (Fig. S2a) of CeO₂/BC700 catalyst depicts the series of peaks corresponding to Ce 3d, N 1s, C 1s, P 2p and O 1s elements. The elemental composition of CeO₂/BC700 catalyst was about (atomic weight %) 14.42% Ce, 2.04% N, 17.8% O, 0.23% P and 65.51% C. The deconvoluted Ce 3d spectra was presented in Fig. 3a with two peak series of 3d₃/₂ and 3d₅/₂ representing both Ce⁴⁺ and Ce⁵⁺ oxidation states. The spin-orbit splitting peaks were located at the binding energies of 898.3 eV, 900.9 eV, 907.4 eV and 916.8 eV belongs to 3d₃/₂, and the peaks at 882.4 eV and 888.7 eV for 3d₅/₂ attributes to Ce⁴⁺ oxidation state [35]. Whereas, the weak satellite peaks were observed at 885.2 eV and 903.7 eV corresponding to Ce⁵⁺ oxidation state confirming the redox behavior of CeO₂ that could facilitate the increase of oxygen concentration on the catalyst surface [14,54]. Hence, the Ce³⁺ content in CeO₂/BC700 catalyst may contribute to generate the oxygen vacancy and increase the adsorption/storage capability on the catalyst surface. The intrinsic oxygen vacancy is more favorable for improved oxygen mass transport and determine the enhanced electrocatalytic performance towards ORR [14,19,56].

Fig. 2 – (a) Powder XRD patterns, (b) Nitrogen adsorption/desorption isotherms and (c) Raman spectra for BC, CeO₂/BC700, CeO₂/BC800 and CeO₂/BC900 catalysts.
The XPS spectra of N 1s (Fig. 3b) were deconvoluted into four characteristic peaks of nitrogen assigned to pyridinic N (398.1 eV), pyrrolic N (399.1 eV), graphitic N (399.9 eV) and oxidized N (400.9 eV), which are believed to play significant roles on ORR activity [3,57]. Hence, the graphitic N (39%) and pyridinic N (22.7%) has the major proportion than pyrrolic N (16.7%) and oxidized N (21.6%) species, which may contribute to the good ORR catalytic performance of CeO2/BC700 [14,58]. Fig. 3c shows the C 1s spectra fitted into two distinct peaks at 283.9 eV and 284.5 eV associated with the sp3 and sp2 hybridized carbon (C–C) and (C≡C) respectively. An undeconvoluted satellite peak (denoted by *) appeared at ~285.9 eV could be attributed to the C–N, implying the possible delocalization of π-electrons between nitrogen and carbon atoms [14,59]. The peak fittings for O 1s spectra (Fig. 3d) show two distinct forms of oxygen species designated as the doublet of lattice oxygen (Ol) at 529.2 eV for Ce4+ and 529.6 eV for Ce3+ with the vacant oxygen (Ov) at 531.8 eV. This phenomenon was in well agreement with Ce3+ content in CeO2/BC700, implying the increased oxygen vacancy at the catalyst surface may account for the enhancement of ORR performance [60,61]. Whereas, the P 2p spectra (Fig. S2b) shows an undistinguished but a considerable peak observed at around 132.9 eV corresponding to P–C bonding [62], which could be the substantial evidence of phosphorous interaction at the carbon skeleton.

The spindle-like morphology of CeO2 was clearly observed from the FESEM images provided in Fig. S3 for all the three CeO2/BC (700, 800 and 900 °C) catalysts. The length of the CeO2 spindle was about ~7–9 μm and the diameter found between 700 nm and 1 μm. Moreover, the spindle shape of CeO2 changed into irregular morphology for the catalysts at higher pyrolysis temperatures of 800 and 900 °C (Figs. S3a–c). Fig. 4a–f shows the FESEM elemental mapping for each element (inset of table in Fig. 4g) present in the catalytic material and confirm the existence of self-doped N, P elements with uniform distribution throughout the sample. Whereas, the elemental composition of CeO2/BC700 catalyst was evaluated by using EDX analysis and it showed similar values for all elements in atomic weight % as obtained from the XPS analysis.

Fig. 5a and b shows the TEM images of BC with porous morphology and no evidence for the crystalline nature of the carbon was observed from selected-area electron diffraction.
This phenomenon was well consistent with the Raman results of BC. For CeO$_2$/BC700, the TEM image represents the well-defined structure of spindle-shaped CeO$_2$ with sharp edges and distinct boundaries with carbon layers for as given in Fig. 5c. However, the shape of CeO$_2$ was found deformed at the edges for CeO$_2$/BC800 (Fig. 5e) and CeO$_2$/BC900 (Fig. 5g), which might be resulted from the higher pyrolysis temperature. From the HRTEM images (Fig. 5d, f and 5h), the interplanar distance (d-spacing) of crystalline fringes about 0.313 nm corresponding to fluorite structure of CeO$_2$ with the growth of (111) crystalline orientation. The SAED pattern for CeO$_2$/BC700 (inset of Fig. 5d) presents ordered orientation with (111) facet as the predominant crystalline plane. The high temperature pyrolysis catalysts (CeO$_2$/BC800, inset of Fig. 5f and CeO$_2$/BC900, inset of Fig. 5h) show the disordered arrangement of crystalline orientation, which further confirms the effect of pyrolysis temperatures.

The ORR electrocatalytic performance of BC and CeO$_2$/BC (700, 800 and 900 °C) catalysts was studied in KOH medium at 25 °C. Fig. 6a depicts the CV profiles recorded in both N$_2$ and O$_2$ purged at 0.1 V s$^{-1}$ for all the catalytic materials. Among the
catalytic materials, CeO$_2$/BC700 showed prominent redox peaks between 0.0 and 0.5 V vs. RHE under N$_2$ atmosphere, which might be due to the formation of surface oxygen functionalities and no such distinct behavior was observed for other catalysts, including BC. This could be due to the surface functional defects may induce the surface oxygen defects (vacancy) on the electrode materials, which is more favorable for the improved ORR kinetics as reported in many literatures [63]. At the O$_2$ saturated conditions, a well pronounced oxide reduction peak was observed and that could be the sign of catalytic ability of all the catalysts for ORR [47]. The onset potential (E_{on}) from the respective CV showed an order of BC
CeO$_2$/BC900 (0.76 V), CeO$_2$/BC800 (0.77 V) and CeO$_2$/BC700 (0.79 V), this could be the significant indication for the improved ORR performance on CeO$_2$/BC700 catalyst. In order to calculate the electrochemical active surface area (ECSA) of the catalysts, the specific capacitance was determined from the respective CV profiles by adapting the following Eq. (3) [64].

$$A_{ECSA} = \frac{\text{specific capacitance}}{40 \, \mu F/cm^2 \text{ per cm}^2_{ECSA}}$$

where, the specific capacitance for a flat surface of the electrode found between 20 and 60 μF cm$^{-2}$, we have taken a moderate value of 40 μF cm$^{-2}$ for the ECSA calculation. Hence, the ECSA values are found as 0.0274, 0.0210, 0.0089 and 0.0053 cm2 for CeO$_2$/BC700, CeO$_2$/BC800, CeO$_2$/BC900 and BC catalysts. This clearly indicates that the CeO$_2$/BC700 possess better active surface compared to other catalysts.

Fig. 6b compares, the ORR polarization curves (RRDE-LSV) of BC, CeO$_2$/BC700, CeO$_2$/BC800 and CeO$_2$/BC900 catalysts with Pt/C as reference catalyst at O$_2$ saturated 0.1 M KOH at 0.01 V s$^{-1}$ under hydrodynamic conditions. The earlier onset potential (E_{on}, 0.79 V), half-wave potential ($E_{1/2}$, 0.60 V) and higher disc current density (j, 4.4 mA cm$^{-2}$ at 0.1 V) of CeO$_2$/BC700 catalyst indicates greater ORR activity than other catalysts. Moreover, the Pt/C shows ~160 mV more positive E_{on} value than that of CeO$_2$/BC700, but their ORR limiting current densities were similar (4.8 vs. 4.4 mA cm$^{-2}$) with each other. Amongst, the CeO$_2$/BC700 showed lowest ring current density and the number of electrons transferred (n) during ORR was about 3.1–3.7 at the potential range 0.1–0.6 V.

For BC, CeO$_2$/BC800 and CeO$_2$/BC900 catalysts, the 'n' values were found between 1.5 and 3.0, which was expected to follow 2-electron transfer pathway for ORR. This result clearly suggests (inset of Fig. 6b) that the ORR on CeO$_2$/BC700 follows nearly the 4-electron transfer pathway as processed on Pt/C ($n = 3.9–4.0$). In addition to this, the percentage of HO$_2$ was evaluated based on the ring (I_R) and disc (I_D) current values at 0.1–0.6 V (Fig. S4) using the following Eq. (4) [37],

$$\% \text{HO}_2 = \frac{200 \left(\frac{I_R}{I_D} \right)}{I_D + \left(\frac{I_R}{I_D} \right)}$$

where, N is the collection efficiency of the RRDE (N = 38%, as mentioned by the manufacturer). The %HO$_2$ increases in the order of CeO$_2$/BC700 (11.7%) < CeO$_2$/BC800 (43.1%) < CeO$_2$/BC900 (48.6%) < BC (70.8%) at 0.6 V, which has a good agreement with the n values and compared to other carbon supported CeO$_2$ based catalysts from literature reports [34,37].

Furthermore, the kinetics of ORR were determined by using the Koutecky-Levich (K-L) plot ($I = \frac{1}{n} + \frac{1}{j}$) for the respective catalysts and presented in Fig. 7a–e. From the K-L slope, the 'n' values are estimated using the K-L Eqs. (5), (6) & (7) as rearranged below [3,65,66].
Fig. 7 – (a–e) K-L plots at different potentials and (f) Tafel plots for BC, CeO₂/BC700, CeO₂/BC800 and CeO₂/BC900 catalysts compared with Pt/C.

\[
\frac{j}{j_k} = \frac{1}{1 + \frac{B}{B_0^{0.5}}}
\]

\[
B = 0.2nF(D_{O_2})^{2/3} \nu^{-1/6}C_{O_2}
\]

\[
n = \frac{B}{0.2F(D_{O_2})^{2/3} \nu^{-1/6}C_{O_2}}
\]

Here, \(j\) is the disc current density (mA cm\(^{-2}\)) at 0.1 V, \(j_k\) is the kinetic current density (mA cm\(^{-2}\)), \(B\) is the K-L slope value, \(\omega\) is the electrode rotation rate (rpm), \(F\) is Faraday’s constant (96,500 C mol\(^{-1}\)), \(C_{O_2}\) is the concentration of oxygen (1.2 × 10\(^{-3}\) mol/L), \(D_{O_2}\) is the oxygen diffusion coefficient (1.9 × 10\(^{-5}\) cm\(^2\) s\(^{-1}\)) and \(\nu\) is the kinematic viscosity (1 × 10\(^{-6}\) m\(^2\) s\(^{-1}\)) [37].

The K-L plots are found nearly parallel and linear at 0.1–0.6 V for both BC and CeO₂/BC (700, 800 and 900 °C). The calculated ‘n’ values are of ~3.3–3.7 for CeO₂/BC700, comparable to Pt/C (3.9–4.0) and better than CeO₂/BC800 (2.0–3.1), CeO₂/BC900 (2.0–3.0) and BC (1.5–2.1). This phenomenon clearly suggests that the ORR on CeO₂/BC700 follows near 4-electron reduction pathway with first-order reaction kinetics and the first electron transfer step considered as the rate
determining step. This was well consistent with the n values obtained from RRDE results. This could be due to the changes in surface adsorption phenomenon over the slight structural differences at higher pyrolysis temperature of the catalysts. Particularly, the prime key indicators of E_{on}, $E_{1/2}$, and j (at 0.4 V) values of CeO$_2$/BC700, 800 and 900 catalysts were compared with the reported CeO$_2$ based catalysts from recent literatures and summarized in Table S1. Additionally, the j_k values are calculated to assess the electrocatalytic activity for ORR by the following Eq. (8) [67],

$$j_k = \frac{j \times j_p}{j - j_p}$$

where, j_k is the current density at 0.7 V vs. RHE and j is the disc current density. The CeO$_2$/BC700 exhibits superior performance with the highest j_k (at 0.7 V) value of 3.4 mA cm$^{-2}$ compared to CeO$_2$/BC800 (2.5 mA cm$^{-2}$), CeO$_2$/BC900 (1.3 mA cm$^{-2}$) and BC (1.03 mA cm$^{-2}$) and better than the reported catalysts such as CeO$_2$/NrGO (7.2 mA cm$^{-2}$) and CeO$_2$/

Fig. 8 – ADT-LSV profiles for (a) CeO$_2$/BC700, (b) CeO$_2$/BC800, (c) CeO$_2$/BC900 and (d) Pt/C in O$_2$ saturated 0.1 M KOH at 0.01 V s$^{-1}$ with 1600 rpm; bar chart of (e) shift in $E_{1/2}$ and (f) ORR kinetic current density at 0.7 V vs. RHE before and after 5000 PCs.
rGO (3.2 mA cm⁻²) at −0.7 V vs. Ag/AgCl [15], BC-Ce-2 (0.92 mA cm⁻²) and Pt/C (1.1 mA cm⁻²) at E₁/₂ value [47], from recent literatures. The Tafel plots given in Fig. 7f shows that the CeO₂/BC700 holds the Tafel slope value of 96 mV dec⁻¹ found comparatively lower than Pt/C (120 mV dec⁻¹) and equal or slightly higher than CeO₂/BC800 (96 mV/dec), CeO₂/BC900 (76 mV/dec) and BC (71 mV dec⁻¹) catalysts. According to the Langmuir adsorption isotherm, the low coverage of active catalyst sites at higher overpotential region indicates that the ORR follows first electron transfer as the rate determining step [25]. Based on the ORR kinetic parameters, the CeO₂/BC700 exhibiting improved activity, over other catalysts might be due to the substantial features on its structural morphology and the optimal pyrolysis conditions.

The long-term stability of the catalysts was assessed through potential cycling between 0.6 and 1.1 V vs. RHE at a scan rate of 0.1 V s⁻¹ under O₂ atmosphere. Fig. 8a–d shows the LSV curves recorded for CeO₂/BC (700, 800 and 900 °C) and Pt/C catalysts before and after 5000 potential cycles (PCs). After 5000 PCs, there was no significant change in ORR polarization curves for CeO₂/BC700, which resulted no change in key indicators of Eon, E₁/₂ and jk values. Whereas, the order of stability was determined as a function of negative shift of E₁/₂ and the percentage of jk loss was found as Pt/C (40 mV vs. 11%) > CeO₂/BC800 (50 mV vs. 15%) > CeO₂/BC900 (60 mV vs. 18%). In addition to this, the morphological change of CeO₂/BC700 catalyst over the potential cycling (after 5000 cycles) was studied by TEM images and presented in Fig. 5S. From the respective TEM images, the spindle-shaped morphology of CeO₂ was retained with slightly wrinkled surface probably due to the continuous potential cycling, which resulted a negligible difference in ORR performance.

The bar chart of Fig. 8e and f shown the negative shift of E₁/₂ and percentage of ORR kinetic current density (jk) at 0.7 V vs. RHE for all the catalysts after ADT test. This result reveals that the CeO₂/BC700 (jk: no loss & E₁/₂: no shift) has extended stability over 5000 PCs compared to CeO₂/BC800 (jk: 40% loss & E₁/₂: -60 mV shift) and CeO₂/BC900 (jk: 23% loss & E₁/₂: -80 mV shift) catalysts, including standard Pt/C (jk: 28% loss & E₁/₂: -40 mV shift). Moreover, the stability of CeO₂/BC700 much better than the reported CeO₂ based ORR catalysts such as Co-CeO₂/N-CNR (-28 mV E₁/₂ shift and -5% loss of j after 5000 PCs) [19], Ce–HPCN (-3 mV E₁/₂ shift and no loss of j after 1000 PCs) [27], 20 wt % GDC-PBC (-5 mV E₁/₂ shift and -4% loss of j after 200 PCs) [68], CoO₂@MnO₂ (-29 mV E₁/₂ shift and -6% loss of j after 5000 PCs) [20], Co₃O₄–CeO₂/KB (-16 mV E₁/₂ shift and 10% loss of j after 2000 PCs) [30] in KOH medium.

From the physicochemical characterization results and the calculated ORR kinetic parameters, the CeO₂/BC700 catalyst showed a superior ORR activity and stability compared to all other catalysts. This improved electrocatalytic performance might be due to the following factors: (i) the high crystallinity and stability of (111) facet and the apparent percentage of Ce³⁺ can acquire more oxygen vacancy for increased oxygen mass transport [14,50,61,69], which were clearly demonstrated from XRD, XPS and Raman spectra; (ii) the coupling effect [15] between CeO₂ and carbon support might be induced through the in-situ synthesis approach, evidenced by XPS results; (iii) the nature of defect-rich carbon with a high specific surface area can afford more active sites as confirmed by Raman spectra and BET results [14,70]; (iv) the higher proportion of graphitic N and pyridinic N are the crucial factors for the improved conductivity [14,66]; (v) the facile electron transfer through delocalized π-electrons between N and carbon skeleton was observed from XPS studies [69]; (vi) the spindle-shape of CeO₂ with sharp edges and (111) orientation as predominant plane was noticed from SEM and TEM images; and (vii) the ECSA value clearly depicts the accessibility of more active sites among the other catalysts, which are considered as the key features for improved ORR activity and stability of CeO₂/BC700. In a nutshell, the structural morphology, crystalline features, surface composition with enriched oxygen vacancy, self-doped N & P and the electrochemical kinetic parameters such as onset potential, half-wave potential, kinetic current density, n value, HO₂ % with no loss after 5000 PCs are strongly proposed that the CeO₂/BC700 possesses an excellent capability and could be a possible candidate for ORR in KOH medium.

Conclusions

A typical choice of carbon support, Spirulina platensis micro-algae from natural sources and simplified synthesis procedure through hydrothermal treatment was adopted to obtain spindle-shaped CeO₂ on carbon as ORR catalyst. CeO₂/BC700 exhibited improved activity with earlier Eon (0.79 V), E₁/₂ (0.60 V) and jk (15.08 mA cm⁻² at 0.4 V) compared to other CeO₂/C catalysts and competing with standard Pt/C. In addition, the n values are near 4-electron transfer from K-L plots and RRDE with the lowest % of HO₂, confirming the viable electrocatalytic activity of CeO₂/BC700 catalyst. The high specific surface area (135.88 m² g⁻¹), the defective structure of mesoporous carbon (β/C(1:1)), N–C bonding with delocalized π-electrons and higher proportion of graphitic N (39%) and pyridinic N (22.7%), with considerable Ce³⁺ content are key factors for the improved ORR activity of CeO₂/BC700 catalyst. The stability result was similar to the ORR activity with the order of CeO₂/BC700 > CeO₂/BC800 > CeO₂/BC900 and surprisingly much better than standard Pt/C catalyst. In conclusion, the improved activity and stability of spindle-shaped CeO₂ on biochar derived carbon (700) could be employed as a promising contender for an alternate to noble metal catalyst towards ORR in alkaline fuel cells.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the financial support from National Key Research and Development Program of China (2018YFE0121200), National Natural Science Foundation of China (Nos. 21676126), Natural Science Foundation of Jiangsu Province (No.
BK20171296), Key R&D project (No. GY2018024) and High-tech Research Key Laboratory (No. SS2018002) of Zhenjiang City, China Postdoctoral Science Foundation (No. 2019M661751), Jiangsu Province Postdoctoral Fund (No. 2019K187), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijhydene.2020.10.115.

REFERENCES

[27] Xia W, Li J, Wang T, Song L, Gao H, Gong H, Jiang C, Gao B, He J. The synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from a 2D MOF and their...

